

(Image Source: Garfield)

Enhancing Multilingual Capabilities in Large Language Models

Wei Xu (associate professor)
College of Computing
Georgia Institute of Technology
Twitter/X @cocoweixu

NLP X Research Lab

Generative Al

- generation evaluation
- reading/writing/voice assistant
- human-Al interactive system
- stylistics

Language Models

- multi-/cross-lingual capability
- cultural adaptation
- decoding
- privacy, safety

Oleksandr Lavreniuk Undergrad

Yao

Dou

Vishnesh Undergrad **Undergrad**

Geyang

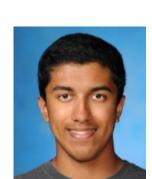
Guo

Govind Ramesh Undergrad

Jonathan

Zheng

lan Ligon **Undergrad**



(co-advised with Alan Ritter)

Duong

Minh Le

Joseph Undergrad

Nour Allah Broomfield El Senary Undergrad

Xiaofeng

Wu **MS** student

Chao

Jiang

Tarek

Naous

PhD student PhD student PhD student PhD student

Ramanathan

Junmo

Kang

PhD student PhD student MS student

Jeongrok

Julius

Siwan Yang

Suraj **Mehrotra** Undergrad

NLP+X Interdisciplinary Research

- HCI, human-centered NLP
- Education, Healthcare, Accessibility ...

Today's Talk —

1 - Cross-lingual Transfer Learning

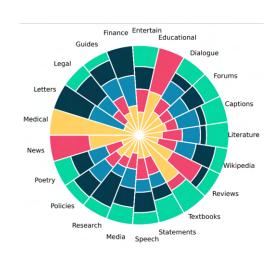
CODEC

(Le et al., ICLR 2024)

Design decoding algorithms to improve performance on non-English languages.

2 - Multilingual Multi-domain Datasets

ReadMe++ & MedReadMe



(Naous et al., EMNLP 2024 & Chao et al., EMNLP 2024)

Support not only more languages but also more text domains/genres.

Today's Talk —

1 - Cross-lingual Transfer Learning

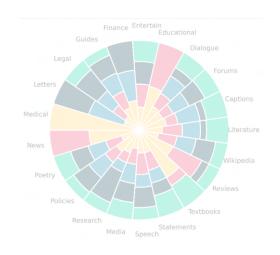
CODEC

(Le et al., ICLR 2024)

Design decoding algorithms to improve performance on non-English languages.

2 - Multilingual Multi-domain Datasets

ReadMe++ & MedReadMe



(Naous et al., EMNLP 2024 & Chao et al., EMNLP 2024)

Support not only more languages but also more text domains/genres.

Frustratingly Easy Label Projection for Cross-lingual Transfer (EasyProject)

