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Abstract

Hashtags are often employed on social me-
dia and beyond to add metadata to a tex-
tual utterance with the goal of increasing dis-
coverability, aiding search, or providing addi-
tional semantics. However, the semantic con-
tent of hashtags is not straightforward to infer
as these represent ad-hoc conventions which
frequently include multiple words joined to-
gether and can include abbreviations and un-
orthodox spellings. We build a dataset of
12,594 hashtags split into individual segments
and propose a set of approaches for hash-
tag segmentation by framing it as a pairwise
ranking problem between candidate segmen-
tations.1 Our novel neural approaches demon-
strate 24.6% error reduction in hashtag seg-
mentation accuracy compared to the current
state-of-the-art method. Finally, we demon-
strate that a deeper understanding of hash-
tag semantics obtained through segmentation
is useful for downstream applications such as
sentiment analysis, for which we achieved a
2.6% increase in average recall on the Se-
mEval 2017 sentiment analysis dataset.

1 Introduction

A hashtag is a keyphrase represented as a sequence
of alphanumeric characters plus underscore, pre-
ceded by the # symbol. Hashtags play a cen-
tral role in online communication by providing a
tool to categorize the millions of posts generated
daily on Twitter, Instagram, etc. They are useful
in search, tracking content about a certain topic
(Berardi et al., 2011; Ozdikis et al., 2012), or dis-
covering emerging trends (Sampson et al., 2016).

Hashtags often carry very important informa-
tion, such as emotion (Abdul-Mageed and Ungar,

1Our toolkit along with the code and data are pub-
licly available at https://github.com/mounicam/
hashtag_master

Type Single-token Multi-token
Named-entity (33.0%) #lionhead #toyotaprius
Events (14.8%) #oscars #ipv6summit
Standard (43.6%) #snowfall #epicfall
Non-standard (11.2%) #sayin #iloveu4eva

Table 1: Examples of single- (47.1%) and multi-word
hashtags (52.9%) and their categorizations based on a
sample of our data.

2017), sentiment (Mohammad et al., 2013), sar-
casm (Bamman and Smith, 2015), and named en-
tities (Finin et al., 2010; Ritter et al., 2011). How-
ever, inferring the semantics of hashtags is non-
trivial since many hashtags contain multiple to-
kens joined together, which frequently leads to
multiple potential interpretations (e.g., lion head
vs. lionhead). Table 1 shows several exam-
ples of single- and multi-token hashtags. While
most hashtags represent a mix of standard to-
kens, named entities and event names are preva-
lent and pose challenges to both human and auto-
matic comprehension, as these are more likely to
be rare tokens. Hashtags also tend to be shorter
to allow fast typing, to attract attention or to sat-
isfy length limitations imposed by some social me-
dia platforms. Thus, they tend to contain a large
number of abbreviations or non-standard spelling
variations (e.g., #iloveu4eva) (Han and Baldwin,
2011; Eisenstein, 2013), which hinders their un-
derstanding.

The goal of our study is to build efficient meth-
ods for automatically splitting a hashtag into a
meaningful word sequence. Our contributions are:
• A larger and better curated dataset for this task;
• Framing the problem as pairwise ranking using

novel neural approaches, in contrast to previous
work which ignored the relative order of candi-
date segmentations;
• A multi-task learning method that uses differ-

ent sets of features to handle different types of

https://github.com/mounicam/hashtag_master
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hashtags;
• Experiments demonstrating that hashtag seg-

mentation improves sentiment analysis on a
benchmark dataset.

Our new dataset includes segmentation for
12,594 unique hashtags and their associated tweets
annotated in a multi-step process for higher qual-
ity than the previous dataset of 1,108 hash-
tags (Bansal et al., 2015). We frame the segmenta-
tion task as a pairwise ranking problem, given a set
of candidate segmentations. We build several neu-
ral architectures using this problem formulation
which use corpus-based, linguistic and thesaurus
based features. We further propose a multi-task
learning approach which jointly learns segment
ranking and single- vs. multi-token hashtag clas-
sification. The latter leads to an error reduction
of 24.6% over the current state-of-the-art. Finally,
we demonstrate the utility of our method by us-
ing hashtag segmentation in the downstream task
of sentiment analysis. Feeding the automatically
segmented hashtags to a state-of-the-art sentiment
analysis method on the SemEval 2017 benchmark
dataset results in a 2.6% increase in the official
metric for the task.

