Discourse Level Factors for Sentence Deletion in Text Simplification

Yang Zhong, Chao Jiang, Wei Xu, and Junyi Jessy Li
More than 65% of 8th graders in American public schools were not proficient in reading and writing.

— National Assessment of Educational Progress released by the U.S. Department of Education
Text Simplification

Goal: rewrite text to be easier to read, while remaining truthful in content
Building an indoor 3-D map on the spot, via smartphone

By Steve Alexander, Minneapolis Star Tribune
Published: 03/31/2014 Word Count: 777

Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings. Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings. Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."

Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings. Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery.

Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
We pick which information to process,” Roumeliotis said, “That way we don’t choke the phone’s processor chip or drain the battery.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."

Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

The new software doesn't use global positioning satellite (GPS) signals.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.
"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."

Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

The new software doesn't use global positioning satellite (GPS) signals.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

Instead, the software uses the phone's camera and built-in motion sensor.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

The new software doesn't use global positioning satellite (GPS) signals.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

Instead, the software uses the phone's camera and built-in motion sensor.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

The new software doesn't use global positioning satellite (GPS) signals.

Instead, the software uses the phone's camera and built-in motion sensor.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

The new software doesn't use global positioning satellite (GPS) signals.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

Instead, the software uses the phone's camera and built-in motion sensor.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
Our Work

- Manually annotated corpus with sentence alignments.
Our Work

- Manually annotated corpus with sentence alignments.
- Analysis of discourse level factors affecting the deletion of sentences.
 - Governing relation of sentence in RST tree.
 - Discourse connectives in sentence.
Our Work

- Manually annotated corpus with sentence alignments.
- Analysis of discourse level factors affecting the deletion of sentences.
 - Governing relation of sentence in RST tree.
 - Discourse connectives in sentence.
- Automatic prediction of sentence’s deletion.
Our Work

› **Manually annotated corpus with sentence alignments.**

› Analysis of discourse level factors affecting the deletion of sentences.

 ‣ Governing relation of sentence in RST tree.

 ‣ Discourse connectives in sentence.

› Automatic prediction of sentence’s deletion.
Newsela Corpus (Xu et al. 2015)

- Newsela is a U.S. Education company based in New York City.

- **1,932 news articles** rewritten by professional editors for schools children.

- Each document (~47 sentences) is simplified to 4 different reading levels.

- But, only document aligned

https://newsela.com/data/
Newsela Corpus (Xu et al. 2015)

- Newsela is a U.S. Education company based in New York City.

- **1,932 news articles** rewritten by professional editors for schools children.

- Each document (~47 sentences) is simplified to 4 different reading levels.

- But, only document aligned

 We manually annotated 50 sets of articles across three reading levels to analyze what sentences get deleted.

https://newsela.com/data/
Manual Annotation

- Classification on sentence pairs.
- Inter-annotator agreement at 0.807 by Cohen’s kappa.
- Annotations aggregated by majority vote from 5 workers.
- Lastly verified by in-house annotators (not the authors).
Manual Annotation

- Classification on sentence pairs.
- Inter-annotator agreement at 0.807 by Cohen’s kappa.
- Annotations aggregated by majority vote from 5 workers.
- Lastly verified by in-house annotators (not the authors).
Manual Annotation

- Classification on sentence pairs.
- Inter-annotator agreement at **0.807** by Cohen’s kappa.
- Annotations aggregated by majority vote from 5 workers.
- Lastly verified by in-house annotators (not the authors).
Manual Annotation

- Classification on sentence pairs.
- Inter-annotator agreement at **0.807** by Cohen’s kappa.
- Annotations aggregated by majority vote from 5 workers.
- Lastly verified by in-house annotators (not the authors).
Sentence Deletion

Professional editors remove entire sentences when simplifying news articles. *based on 50 articles we manually sentence-aligned in the Newsela corpus*
Sentence Deletion

Original → Middle School
- Deleted: 17%
- Kept: 83%

Original → Elementary School
- Deleted: 45%
- Kept: 55%

Professional editors remove entire sentences when simplifying news articles.

* based on 50 articles we manually sentence-aligned in the Newsela corpus
Our Work

- Manually annotated corpus with sentence alignments.
- **Analysis of discourse level factors affecting the deletion of sentences.**
 - Governing relation of sentence in RST tree.
 - Discourse connectives in sentence.
- Automatic prediction of sentence deletion.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings. Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

* using the discourse parser from (Surdeanu, Mihai, et al, 2015)
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings. Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera. "We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

“We pick which information to process,” Roumeliotis said, “That way we don’t choke the phone’s processor chip or drain the battery.”
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
The **lowest governing relation** of sentence 3 is **elaboration**.
Sentence 1 and 2 have no governing relation in the discourse tree.
(i.e., they are nucleuses that are close to the root)
Sentence 1 and 2 have no governing relation in the discourse tree. (i.e., they are nucleuses that are close to the root)
Governing Relations in the Discourse

<table>
<thead>
<tr>
<th>#sentences</th>
<th>Middle School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kept</td>
</tr>
<tr>
<td>No Relation</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

Sentences that are nuclei and close to the root are less likely to be deleted.