Yang Chen

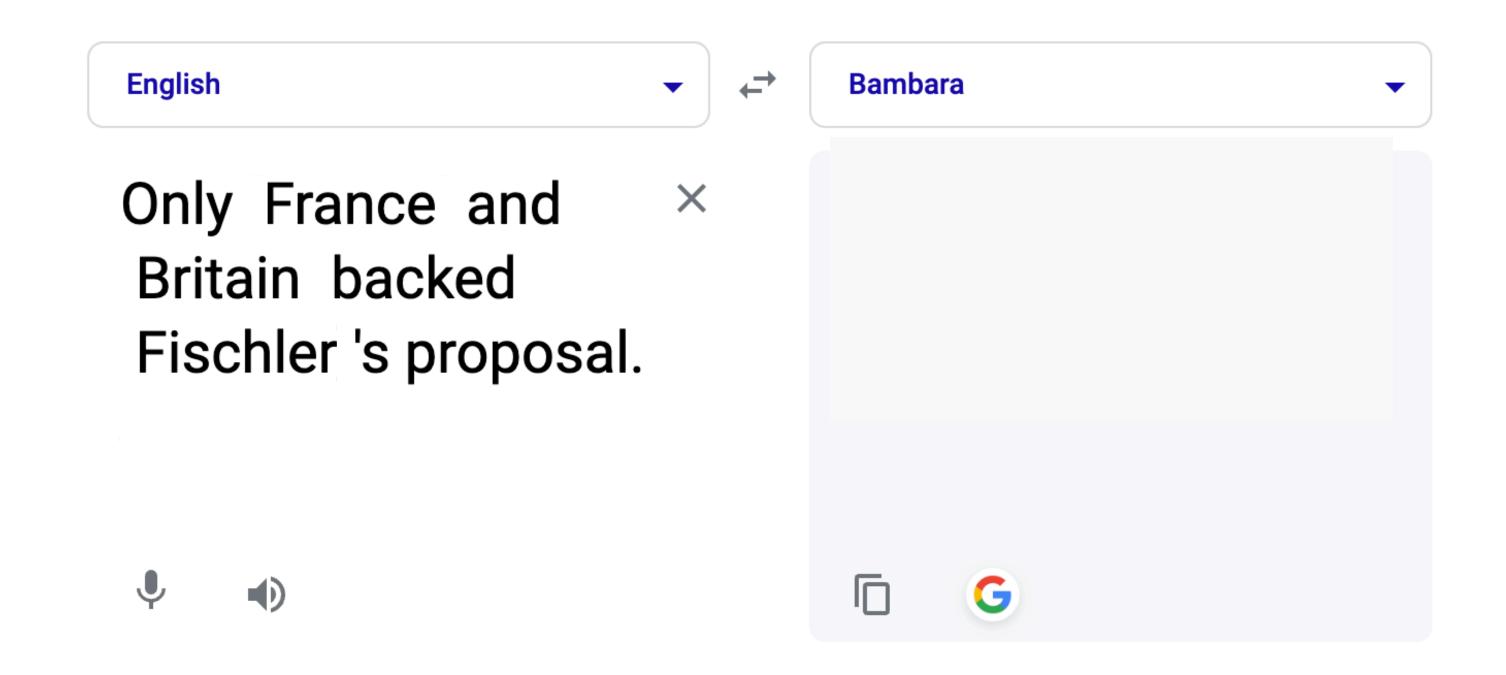
Chao Jiang

Alan Ritter

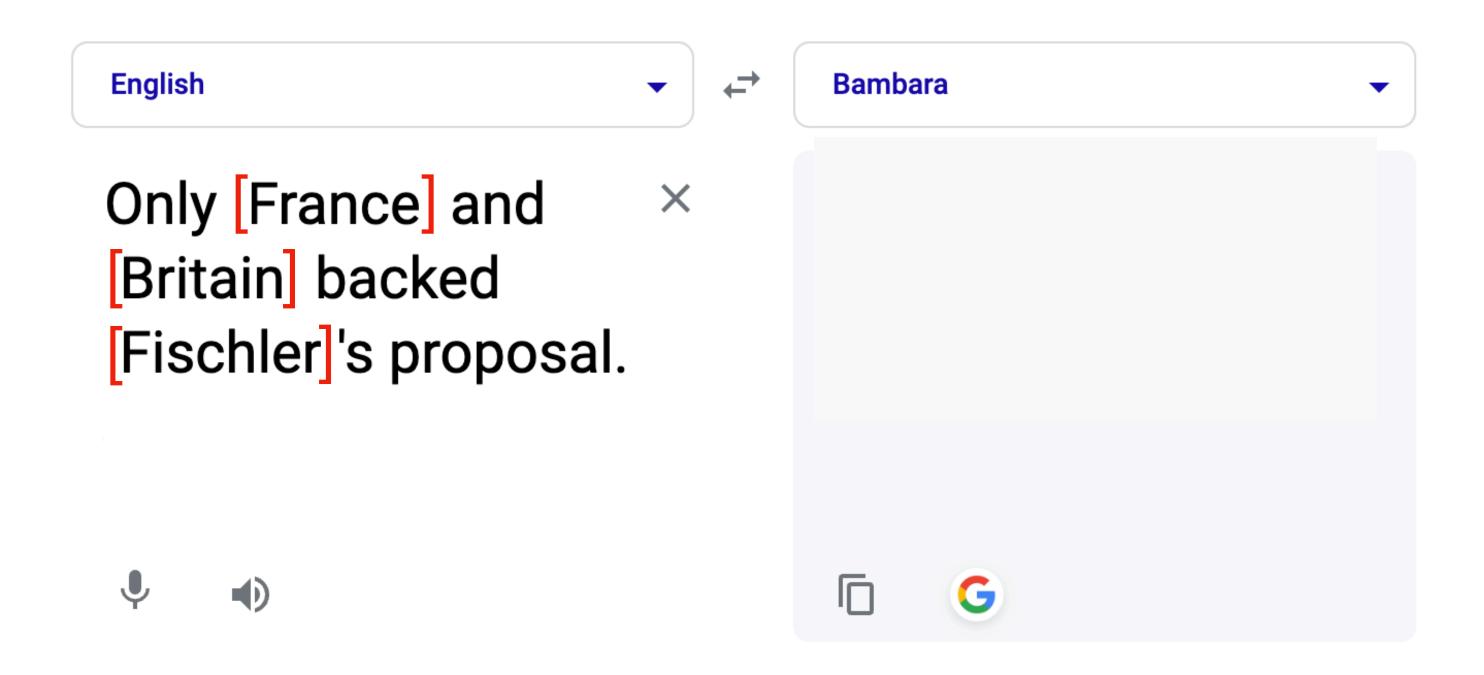
Wei Xu

approach for label projection

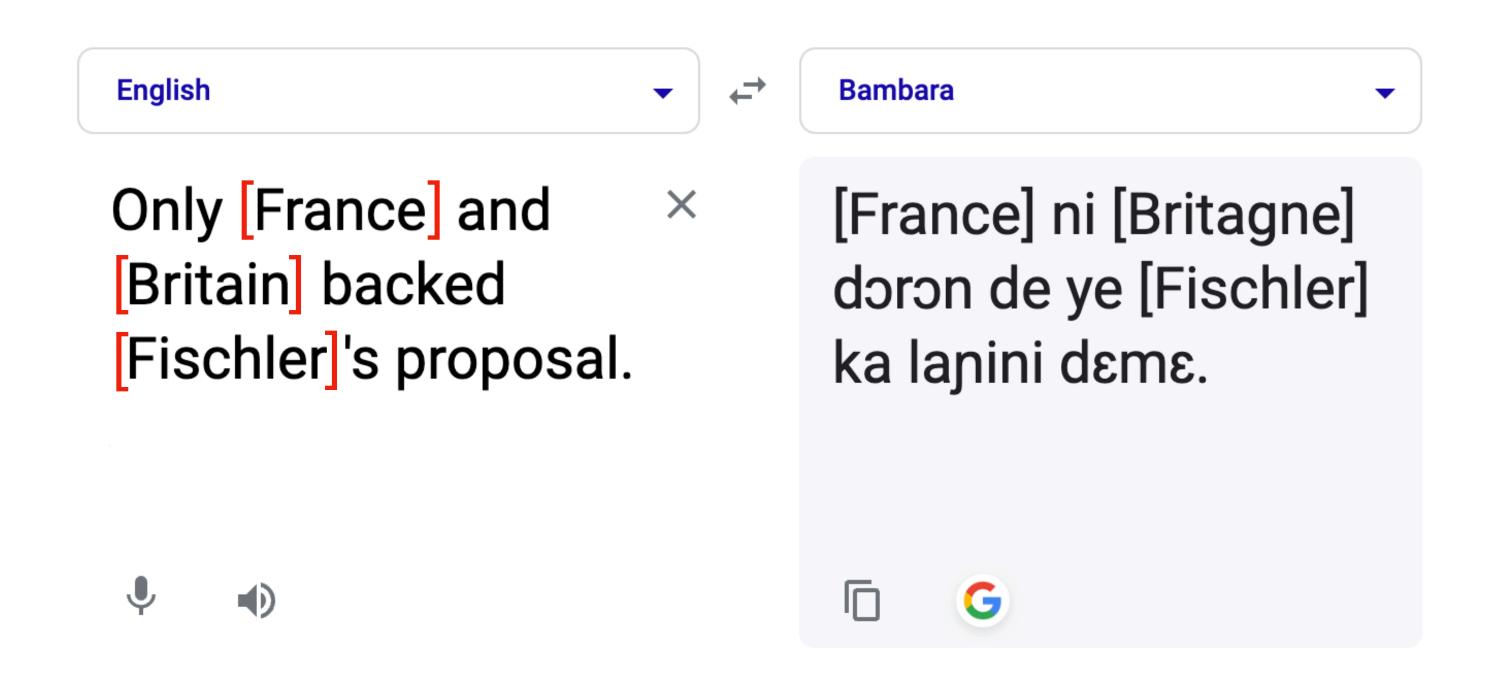
Translating annotated training data from one language to the other



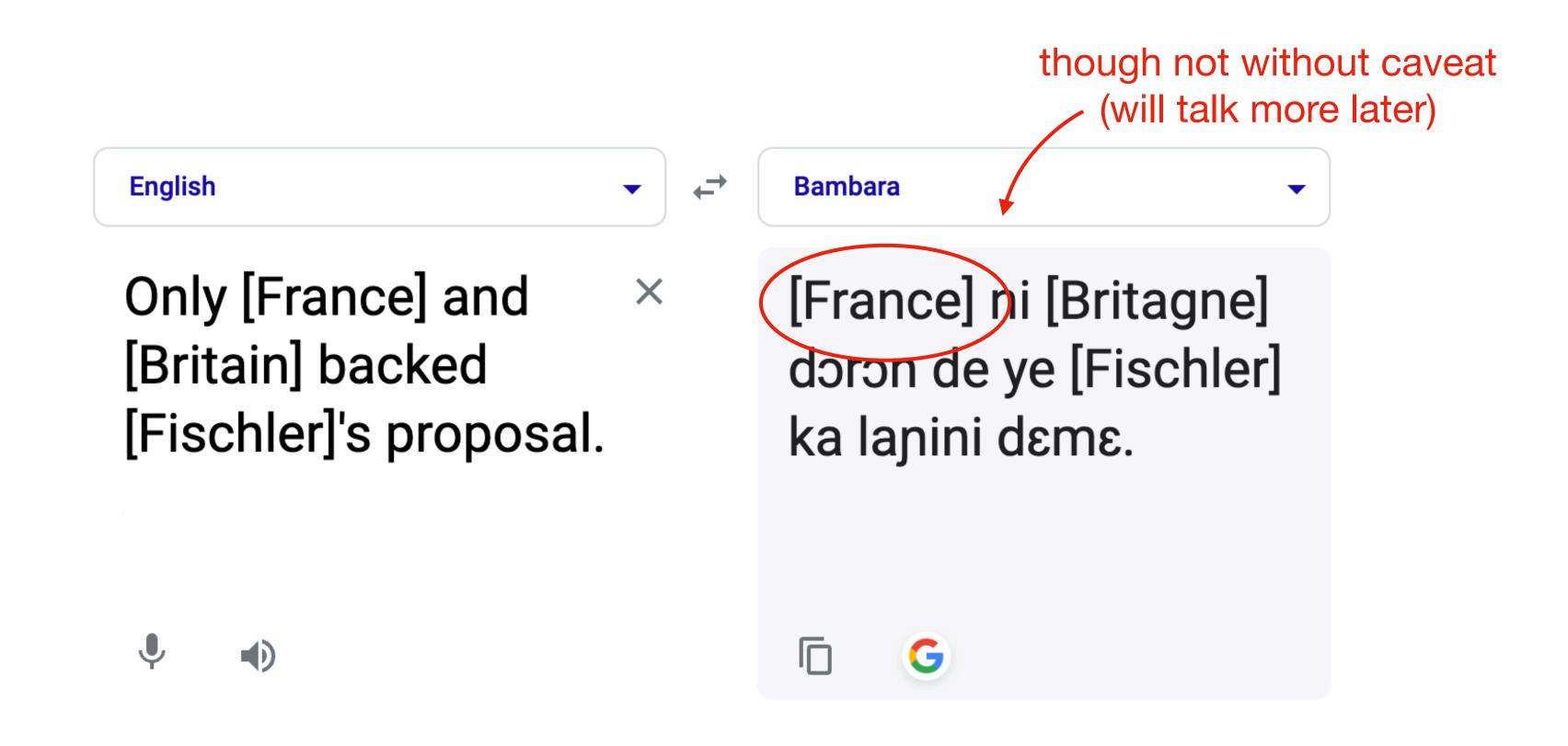
Translating annotated training data from one language to the other by injecting some markers [] around the text spans



Translating annotated training data from one language to the other by injecting some markers [] around the text spans, then sending it directly to a Machine Translation system.



Translating annotated training data from one language to the other by injecting some markers [] around the text spans, then sending it directly to a Machine Translation system.