2 Background and Preliminaries

Current approaches for hashtag segmentation can
be broadly divided into three categories: (a) gaze-
teer and rule based (Maynard and Greenwood,
2014; Declerck and Lendvai, 2015; Billal et al.,
2016), (b) word boundary detection (Çelebi and
Özgür, 2017, 2016), and (c) ranking with lan-
guage model and other features (Wang et al., 2011;
Bansal et al., 2015; Berardi et al., 2011; Reuter
et al., 2016; Simeon et al., 2016). Hashtag seg-
mentation approaches draw upon work on com-
pound splitting for languages such as German or
Finnish (Koehn and Knight, 2003) and word seg-
mentation (Peng and Schuurmans, 2001) for lan-
guages with no spaces between words such as Chi-
nese (Sproat and Shih, 1990; Xue and Shen, 2003).
Similar to our work, Bansal et al. (2015) extract
an initial set of candidate segmentations using a
sliding window, then rerank them using a linear
regression model trained on lexical, bigram and
other corpus-based features. The current state-of-
the-art approach (Çelebi and Özgür, 2017, 2016)
uses maximum entropy and CRF models with a
combination of language model and hand-crafted
features to predict if each character in the hashtag

is the beginning of a new word.
Generating Candidate Segmentations. Mi-
crosoft Word Breaker (Wang et al., 2011) is,
among the existing methods, a strong baseline for
hashtag segmentation, as reported in Çelebi and
Özgür (2017) and Bansal et al. (2015). It employs
a beam search algorithm to extract k best segmen-
tations as ranked by the n-gram language model
probability:

ScoreLM (s) =
n∑

i=1

logP (wi|wi−N+1 . . . wi−1)

where [w1, w2 . . . wn] is the word sequence of seg-
mentation s and N is the window size. More
sophisticated ranking strategies, such as Bino-
mial and word length distribution based ranking,
did not lead to a further improvement in perfor-
mance (Wang et al., 2011). The original Word
Breaker was designed for segmenting URLs using
language models trained on web data. In this pa-
per, we reimplemented2 and tailored this approach
to segmenting hashtags by using a language model
specifically trained on Twitter data (implementa-
tion details in §3.6). The performance of this
method itself is competitive with state-of-the-art
methods (evaluation results in §5.3). Our proposed
pairwise ranking method will effectively take the
top k segmentations generated by this baseline as
candidates for reranking.

However, in prior work, the ranking scores of
each segmentation were calculated independently,
ignoring the relative order among the top k can-
didate segmentations. To address this limitation,
we utilize a pairwise ranking strategy for the first
time for this task and propose neural architectures
to model this.

3 Multi-task Pairwise Neural Ranking

We propose a multi-task pairwise neural ranking
approach to better incorporate and distinguish the
relative order between the candidate segmenta-
tions of a given hashtag. Our model adapts to ad-
dress single- and multi-token hashtags differently
via a multi-task learning strategy without requir-
ing additional annotations. In this section, we de-
scribe the task setup and three variants of pairwise
neural ranking models (Figure 1).

2To the best of our knowledge, Microsoft discontinued its
Word Breaker and Web Ngram API services in early 2018.



hashtag (h) #songsonghaddafisitunes
segmentation (s∗) songs on ghaddafi s itunes

(i.e. songs on Ghaddafi’s iTunes)
candidate segmentations (s ∈ S)

songs on ghaddafis itunes
songs on ghaddafisi tunes
songs on ghaddaf is itunes
song song haddafis i tunes
songsong haddafisitunes

(and . . . )

Table 2: Example hashtag along with its gold and pos-
sible candidate segmentations.

3.1 Segmentation as Pairwise Ranking

The goal of hashtag segmentation is to divide a
given hashtag h into a sequence of meaningful
words s∗ = [w1, w2, . . . , wn]. For a hashtag of
r characters, there are a total of 2r−1 possible seg-
mentations but only one, or occasionally two, of
them (s∗) are considered correct (Table 2).

We transform this task into a pairwise rank-
ing problem: given k candidate segmentations
{s1, s2, . . . , sk}, we rank them by comparing each
with the rest in a pairwise manner. More specifi-
cally, we train a model to predict a real number
g(sa, sb) for any two candidate segmentations sa
and sb of hashtag h, which indicates sa is a better
segmentation than sb if positive, and vice versa. To
quantify the quality of a segmentation in training,
we define a gold scoring function g∗ based on the
similarities with the ground-truth segmentation s∗:

g∗(sa, sb) = sim(sa, s
∗)− sim(sb, s

∗).

We use the Levenshtein distance (minimum num-
ber of single-character edits) in this paper, al-
though it is possible to use other similarity mea-
surements as alternatives. We use the top k seg-
mentations generated by Microsoft Word Breaker
(§2) as initial candidates.