↓: significantly lower presence among deleted sentences than the kept ones ↑: higher.
Governing Relations in the Discourse

<table>
<thead>
<tr>
<th>#sentences</th>
<th>Middle School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kept</td>
</tr>
<tr>
<td>No Relation</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

↓: significantly lower presence among deleted sentences than the kept ones ↑: higher.
Governing Relations in the Discourse

<table>
<thead>
<tr>
<th>#sentences</th>
<th>Middle School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kept</td>
</tr>
<tr>
<td>No Relation</td>
<td>8.4%</td>
</tr>
<tr>
<td>Elaboration</td>
<td>79.3%</td>
</tr>
</tbody>
</table>

↓: significantly lower presence among deleted sentences than the kept ones ↑: higher.
Governing Relations in the Discourse

<table>
<thead>
<tr>
<th>#sentences</th>
<th>Middle School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kept</td>
</tr>
<tr>
<td>No Relation</td>
<td>8.4%</td>
</tr>
<tr>
<td>Elaboration</td>
<td>79.3%</td>
</tr>
<tr>
<td>Explanation</td>
<td>1.9%</td>
</tr>
<tr>
<td>Background</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

↓: significantly lower presence among deleted sentences than the kept ones ↑: higher.
Governing Relations in the Discourse

<table>
<thead>
<tr>
<th>#sentences</th>
<th>Middle School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kept</td>
</tr>
<tr>
<td>No Relation</td>
<td>8.4%</td>
</tr>
<tr>
<td>Elaboration</td>
<td>79.3%</td>
</tr>
<tr>
<td>Explanation</td>
<td>1.9%</td>
</tr>
<tr>
<td>Background</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

Sentences used for explanations are less likely to be deleted.

↓: significantly lower presence among deleted sentences than the kept ones ↑: higher.
Governing Relations in the Discourse

<table>
<thead>
<tr>
<th>#sentences</th>
<th>Middle School</th>
<th>Elementary School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kept</td>
<td>Deleted</td>
</tr>
<tr>
<td>No Relation</td>
<td>8.4%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Elaboration</td>
<td>79.3%</td>
<td>81.6%</td>
</tr>
<tr>
<td>Explanation</td>
<td>1.9%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Background</td>
<td>1.9%</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Sentences used for explanations are less likely to be deleted.

↓: significantly lower presence among deleted sentences than the kept ones ↑: higher.
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings. Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera. "We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."

Following the style of Penn Discourse Treebank (Miltsakaki, Eleni, et al. 2004.)
Unlike most smartphone maps, the new software doesn't rely on global positioning system data because satellite signals aren't typically available inside buildings.

Instead, it does more with less by combining data from the phone's built-in motion sensor with just a fraction of the images produced by the phone's camera.

"We pick which information to process," Roumeliotis said, "That way we don't choke the phone's processor chip or drain the battery."

Following the style of Penn Discourse Treebank (Miltsakaki, Eleni, et al. 2004.)
Discourse Connectives

Expansion
indeed, or, as if, instead, rather,
 further, besides, and,
 for example, otherwise, for
 instance, overall, in fact, if then,
 also, in addition, similarly,
 moreover, nor

Comparison
meantime, however, while, on the
 contrary, although, as if, but, still,
 nevertheless, by contrast, yet, though

Contingency
because, thus, so that, if, when,
 so, since, as long as, as a result,
 therefore

Temporal
later, in turn, when, before, once,
 while, then, meanwhile, previously,
 thereafter, since, after, as,
 ultimately, afterward, until

Following the style of Penn Discourse Treebank (Miltsakaki, Eleni, et al. 2004.)
Discourse Connectives in Elementary School
Discourse Connectives in Elementary School

Sentences with discourse connectives are more likely to be deleted.
Sentences with discourse connectives are more likely to be deleted. But, less so for middle school than elementary school.
Discourse Connectives in **Middle School**

Sentences with discourse connectives are more likely to be deleted. **But, less so for middle school than elementary school.**
Our Work

- Manually annotated corpus with sentence alignments.

- Analysis of discourse level factors affecting the deletion of sentences.
 - Governing relation of sentence in RST tree.
 - Discourse connectives in sentence.

- **Automatic prediction of sentence’s deletion.**
Predicting Sentence Deletion
Features

- **Document characteristics**
 - Number of sentences
 - Number of tokens
 - Topic

![Diagram with network and sentence indication]
Features

- Document characteristics
- Discourse features
 - Depth of sentence in RST tree
 - Indicator of nuclearity
 - Governing relation
 - Indicator of explicit connectives
 - Position of discourse connectives

Diagram:
- Deleted/Kept
- Sentence
Features

- Document characteristics
- Discourse features
- **Position features**
 - Sentence’s position in document
 - Paragraph’s relative position
 - Sentence’s position inside paragraph
Features

- Document characteristics
- Discourse features
- Position features

Sparse Features

Deleted/Kept

sentence
Features

- Document characteristics
- Discourse features
- Position features

- Semantic features
 - 300D GloVe Embeddings
Features

- Document characteristics
- Discourse features
- Position features
- Semantic features

Sparse Features

Deleted/Kept

sentence
Dataset & Evaluation

- **Training set:** 42,264 sentences in 886 articles *automatically* aligned using Sent2Vec from the Newsela dataset (Pagliardini, Gupta, and Jaggi 2018).