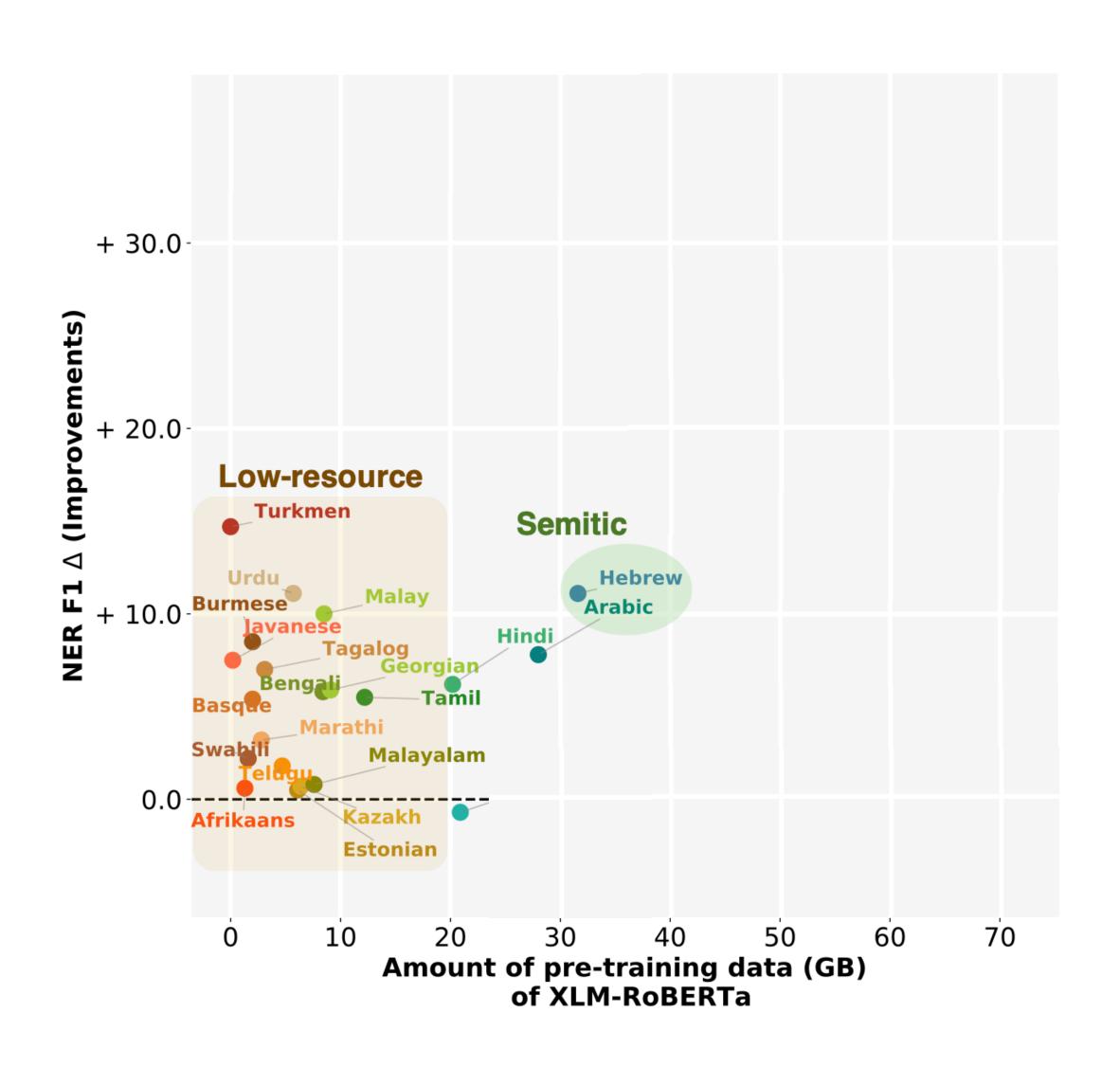
- used by researchers "informally" as a hack
- one of the earliest such accounts is by Lee et al. (2018)
- then, used in MLQA (Lewis et al., 2020), XTREME (Hu et al., 2020) ...

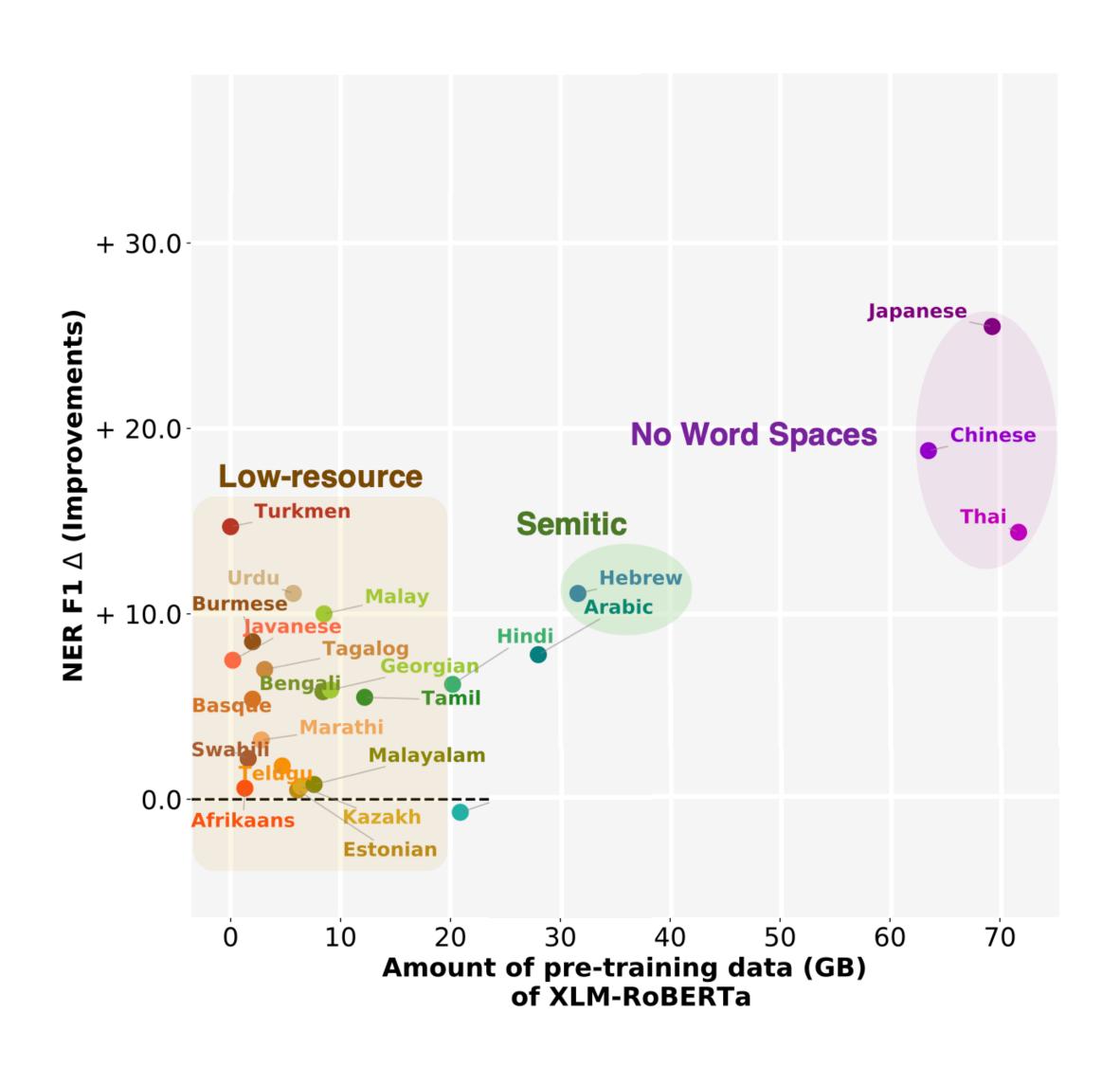
- But, only described briefly in each paper
- How well does it work? For different languages, tasks? Better or worse than word alignment?