3.2 Pairwise Neural Ranking Model

For an input candidate segmentation pair 〈sa, sb〉,
we concatenate their feature vectors sa and sb, and
feed them into a feedforward network which emits
a comparison score g(sa, sb). The feature vector
sa or sb consists of language model probabilities
using Good-Turing (Good, 1953) and modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1999), lexical and linguistic
features (more details in §3.5). For training, we
use all the possible pairs 〈sa, sb〉 of the k candi-
dates as the input and their gold scores g∗(sa, sb)
as the target. The training objective is to minimize

the Mean Squared Error (MSE):

LMSE =
1

m

m∑
i=1

(g∗(i)(sa, sb)− ĝ(i)(sa, sb))2

(1)
where m is the number of training examples.

To aggregate the pairwise comparisons, we fol-
low a greedy algorithm proposed by Cohen et al.
(1998) and used for preference ranking (Parakhin
and Haluptzok, 2009). For each segmentation
s in the candidate set S = {s1, s2, . . . , sk},
we calculate a single score ScorePNR(s) =∑

s 6=sj∈S g(s, sj), and find the segmentation smax

corresponding to the highest score. We repeat the
same procedure after removing smax from S, and
continue until S reduces to an empty set. Fig-
ure 1(a) shows the architecture of this model.

3.3 Margin Ranking (MR) Loss
As an alternative to the pairwise ranker (§3.2), we
propose a pairwise model which learns from can-
didate pairs 〈sa, sb〉 but ranks each individual can-
didate directly rather than relatively. We define
a new scoring function g′ which assigns a higher
score to the better candidate, i.e., g′(sa) > g′(sb),
if sa is a better candidate than sb and vice-versa.
Instead of concatenating the features vectors sa
and sb, we feed them separately into two identi-
cal feedforward networks with shared parameters.
During testing, we use only one of the networks
to rank the candidates based on the g′ scores. For
training, we add a ranking layer on top of the net-
works to measure the violations in the ranking or-
der and minimize the Margin Ranking Loss (MR):

LMR =
1

m

m∑
i=1

max(0, 1− l(i)ab p
(i)
ab )

p
(i)
ab = (ĝ′(i)(sa)− ĝ′(i)(sb))

lab =


1 g∗(sa, sb) > 0
−1 g∗(sa, sb) < 0
0 otherwise

(2)

where m is the number of training samples. The
architecture of this model is presented in Fig-
ure 1(b).

3.4 Adaptive Multi-task Learning
Both models in §3.2 and §3.3 treat all the hashtags
uniformly. However, different features address
different types of hashtags. By design, the lin-
guistic features capture named entities and multi-
word hashtags that exhibit word shape patterns,



(a) Pairwise Ranking
Model (MSE §3.2)

(b) Margin Ranking Loss w/ shared
parameters (MR §3.3)

(c) Adaptive Multi-task Learning for Pairwise
ranking (MSE+Multitask §3.4)

Figure 1: Pairwise neural ranking models for hashtag segmentation. Given two candidate segmentations sa and sb
of hashtag h, the goal is to predict the segmentation’s goodness relative score (g) or absolute (g′) score.

such as camel case. The ngram probabilities with
Good-Turing smoothing gravitate towards multi-
word segmentations with known words, as its es-
timate for unseen ngrams depends on the frac-
tion of ngrams seen once which can be very
low (Heafield, 2013). The modified Kneser-Ney
smoothing is more likely to favor segmentations
that contain rare words, and single-word segmen-
tations in particular. Please refer to §5.3 for a more
detailed quantitative and qualitative analysis.

To leverage this intuition, we introduce a binary
classification task to help the model differentiate
single-word from multi-word hashtags. The bi-
nary classifier takes hashtag features h as the in-
put and outputs wh, which represents the prob-
ability of h being a multi-word hashtag. wh is
used as an adaptive gating value in our multi-
task learning setup. The gold labels for this task
are obtained at no extra cost by simply verifying
whether the ground-truth segmentation has mul-
tiple words. We train the pairwise segmentation
ranker and the binary single- vs. multi-token hash-
tag classifier jointly, by minimizing LMSE for the
pairwise ranker and the Binary Cross Entropy Er-
ror (LBCE) for the classifier:

Lmultitask = λ1LMSE + λ2LBCE

LBCE = − 1

m

m∑
i=1

[
l(i) ∗ log(w(i)

h )+

(1− l(i)) ∗ log(1− w(i)
h )
] (3)

where wh is the adaptive gating value, l ∈ {0, 1}
indicates if h is actually a multi-word hashtag and
m is the number of training examples. λ1 and λ2
are the weights for each loss. For our experiments,
we apply equal weights.