- **Dev/Test sets:** 450/1838 sentences in the 50 articles *manually* aligned.
Results (predicting which sentence will be deleted)

- Middle school is harder to predict than elementary school.
- Both sparse features and word embeddings can help.
- FFNN+Gaussian Layer works better than Logistic Regression Model.
Results (predicting which sentence will be deleted)

- Middle school is harder to predict than elementary school.
- Both sparse features and word embeddings can help.
- FFNN+Gaussian Layer works better than Logistic Regression Model.

Random Baseline
- LR all features
- FFNN Embedding only
- FFNN Sparse Feature only

F1
- Elementary School
- Middle School
Results (predicting which sentence will be deleted)

- Middle school is harder to predict than elementary school.
- Both sparse features and word embeddings can help.
- FFNN+Gaussian Layer works better than Logistic Regression Model.

<table>
<thead>
<tr>
<th>Random Baseline</th>
<th>LR all features</th>
<th>FFNN Embedding only</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFNN Sparse Feature only</td>
<td>FFNN all features</td>
<td></td>
</tr>
</tbody>
</table>

![Bar chart showing F1 scores for different models for Elementary School and Middle School.](chart)
Takeaways

- Manually aligned corpus can help text simplification task.
- Discourse level factors are associated with sentence deletion.
- Discourse level factors contribute to the challenging task of predicting sentence deletion for simplification

Discourse Level Factors for Sentence Deletion in Text Simplification

Yang Zhong, Chao Jiang, Wei Xu, and Junyi Jessy Li

Thank you!

Q & A
Backup Pages
Automatic Alignment

Original Level

Middle/Elementary School

cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Automatic Alignment

- CoNLL 2003
 - Automatic Alignment
 - 700D Sentence Embedding
 - Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)

Highest Similarity

Original Level
- O1
- O20

Middle/Elementary School
- S1
- S19

cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Automatic Alignment

Original Level

Middle/Elementary School

\[\cos(O1, S1) = 0.95 \]

Cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Automatic Alignment

Original Level

Middle/Elementary School

cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Automatic Alignment

Highest Similarity

Original Level

Middle/Elementary School

O1 Kept

O20

S1

S19

cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Automatic Alignment

cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Automatic Alignment

- Cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)

Original Level: Kept

Middle/Elementary School

All possible pairs have low similarity

cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Automatic Alignment

Original Level

Middle/Elementary School

cosine similarity based on 700D sentence embedding Sent2Vec (Pagliardini, Gupta, and Jaggi 2018)
Still, the attention to the issue is a shift from decades ago, when Los Angeles and other major cities battled crippling smog and treated it as a local matter.

Now that climate change has put the spotlight on the global rise of carbon dioxide, other pollutants are increasingly being viewed in the same way, as international concerns.

Temporal connectives will presuppose the event involved in the whole context.
Gaussian binning Vectorization

\[\vec{f}_a = [\sim 0.0, \ 0.44, \ 0.54, \ \sim 0.02, \ \sim 0.0] \]

\[d_j(f) = e^{\frac{-(f - \mu_j)^2}{2\sigma^2}} \]

*smooth binning approach (Maddela and Xu 2018)
Gaussian Feature Vectorization

Single feature value: \(f(w) = 0.41, \quad f(w) \in [0,1] \)

Vectorized feature: \(f(w) = [\sim0.0, 0.44, 0.54, \sim0.02, \sim0.0] \)

slides credit to (Maddela and Xu 2018)
Gaussian Feature Vectorization

Single feature value: \(f(w) = 0.41, \quad f(w) \in [0,1] \)

Vectorized feature: \(f(w) = [\sim0.0, 0.44, 0.54, \sim0.02, \sim0.0] \)

slides credit to (Maddela and Xu 2018)
Gaussian Feature Vectorization

Single feature value : \(f(w) = 0.41, \quad f(w) \in [0,1] \)

Vectorized feature : \(f(w) = [\sim0.0, \quad \] \)

slides credit to (Maddela and Xu 2018)
Gaussian Feature Vectorization

Single feature value: \(f(w) = 0.41, \quad f(w) \in [0,1] \)

Vectorized feature: \[f(w) = [\sim 0.0, \ 0.44, \] \]

slides credit to (Maddela and Xu 2018)
Gaussian Feature Vectorization

Single feature value: \(f(w) = 0.41, \quad f(w) \in [0,1] \)

Vectorized feature: \(f(w) = [\sim0.0, 0.44, 0.54, \ldots] \)

slides credit to (Maddela and Xu 2018)
Gaussian Feature Vectorization

Single feature value: \(f(w) = 0.41, \quad f(w) \in [0,1] \)

Vectorized feature: \(f(w) = [\sim 0.0, 0.44, 0.54, \sim 0.02, \sim 0.0] \)

*slides credit to (Maddela and Xu 2018)