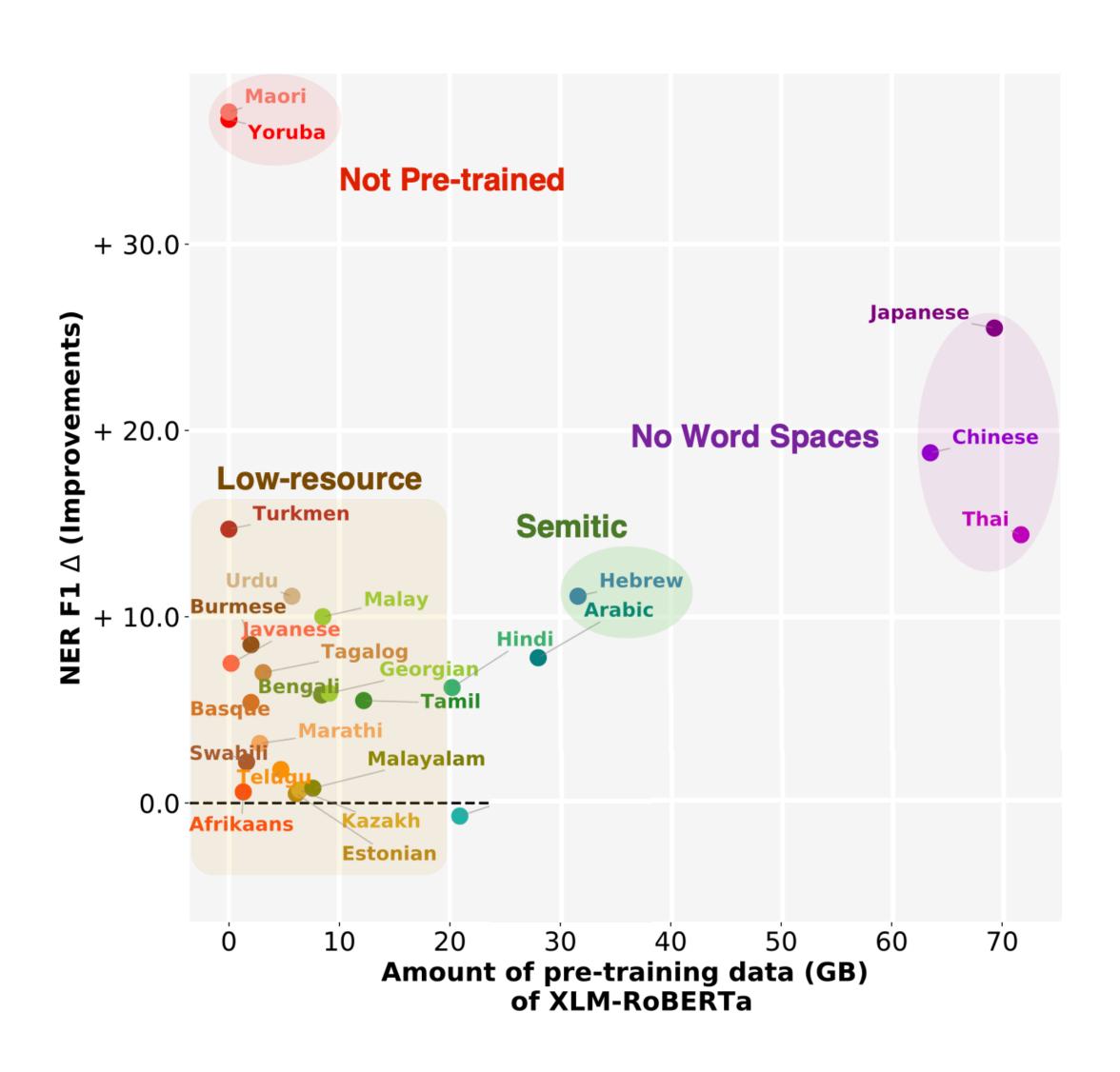
• Different markers all work to some extents, but vary for languages:

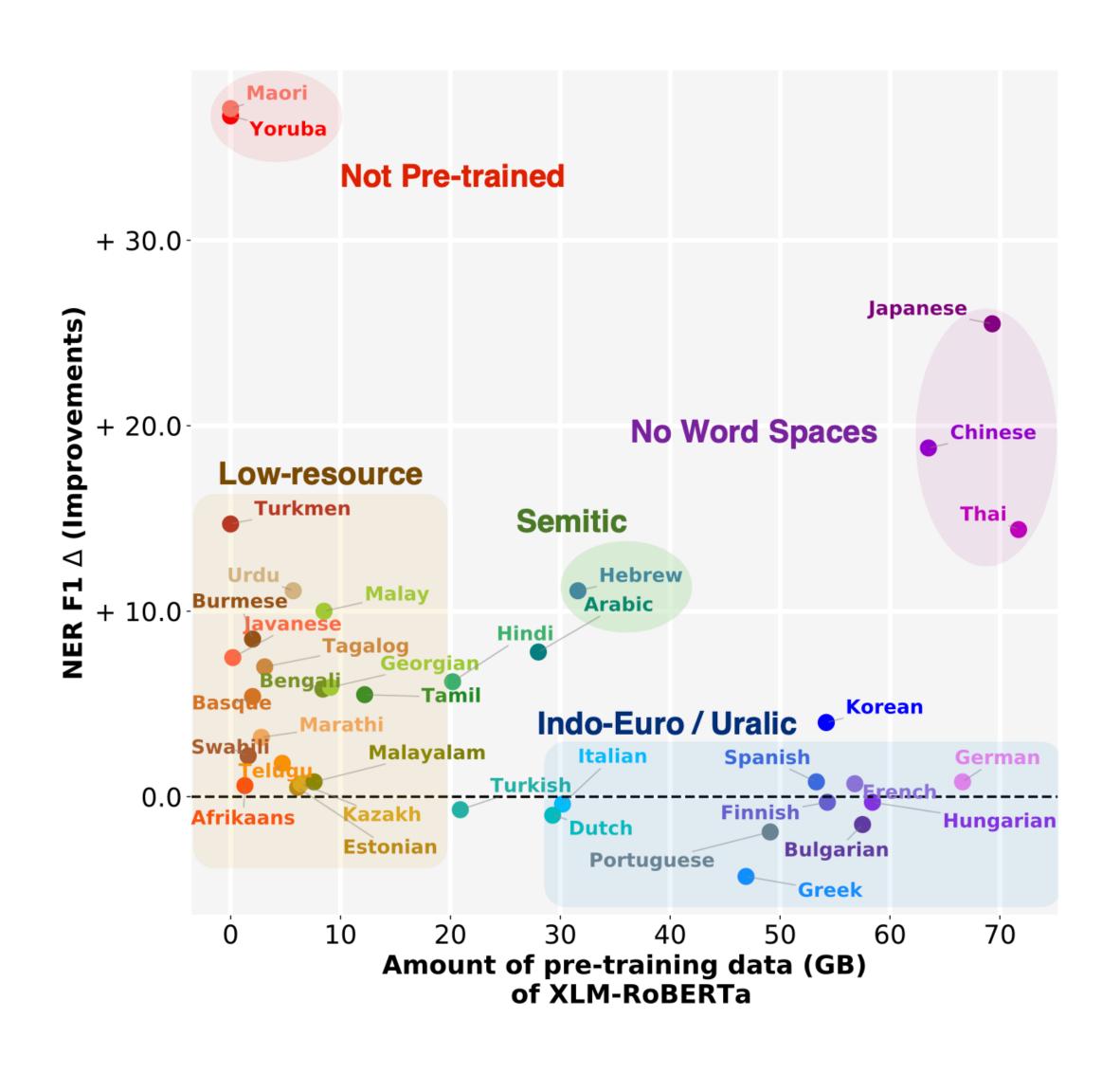
• If >1 spans to be projected in one sentence, do need to map the tags by fuzzy string matching

• Further fine-tuning MT system on synthetic data to make it more robust with punctuations





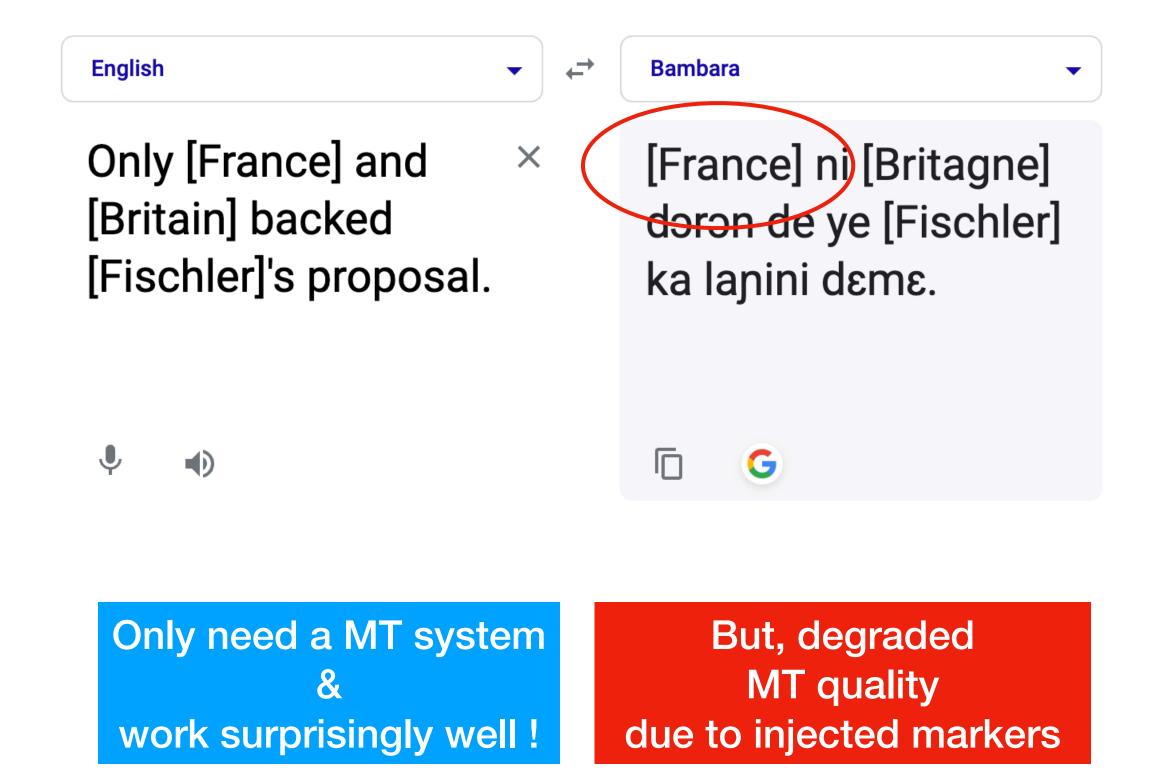




Zero-shot Cross-lingual Label Projection

Two families of approaches, but each has pros and cons.

marker-based approach



Zero-shot Cross-lingual Label Projection

Two families of approaches, but each has pros and cons.