More specifically, we divide the segmentation
feature vector sa into two subsets: (a) sKN

a with
modified Kneser-Ney smoothing features, and (b)
sGL
a with Good-Turing smoothing and linguistic

features. For an input candidate segmentation pair
〈sa, sb〉, we construct two pairwise vectors sKN

ab =
[sKN

a ; sKN
b ] and sGL

ab = [sGL
a ; sGL

b ] by concate-
nation, then combine them based on the adaptive
gating value wh before feeding them into the feed-
forward network G for pairwise ranking:

ĝ(sa, sb) = G
(
whs

GL
ab + (1− wh)s

KN
ab

)
(4)

We use summation with padding, as we find this
simple ensemble method achieves similar perfor-
mance in our experiments as the more complex
multi-column networks (Ciresan et al., 2012). Fig-
ure 1(c) shows the architecture of this model. An
analogue multi-task formulation can also be used
for the Margin Ranking loss as:

Lmultitask = λ1LMR + λ2LBCE . (5)

3.5 Features
We use a combination of corpus-based and lin-
guistic features to rank the segmentations. For a
candidate segmentation s, its feature vector s in-
cludes the number of words in the candidate, the
length of each word, the proportion of words in an
English dictionary3 or Urban Dictionary4 (Nguyen
et al., 2018), ngram counts from Google Web 1TB
corpus (Brants and Franz, 2006), and ngram prob-
abilities from trigram language models trained on
the Gigaword corpus (Graff and Cieri, 2003) and

3https://pypi.org/project/pyenchant
4https://www.urbandictionary.com

https://pypi.org/project/pyenchant
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1.1 billion English tweets from 2010, respectively.
We train two language models on each corpus: one
with Good-Turing smoothing using SRILM (Stol-
cke, 2002) and the other with modified Kneser-
Ney smoothing using KenLM (Heafield, 2011).
We also add boolean features, such as if the can-
didate is a named-entity present in the list of
Wikipedia titles, and if the candidate segmentation
s and its corresponding hashtag h satisfy certain
word-shapes (more details in appendix A.1).

Similarly, for hashtag h, we extract the feature
vector h consisting of hashtag length, ngram count
of the hashtag in Google 1TB corpus (Brants and
Franz, 2006), and boolean features indicating if
the hashtag is in an English dictionary or Urban
Dictionary, is a named-entity, is in camel case,
ends with a number, and has all the letters as con-
sonants. We also include features of the best-
ranked candidate by the Word Breaker model.

3.6 Implementation Details

We use the PyTorch framework to implement our
multi-task pairwise ranking model. The pairwise
ranker consists of an input layer, three hidden lay-
ers with eight nodes in each layer and hyperbolic
tangent (tanh) activation, and a single linear out-
put node. The auxiliary classifier consists of an
input layer, one hidden layer with eight nodes and
one output node with sigmoid activation. We use
the Adam algorithm (Kingma and Ba, 2014) for
optimization and apply a dropout of 0.5 to prevent
overfitting. We set the learning rate to 0.01 and
0.05 for the pairwise ranker and auxiliary classi-
fier respectively. For each experiment, we report
results obtained after 100 epochs.

For the baseline model used to extract the k
initial candidates, we reimplementated the Word
Breaker (Wang et al., 2011) as described in §2 and
adapted it to use a language model trained on 1.1
billion tweets with Good-Turing smoothing using
SRILM (Stolcke, 2002) to give a better perfor-
mance in segmenting hashtags (§5.3). For all our
experiments, we set k = 10.

4 Hashtag Segmentation Data

We use two datasets for experiments (Table 3): (a)
STANsmall, created by Bansal et al. (2015), which
consists of 1,108 unique English hashtags from
1,268 randomly selected tweets in the Stanford
Sentiment Analysis Dataset (Go and Huang, 2009)
along with their crowdsourced segmentations and

Data num. of Hashtags avg. avg.
(multi-token%) #char #word

Train 2518 (51.9%) 8.5 1.8
STANlarge Dev 629 (52.3%) 8.4 1.7

Test 9447 (53.0%) 8.6 1.8
STANsmall Test 1108 (60.5%) 9.0 1.9

Table 3: Statistics of the STANsmall and STANlarge

datasets – number of unique hashtags, percentage of
multi-token hashtags, average length of hashtags in
characters and words.

our additional corrections; and (b) STANlarge, our
new expert curated dataset, which includes all
12,594 unique English hashtags and their associ-
ated tweets from the same Stanford dataset.

Dataset Analysis. STANsmall is the most com-
monly used dataset in previous work. However,
after reexamination, we found annotation errors in
6.8%5 of the hashtags in this dataset, which is sig-
nificant given that the error rate of the state-of-the-
art models is only around 10%. Most of the er-
rors were related to named entities. For example,
#lionhead, which refers to the “Lionhead” video
game company, was labeled as “lion head”.