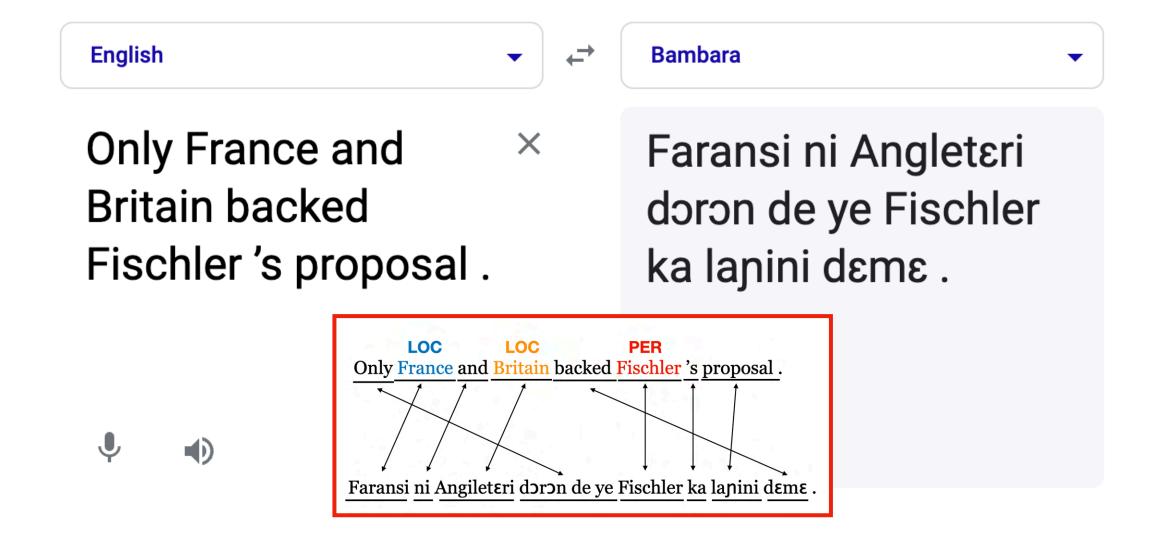
marker-based approach



Only need a MT system & work surprisingly well!

But, degraded
MT quality
due to injected markers

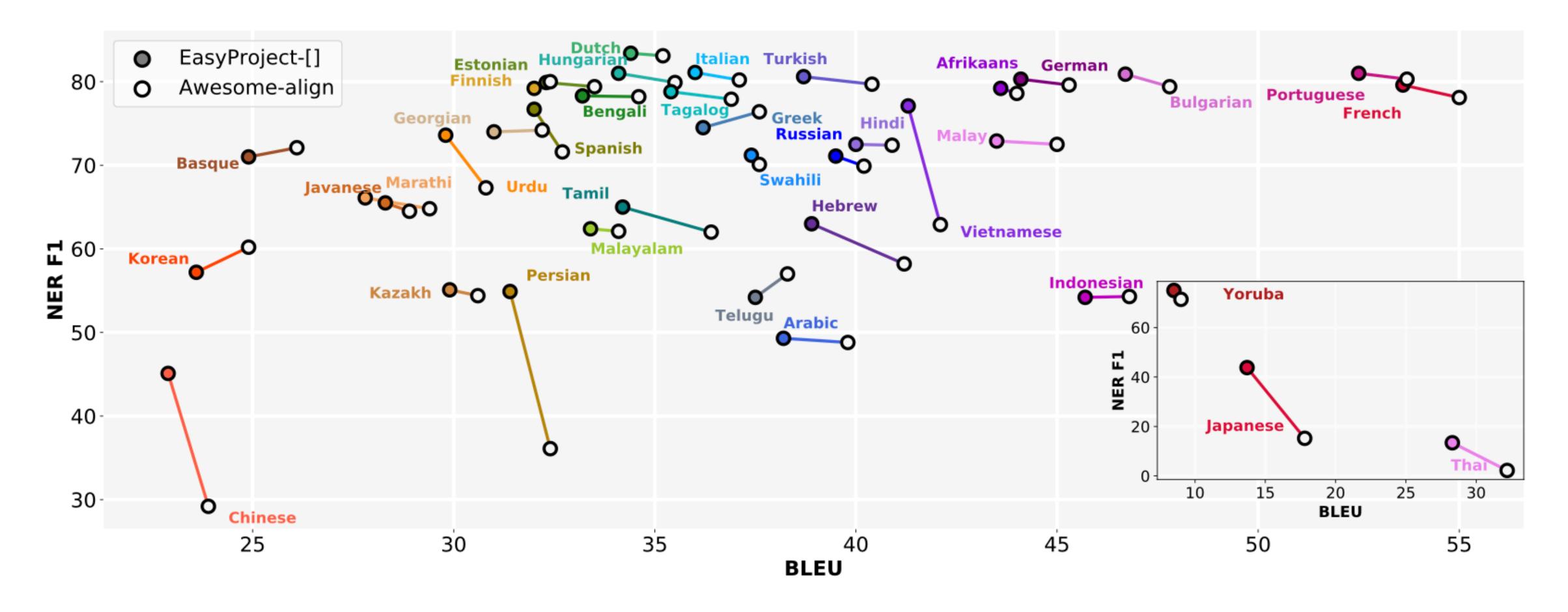
word alignment-based approach



normally better MT quality

Require not only neural MT, but also a separate word alignment model

Despite degraded MT quality, marker-based approach still works surprisingly well for the end task!



Yang Chen, Chao Jiang, Alan Ritter, Wei Xu. "Frustratingly Easy Label Projection for Cross-lingual Transfer" (ACL 2023 Findings)

Can we do marker-based approach without scarifying the translation quality?

Constrained Decoding for Crosslingual Label Projection (CODEC)

Duong Minh Le

Yang Chen

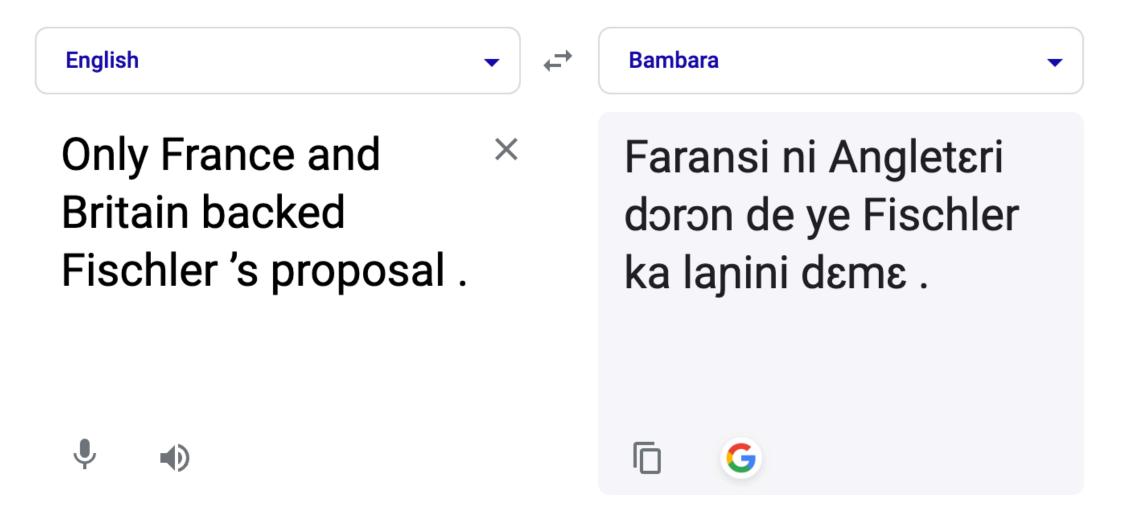
Alan Ritter

Wei Xu

A better technical solution for marker-based label projection

Key Idea

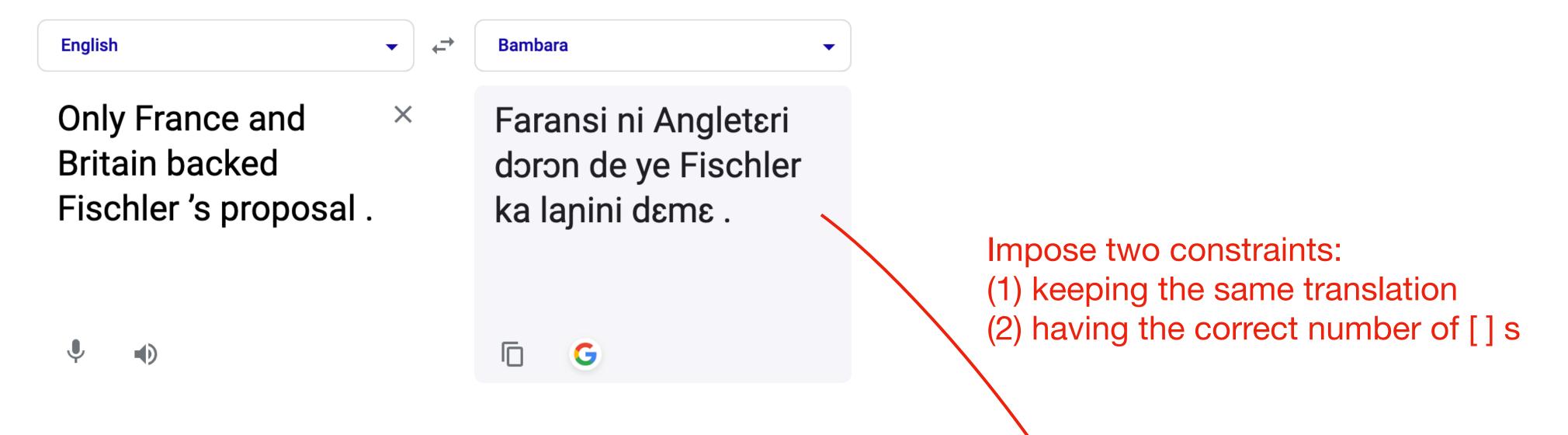
Step 1. Translate the original sentence as usual without markers.



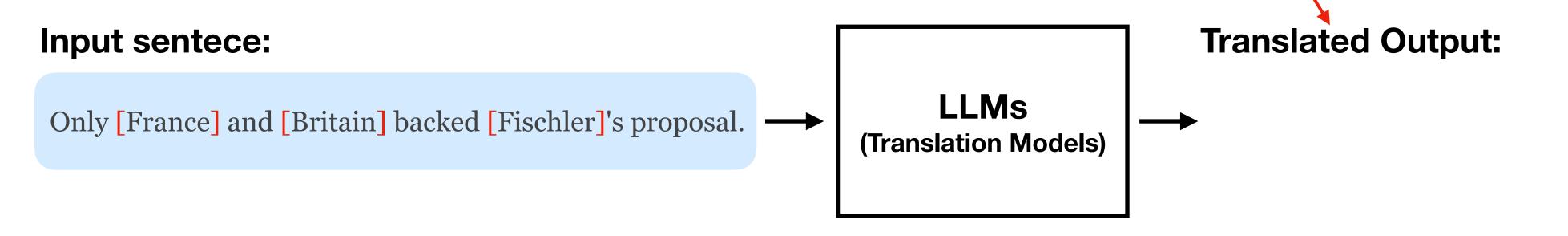
Step 2. Run translation model for a 2nd time to insert markers as a constrained decoding problem.

Key Idea

Step 1. Translate the original sentence as usual without markers.

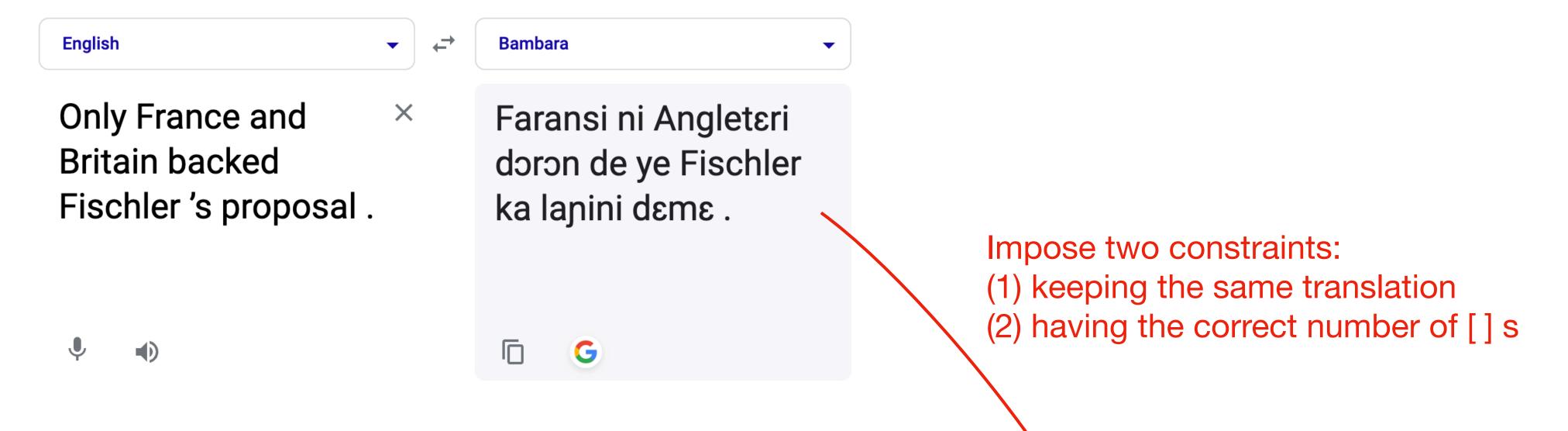


Step 2. Run translation model for a 2nd time to insert markers as a constrained decoding problem.

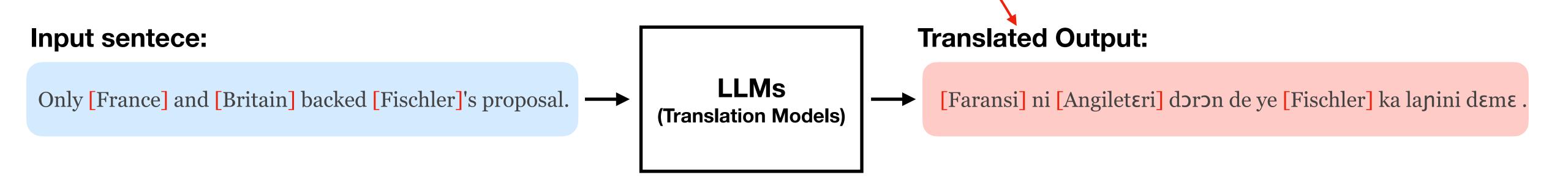


Key Idea

Step 1. Translate the original sentence as usual without markers.



Step 2. Run translation model for a 2nd time to insert markers as a constrained decoding problem.



Key Idea — more formally

Step 1. Translate the original sentence as usual without markers.

$$y^{tmpl} = \underset{y}{\operatorname{arg\,max}} \log P_{\tau}(y|x)$$

Step 2. Run translation model another time to insert $\,m\,$ marker pairs [] into $\,y^{tmpl}\,$.

$$y^* = \arg\max_{y \in \mathcal{Y}} \log P_{\tau}(y|x^{mark}; y^{tmpl})$$

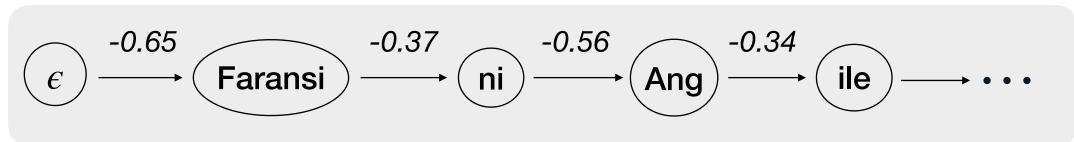
$$O(n^{2m})$$

(1) Prune opening marker positions based on the contrastive log-likelihood difference.

(1) Prune opening marker positions based on the contrastive log-likelihood difference.

Input: $x = \text{``Only France and Britain backed'} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Fischler 's proposal .''} x^{mark} = \text{``Only France and [Britain] backed'} x^{mark} = \text{``Only Fran$

 $p_1^i = \log P(y_i^{tmpl} | y_{< i}^{tmpl}, x)$ (Conditioned on source text)



 $p_2^i = \log P(y_i^{tmpl} | y_{< i}^{tmpl}, x^{mark})$ (Conditioned on source text w/ markers)

(1) Prune opening marker positions based on the contrastive log-likelihood difference.

Input: x = ``Only France and Britain backed x = ``Only France and [Britain] backed x = ``Fischler 's proposal .'' x = ``Only France and [Britain] backed x = ``Faransi ni Angileteri doron de ye Fischler 's proposal .'' Fischler ka lanını deme .''