Our Dataset. We therefore constructed the
STANlarge dataset of 12,594 hashtags with addi-
tional quality control for human annotations. We
displayed a tweet with one highlighted hashtag on
the Figure-Eight6 (previously known as Crowd-
Flower) crowdsourcing platform and asked two
workers to list all the possible segmentations. For
quality control on the platform, we displayed a test
hashtag in every page along with the other hash-
tags. If any annotator missed more than 20% of
the test hashtags, then they were not allowed to
continue work on the task. For 93.1% of the hash-
tags, the workers agreed on the same segmenta-
tion. We further asked three in-house annotators
(not authors) to cross-check the crowdsourced an-
notations using a two-step procedure: first, ver-
ify if the hashtag is a named entity based on the
context of the tweet; then search on Google to
find the correct segmentation(s). We also asked
the same annotators to fix the errors in STANsmall.
The human upperbound of the task is estimated
at ∼98% accuracy, where we consider the crowd-
sourced segmentations (two workers merged) as
correct if at least one of them matches with our
expert annotator’s segmentations.

5More specifically, 4.8% hashtags is missing one of the
two acceptable segmentations and another 2.0% is incorrect
segmentation.

6https://figure-eight.com

https://figure-eight.com


All Hashtags Multi-token Single-token
A@1 F1@1 A@2 MRR A@1 F1@1 A@2 MRR A@1 A@2 MRR

Original hashtag 51.0 51.0 – – 19.1 19.1 – – 100.0 – –
Rule-based (Billal et al., 2016) 58.1 63.5 – – 57.6 66.5 – – 58.8 – –
GATE Hashtag Tokenizer (M&G, 2014) 73.2 77.2 – – 71.4 78.0 – – 76.0 – –
Viterbi (Berardi et al., 2011) 73.4 78.5 – – 74.5 83.1 – – 71.6 – –
MaxEnt (Çelebi and Özgür, 2017) 92.4 93.4 – – 91.9 93.6 – – 93.1 – –
Word Breaker w/ Twitter LM 90.8 91.7 97.4 94.5 88.5 90.0 97.8 93.7 94.3 96.8 95.7
Pairwise linear ranker 88.1 89.9 97.2 93.1 83.8 86.8 97.3 91.3 94.7 97.0 95.9
Pairwise neural ranker (MR) 92.3 93.5 98.2 95.4 90.9 92.8 99.0 95.2 94.5 96.9 95.8
Pairwise neural ranker (MSE) 92.5 93.7 98.2 95.5 91.2 93.1 99.0 95.4 94.5 97.0 95.8
Pairwise neural ranker (MR+multitask) 93.0 94.3 97.8 95.7 91.5 93.7 98.7 95.4 95.2 96.6 96.0
Pairwise neural ranker (MSE+multitask) 94.5 95.2 98.4 96.6 93.9 95.1 99.4 96.8 95.4 96.8 96.2
Human Upperbound 98.0 98.3 – – 97.8 98.2 – – 98.4 – –

Table 4: Evaluation results on the corrected version of STANsmall. For reference, on the original version of
STANsmall, the Microsoft Word Breaker API reported an 84.6% F1 score and an 83.6% accuracy for the top one
output (Çelebi and Özgür, 2017), while our best model (MSE+multitask) reported 89.8% F1 and 91.0% accuracy.

All Hashtags Multi-token Single-token
A@1 F1@1 A@2 MRR A@1 F1@1 A@2 MRR A@1 A@2 MRR

Original hashtag 55.5 55.5 – – 16.2 16.2 – – 100.0 – –
Rule-based (Billal et al., 2016) 56.1 61.5 – – 56.0 65.8 – – 56.3 – –
Viterbi (Berardi et al., 2011) 68.4 73.8 – – 71.2 81.5 – – 65.0 – –
GATE Hashtag Tokenizer (M&G, 2014) 72.4 76.1 – – 70.0 76.8 – – 75.3 – –
MaxEnt (Çelebi and Özgür, 2017) 91.2 92.3 – – 90.2 92.4 – – 92.3 – –
Word Breaker w/ Twitter LM 90.1 91.0 96.6 93.9 88.5 90.0 97.0 93.4 91.9 96.2 94.4
Pairwise linear ranker 89.2 91.1 96.3 93.3 84.2 87.8 95.6 91.0 94.8 97.0 95.9
Pairwise neural ranker (MR) 91.3 92.6 97.2 94.6 89.9 92.4 97.5 94.3 92.8 96.8 94.9
Pairwise neural ranker (MSE) 91.3 92.6 97.0 94.5 91.0 93.6 97.7 94.9 91.5 96.2 94.1
Pairwise neural ranker (MR+multitask) 91.4 92.7 97.2 94.6 90.0 92.6 97.7 94.4 92.9 96.6 94.9
Pairwise neural ranker (MSE+multitask) 92.4 93.6 97.3 95.2 91.9 94.1 98.0 95.4 93.0 96.5 94.9
Human Upperbound 98.6 98.8 – – 98.0 98.4 – – 99.2 – –

Table 5: Evaluation results on our STANlarge test dataset. For single-token hashtags, the token-level F1@1 is
equivalent to segmentation-level A@1. For multi-token cases, A@1 and F1@1 for the original hashtag base-
line are non-zero because 11.4% of the hashtags have more than one acceptable segmentations. Our best model
(MSE+multitask) shows a statistically significant improvement (p < 0.05) over the state-of-the-art approach
(Çelebi and Özgür, 2017) based on the paired bootstrap test (Berg-Kirkpatrick et al., 2012).