 $p_1^i = \log P(y_i^{tmpl} | y_{< i}^{tmpl}, x)$ (Conditioned on source text)

 $p_2^i = \log P(y_i^{tmpl} | y_{< i}^{tmpl}, x^{mark})$ (Conditioned on source text w/ markers)

$$\underbrace{\epsilon} \xrightarrow{-0.64} \underbrace{\text{Faransi}} \xrightarrow{-0.68} \underbrace{\text{ni}} \xrightarrow{-6.26} \underbrace{\text{Ang}} \xrightarrow{-0.38} \underbrace{\text{ile}} \xrightarrow{\bullet} \cdots$$

(1) Prune opening marker positions based on the contrastive log-likelihood difference.

 x^{mark} = "Only France and [Britain] backed y^{tmpl} = "Faransi ni Angileteri doron de ye x = "Only France and Britain backed **Input:** Fischler 's proposal." Fischler 's proposal." Fischler ka lapini deme." $p_1^i = \log P(y_i^{tmpl} | y_{\le i}^{tmpl}, x)$ (Conditioned on source text) -0.37 $p_2^i = \log P(y_i^{tmpl} | y_{< i}^{tmpl}, x^{mark})$ (Conditioned on source text w/ markers) -0.68 0.04

 $\dot{\Delta}_i = |p_1^i - p_2^i|$

This position should be '[', thus the transition probability is extremely low

 x^{mark} = "Only France and [Britain] backed

Opening marker positions (after "Faransi" or after "ni")

 y^{tmpl} = "Faransi ni Angileteri doron de ye

Fischler ka lapini deme."

(1) Prune opening marker positions based on the contrastive log-likelihood difference.

Fischler 's proposal." Fischler 's proposal." $p_1^i = \log P(y_i^{tmpl} | y_{\le i}^{tmpl}, x)$ (Conditioned on source text) -0.37 $p_2^i = \log P(y_i^{tmpl} | y_{< i}^{tmpl}, x^{mark})$ (Conditioned on source text w/ markers) -0.68 0.04 $\Delta_i = |p_1^i - p_2^i|$

x = "Only France and Britain backed

Input:

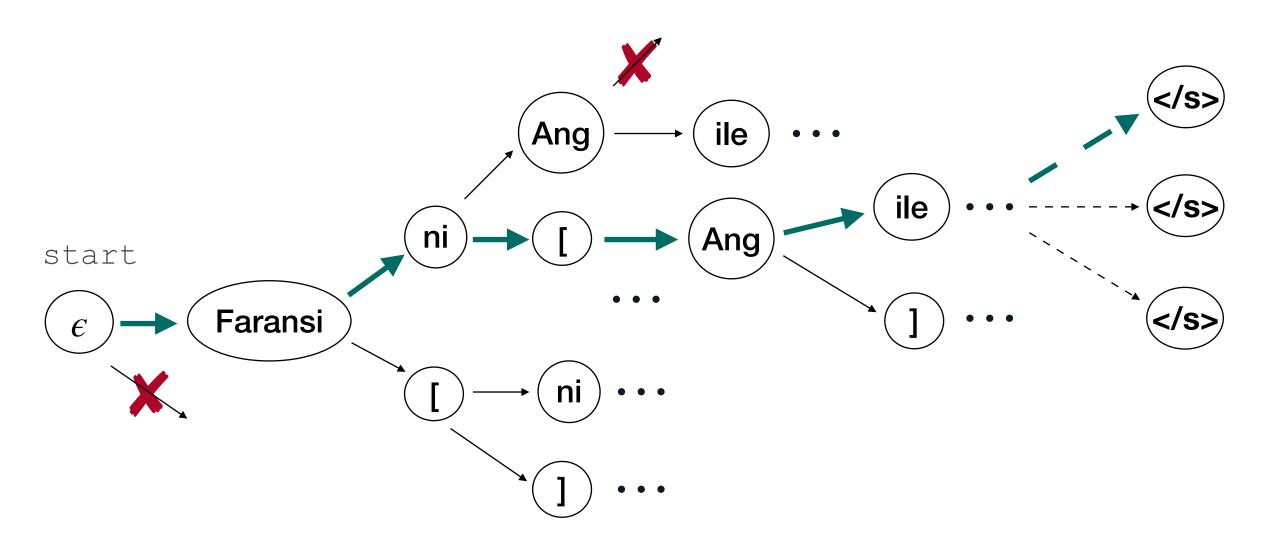
(2) A branch-and-bound search algorithm with a heuristic lower bound $L_d^k = \log P(y_{1:d}^k|x^{mark})$. $d = \min (\max (j + \delta, q), |y^k|)$

(2) A branch-and-bound search algorithm with a heuristic lower bound $L_d^k = \log P(y_{1:d}^k | x^{mark})$. $d = \min \left(\max \left(j + \delta, q \right), | y^k | \right)$

Input: $x = \text{"Only France and Britain backed } x^{mark} = \text{"Only France and [Britain] backed } y^{tmpl} = \text{"Faransi ni Angiletɛri doron de ye}$ Fischler 's proposal ."

Fischler 's proposal ."

Fischler ka lanını dɛmɛ ."

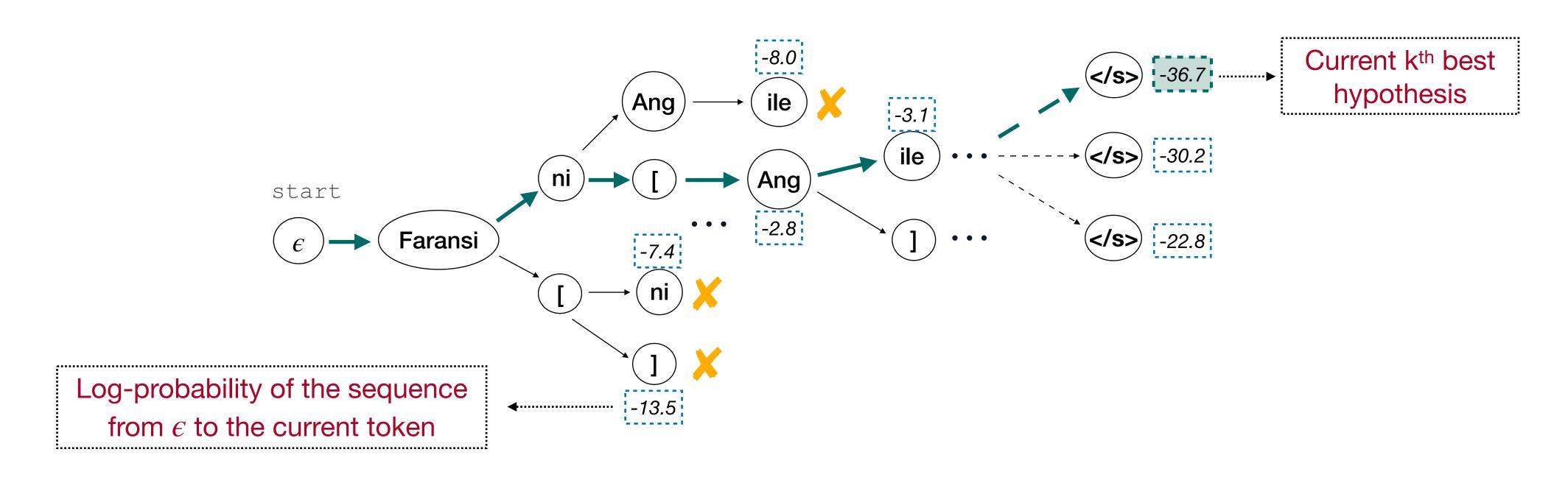


X Prune opening-marker positions

(2) A branch-and-bound search algorithm with a heuristic lower bound $L_d^k = \log P(y_{1:d}^k|x^{mark})$. $d = \min (\max (j + \delta, q), |y^k|)$

Input:

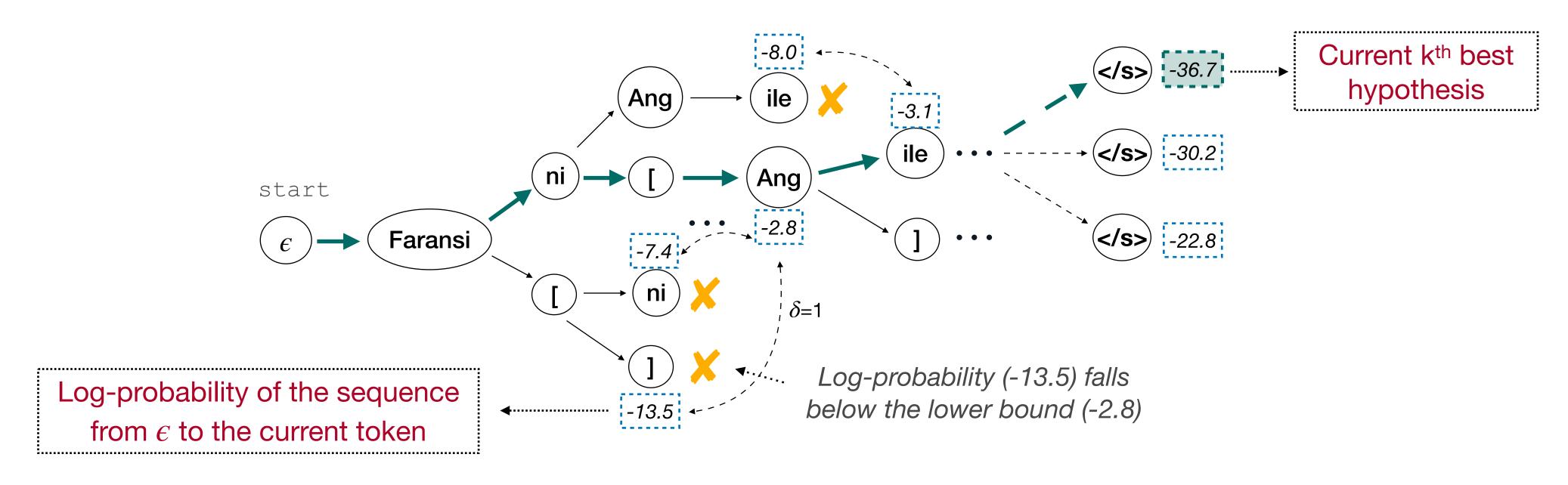
x = "Only France and Britain backed Fischler's proposal." x^{mark} = "Only France and [Britain] backed Fischler's proposal." y^{tmpl} = "Faransi ni Angiletɛri doron de ye Fischler ka lapini dɛmɛ ."