5 Experiments

In this section, we present experimental results
that compare our proposed method with the other
state-of-the-art approaches on hashtag segmenta-
tion datasets. The next section will show exper-
iments of applying hashtag segmentation to the
popular task of sentiment analysis.

5.1 Existing Methods
We compare our pairwise neural ranker with
the following baseline and state-of-the-art ap-
proaches:
(a) The original hashtag as a single token;
(b) A rule-based segmenter, which employs a set

of word-shape rules with an English dictionary
(Billal et al., 2016);

(c) A Viterbi model which uses word frequencies
from a book corpus7 (Berardi et al., 2011);

7Project Gutenberg http://norvig.com/big.txt

(d) The specially developed GATE Hashtag To-
kenizer from the open source toolkit,8 which
combines dictionaries and gazetteers in a
Viterbi-like algorithm (Maynard and Green-
wood, 2014);

(e) A maximum entropy classifier (MaxEnt)
trained on the STANlarge training dataset. It
predicts whether a space should be inserted at
each position in the hashtag and is the current
state-of-the-art (Çelebi and Özgür, 2017);

(f) Our reimplementation of the Word Breaker
algorithm which uses beam search and a Twit-
ter ngram language model (Wang et al., 2011);

(g) A pairwise linear ranker which we im-
plemented for comparison purposes with the
same features as our neural model, but using
perceptron as the underlying classifier (Hop-
kins and May, 2011) and minimizing the hinge

8https://gate.ac.uk/

http://norvig.com/big.txt
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Single Multi All
A MRR A MRR A MRR

Kneser-Ney 95.4 95.7 56.0 75.3 74.9 85.1
Good-Turing (GT) 91.4 93.5 85.9 91.8 88.6 92.6
Linguistic (Ling) 89.4 91.7 71.6 82.6 80.1 87.0
GT + Ling 92.4 93.9 86.2 92.3 88.9 92.7
All Features 91.1 93.1 89.0 93.7 90.0 93.4

Table 6: Evaluation of automatic hashtag segmentation
(MSE) with different features on the STANlarge dev set.
A denotes accuracy@1. While Kneser-Ney features
perform well on single-token hashtags, GT+Ling fea-
tures perform better on multi-token hashtags.

loss between g∗ and a scoring function similar
to g′. It is trained on the STANlarge dataset.

5.2 Evaluation Metrics
We evaluate the performance by the top k (k =
1, 2) accuracy (A@1, A@2), average token-level
F1 score (F1@1), and mean reciprocal rank
(MRR). In particular, the accuracy and MRR are
calculated at the segmentation-level, which means
that an output segmentation is considered correct
if and only if it fully matches the human segmen-
tation. Average token-level F1 score accounts for
partially correct segmentation in the multi-token
hashtag cases.

5.3 Results
Tables 4 and 5 show the results on the STANsmall

and STANlarge datasets, respectively. All of
our pairwise neural rankers are trained on the
2,518 manually segmented hashtags in the train-
ing set of STANlarge and perform favorably against
other state-of-the-art approaches. Our best model
(MSE+multitask) that utilizes different features
adaptively via a multi-task learning procedure is
shown to perform better than simply combining
all the features together (MR and MSE). We high-
light the 24.6% error reduction on STANsmall and
16.5% on STANlarge of our approach over the
previous SOTA (Çelebi and Özgür, 2017) on the
Multi-token hashtags, and the importance of hav-
ing a separate evaluation of multi-word cases as
it is trivial to obtain 100% accuracy for Single-
token hashtags. While our hashtag segmentation
model is achieving a very high accuracy@2, to be
practically useful, it remains a challenge to get the
top one predication exactly correct. Some hash-
tags are very difficult to interpret, e.g., #BTVSMB
refers to the Social Media Breakfast (SMB) in
Burlington, Vermont (BTV).

The improved Word Breaker with our addition of
a Twitter-specific language model is a very strong
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count Example Hashtags
◦ ◦ ◦ 31 #omnomnom #BTVSMB
• ◦ ◦ 13 #commbank #mamapedia
◦ • ◦ 38 #wewantmcfly #winebarsf
◦ ◦ • 24 #cfp09 #TechLunchSouth
• • ◦ 44 #twittographers #bringback
• ◦ • 16 #iccw #ecom09
◦ • • 53 #LetsGoPens #epicwin
• • • 420 #prototype #newyork

Table 7: Error (◦) and correct (•) segmentation anal-
ysis of three pairwise ranking models (MSE) trained
with different feature sets Each row corresponds to one
area in the Venn diagram; for example, ◦◦◦ is the set of
hashtags that all three models failed in the STANlarge

dev data and •◦◦ is the set of hashtags that only the
model with Kneser-Ney language model features (but
not the other two models) segmented correctly.

baseline, which echos the findings of the origi-
nal Word Breaker paper (Wang et al., 2011) that
having a large in-domain language model is ex-
tremely helpful for word segmentation tasks. It is
worth noting that the other state-of-the-art system
(Çelebi and Özgür, 2017) also utilized a 4-gram
language model trained on 476 million tweets
from 2009.

5.4 Analysis and Discussion

Feature Analysis. To empirically illustrate the
effectiveness of different features on different
types of hashtags, we show the results for mod-
els using individual feature sets in pairwise rank-
ing models (MSE) in Table 6. Language mod-
els with modified Kneser-Ney smoothing perform
best on single-token hashtags, while Good-Turing
and Linguistic features work best on multi-token
hashtags, confirming our intuition about their use-
fulness in a multi-task learning approach. Table 7
shows a qualitative analysis with the first column
(◦◦◦) indicating which features lead to correct or
wrong segmentations, their count in our data and
illustrative examples with human segmentation.

Length of Hashtags. As expected, longer
hashtags with more than three tokens pose
greater challenges and the segmentation-level
accuracy of our best model (MSE+multitask)
drops to 82.1%. For many error cases,
our model predicts a close-to-correct seg-
mentation, e.g., #youknowyouupttooearly,
#iseelondoniseefrance, which is also reflected by



Type num. of Hashtags
single 4426 (47.1%)

2 tokens 3436 (36.2%)
3 tokens 1085 (11.2%)
4 tokens 279 (2.9%)

5+ tokens 221 (2.6%)

Figure 2: Token-level F1 scores (MSE+multitask) on
hashtags of different lengths in the STANlarge test set.

Figure 3: Token-level F1 scores of our pairwise ranker
(MSE+multitask) and Word Breaker on the STANlarge

test set, using language models trained with varying
amounts of data.

the higher token-level F1 scores across hashtags
with different lengths (Figure 2).

Size of the Language Model. Since our ap-
proach heavily relies on building a Twitter lan-
guage model, we experimented with its sizes and
show the results in Figure 3. Our approach can
perform well even with access to a smaller amount
of tweets. The drop in F1 score for our pairwise
neural ranker is only 1.4% and 3.9% when using
the language models trained on 10% and 1% of the
total 1.1 billion tweets, respectively.

Time Sensitivity. Language use in Twitter
changes with time (Eisenstein, 2013). Our
pairwise ranker uses language models trained on
the tweets from the year 2010. We tested our
approach on a set of 500 random English hashtags
posted in tweets from the year 2019 and show
the results in Table 8. With a segmentation-level
accuracy of 94.6% and average token-level F1

score of 95.6%, our approach performs favorably
on 2019 hashtags.

A@1 F1@1 MRR
Word Breaker w/ Twitter LM 92.1 93.9 94.7
Pairwise neural ranker (MSE+multitask) 94.6 95.6 96.7

Table 8: Evaluation results on 500 random hashtags
from the year 2019.

6 Extrinsic Evaluation: Twitter
Sentiment Analysis

We attempt to demonstrate the effectiveness of
our hashtag segmentation system by studying
its impact on the task of sentiment analysis in
Twitter (Pang et al., 2002; Nakov et al., 2016;
Rosenthal et al., 2017). We use our best model
(MSE+multitask), under the name HashtagMas-
ter, in the following experiments.

6.1 Experimental Setup
We compare the performance of the BiL-
STM+Lex (Teng et al., 2016) sentiment analysis
model under three configurations: (a) tweets with
hashtags removed, (b) tweets with hashtags as sin-
gle tokens excluding the # symbol, and (c) tweets
with hashtags as segmented by our system, Hash-
tagMaster. BiLSTM+Lex is a state-of-the-art open
source system for predicting tweet-level sentiment
(Tay et al., 2018). It learns a context-sensitive
sentiment intensity score by leveraging a Twitter-
based sentiment lexicon (Tang et al., 2014). We
use the same settings as described by Teng et al.
(2016) to train the model.

We use the dataset from the Sentiment Analy-
sis in Twitter shared task (subtask A) at SemEval
2017 (Rosenthal et al., 2017). 9 Given a tweet, the
goal is to predict whether it expresses POSITIVE,
NEGATIVE or NEUTRAL sentiment. The training
and development sets consist of 49,669 tweets and
we use 40,000 for training and the rest for develop-
ment. There are a total of 4,840 tweets containing
12,128 hashtags in the SemEval 2017 test set, and
our hashtag segmenter ended up splitting 6,975 of
those hashtags present in 3,384 tweets.

6.2 Results and Analysis
In Table 9, we report the results based on the
3,384 tweets where HashtagMaster predicted a
split, as for the rest of tweets in the test set,
the hashtag segmenter would neither improve nor
worsen the sentiment prediction. Our hashtag seg-
menter successfully improved the sentiment anal-
ysis performance by 2% on average recall and
FPN
1 comparing to having hashtags unsegmented.

This improvement is seemingly small but decid-
edly important for tweets where sentiment-related
information is embedded in multi-word hashtags

9We did not use the Stanford Sentiment Analysis Dataset
(Go and Huang, 2009), which was used to construct the
STANsmall and STANlarge hashtag datasets, because of its
noisy sentiment labels obtained using distant supervision.



AvgR FPN
1 Acc

Original tweets 61.7 60.0 58.7
− No Hashtags 60.2 58.8 54.2
+ Single-word 62.3 60.3 58.6
+ HashtagMaster 64.3 62.4 58.6

Table 9: Sentiment analysis evaluation on the 3384
tweets from SemEval 2017 test set using the BiL-
STM+Lex method (Tang et al., 2014). Average re-
call (AvgR) is the official metric of the SemEval task
and is more reliable than accuracy (Acc). FPN

1 is the
average F1 of positive and negative classes. Having
the hashtags segmented by our system HashtagMaster
(i.e., MSE+multitask) significantly improves the senti-
ment prediction than not (p < 0.05 for AvgR and FPN

1

against the single-word setup).

and sentiment prediction would be incorrect based
only on the text (see Table 10 for examples). In
fact, 2,605 out of the 3,384 tweets have multi-
word hashtags that contain words in the Twitter-
based sentiment lexicon (Tang et al., 2014) and
125 tweets contain sentiment words only in the
hashtags but not in the rest of the tweet.

7 Other Related Work

Automatic hashtag segmentation can improve the
performance of many applications besides senti-
ment analysis, such as text classification (Billal
et al., 2016), named entity linking (Bansal et al.,
2015) and modeling user interests for recommen-
dations (Chen et al., 2016). It can also help in col-
lecting data of higher volume and quality by pro-
viding a more nuanced interpretation of its con-
tent, as shown for emotion analysis (Qadir and
Riloff, 2014), sarcasm and irony detection (May-
nard and Greenwood, 2014; Huang et al., 2018).
Better semantic analysis of hashtags can also po-
tentially be applied to hashtag annotation (Wang
et al., 2019), to improve distant supervision la-
bels in training classifiers for tasks such as sar-
casm (Bamman and Smith, 2015), sentiment (Mo-
hammad et al., 2013), emotions (Abdul-Mageed
and Ungar, 2017); and, more generally, as labels
for pre-training representations of words (Weston
et al., 2014), sentences (Dhingra et al., 2016), and
images (Mahajan et al., 2018).

8 Conclusion

We proposed a new pairwise neural ranking model
for hashtag segmention and showed significant
performance improvements over the state-of-the-
art. We also constructed a larger and more
curated dataset for analyzing and benchmarking

Ofcourse #clownshoes #altright #IllinoisNazis
#FinallyAtpeaceWith people calling me “Kim
Fatty the Third”
Leslie Odom Jr. sang that. #ThankYouObama
After some 4 months of vegetarianism .. it’s all the
same industry. #cutoutthecrap

Table 10: Sentiment analysis examples where our
HashtagMaster segmentation tool helped. Red and blue
words are negative and positive entries in the Twitter
sentiment lexicon (Tang et al., 2014), respectively.

hashtag segmentation methods. We demonstrated
that hashtag segmentation helps with downstream
tasks such as sentiment analysis. Although we fo-
cused on English hashtags, our pairwise ranking
approach is language-independent and we intend
to extend our toolkit to languages other than En-
glish as future work.
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A Appendix

A.1 Word-shape rules
Our model uses the following word shape rules as
boolean features. If the candidate segmentation s
and its corresponding hashtag h satisfies a word
shape rule, then the boolean feature is set to True.

Rule Hashtag→ Segmentation
Camel Case XxxXxx→ Xxx+Xxx
Consonants cccc→ cccc

Digits as prefix ddwwww→ dd+wwww
Digits as suffix wwwwdd→ wwww+dd

Underscore www www→ www + + www

Table 11: Word-shape rule features used to identify
good segmentations. Here, X and x represent capital-
ized and non-capitalized alphabetic characters respec-
tively, c denotes consonant, d denotes number and w
denotes any alphabet or number.