(2) A branch-and-bound search algorithm with a heuristic lower bound $L_d^k = \log P(y_{1:d}^k | x^{mark})$. $d = \min (\max (j + \delta, q), |y^k|)$

Input:

x = "Only France and Britain backed Fischler's proposal." x^{mark} = "Only France and [Britain] backed Fischler's proposal." y^{tmpl} = "Faransi ni Angiletɛri doron de ye Fischler ka lapini dɛmɛ ."



Prune branches based on a <u>heuristic lower-bound</u>

Algorithm 1 Constrained_DFS: Searching for top-k best hypotheses

```
Input x^{mark}: Source sentence with marker, y: translation prefix (default: \epsilon), y^{tmpl}: translation template,
         L: [\log P(y_1|x), \log P(y_{1:2}|x), \ldots, \log P(y|x)] (default=[0.0]), \mathcal{M}: opening marker positions
          H: min heap to record the results, k: number of hypotheses, \delta: lower bound hyperparameter
 1: flag \leftarrow \{\text{check if all markers are generated}\}
 2: if y_{|y|} = </s> and flag = TRUE: then
        H. \operatorname{push}((L_{|y|}, L, y))
                                                                                                             \triangleright H sorts by the first element
         if len(H) > k then
               H.\operatorname{pop}()
 6: else
         \mathcal{T} \leftarrow []
        w_1 \leftarrow \{\text{get the next token in } y^{tmpl}\}
        \mathcal{T} \leftarrow \mathcal{T} \cup \{(w_1, \log P(w_1|y, x^{mark}))\}
       j \leftarrow |y| + 1

    ▶ position of the token to be generated next

        w_2 \leftarrow \{\text{get the next marker}\}\
          if \exists w_2 and not (w_2 = '['] \text{ land } j \notin \mathcal{M}) then
               \mathcal{T} \leftarrow \mathcal{T} \cup \{(w_2, \log P(w_2|y, x^{mark}))\}
          \mathcal{T} \leftarrow \{\text{sort } \mathcal{T} \text{ by the second element in decreasing order}\}
15:
          for (w,p) \in \mathcal{T} do
               logp \leftarrow L_{|y|} + p
               \gamma \leftarrow \{\text{compute lower bound following Eq 7}\}
               if log p > \gamma then
18:
                    Constrained_DFS(x^{mark}, y \cdot w, y^{tmpl}, L \cup \{logp\}, \mathcal{M}, H, k, \delta)
19:
20: return H
```

Experiment Results

CODEC outperforms GPT-4, EasyProject and Awesome-align for NER and Event Extraction tasks.

- Label Projection baselines:
 - Alignment-based (*Awes-align*): Utilize a word-alignment system (*Awesome-align*¹) to perform label projection
 - Marker-based (*EasyProject*): insert markers into the source sentence then translate

• Zero-shot Cross-lingual transfer (FT_{En})

The multilingual model is fine-tuned only on the English data

¹Zi-Yi Dou and Graham Neubig. Word alignment by fine-tuning embeddings on parallel corpora. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 2112–2128, Online, April 2021

Experiment Results

More importantly, CODEC shines on low-resource languages, such as MasakhaNER 2.0 dataset.

Lang.	GPT-4 [†]	FT_{En}	Translate-train		
	011.	L II	Awes-align	EasyProject	Codec ($\Delta_{ ext{FT}}$)
Bambara	46.8	37.1	45.0	45.8	45.8 (+8.7)
Ewe	75.5	75.3	78.3	78.5	79.1 (+3.8)
Fon	19.4	49.6	59.3	61.4	65.5 (+15.9)
Hausa	70.7	71.7	72.7	72.2	72.4 (+0.7)
Igbo	51.7	59.3	63.5	65.6	70.9 (+11.6)
Kinyarwanda	59.1	66.4	63.2	71.0	71.2 (+4.8)
Luganda	73.7	75.3	77.7	76.7	77.2 (+1.9)
Luo	55.2	35.8	46.5	50.2	49.6 (+13.8)
Mossi	44.2	45.0	52.2	53.1	55.6 (+10.6)
Chichewa	75.8	79.5	75.1	75.3	76.8 (-2.7)
chiShona	66.8	35.2	69.5	55.9	72.4 (+37.2)
Kiswahili	82.6	87.7	82.4	83.6	83.1 (-4.6)
Setswana	62.0	64.8	73.8	74.0	74.7 (+9.9)
Akan/Twi	52.9	50.1	62.7	65.3	64.6 (+14.5)
Wolof	62.6	44.2	54.5	58.9	63.1 (+18.9)
isiXhosa	69.5	24.0	61.7	71.1	70.4 (+46.4)
Yoruba	58.2	36.0	38.1	36.8	41.4 (+5.4)
isiZulu	60.2	43.9	68.9	73.0	74.8 (+30.9)
AVG	60.4	54.5	63.6	64.9	67.1 (+12.7)

NER: mDeBERTa-v3

• MT: NLLB

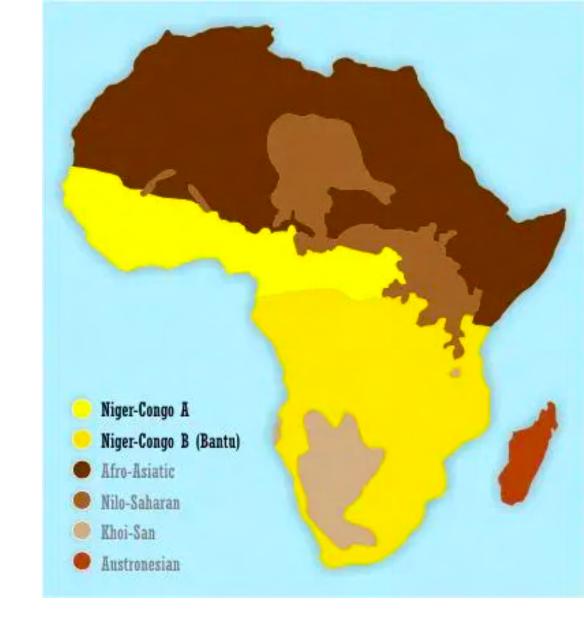
Experiment Results

"Translate-test" - CODEC can also translate test data in source language into a high-resource language to run inference on, then project predicted span labels back to the test data.

Lang.	GPT-4 [†]	FT_{En}		Translate-tra	Translate-test		
B	OI I I	En	Awes-align	EasyProject	CODEC ($\Delta_{ ext{FT}}$)	Awes-align	CODEC $(\Delta_{ ext{FT}})$
Bambara	46.8	37.1	45.0	45.8	45.8 (+8.7)	50.0	55.6 (+18.5)
Ewe	75.5	75.3	78.3	78.5	79.1 (+3.8)	72.5	79.1 (+3.8)
Fon	19.4	49.6	59.3	61.4	65.5 (+15.9)	62.8	61.4 (+11.8)
Hausa	70.7	71.7	72.7	72.2	72.4 (+0.7)	70.0	73.7 (+2.0)
Igbo	51.7	59.3	63.5	65.6	70.9 (+11.6)	77.2	72.8 (+13.5)
Kinyarwanda	59.1	66.4	63.2	71.0	71.2 (+4.8)	64.9	78.0 (+11.6)
Luganda	73.7	75.3	77.7	76.7	77.2 (+1.9)	82.4	82.3 (+7.0)
Luo	55.2	35.8	46.5	50.2	49.6 (+13.8)	52.6	52.9 (+17.1)
Mossi	44.2	45.0	52.2	53.1	55.6 (+10.6)	48.4	50.4 (+5.4)
Chichewa	75.8	79.5	75.1	75.3	76.8 (-2.7)	78.0	76.8 (-2.7)
chiShona	66.8	35.2	69.5	55.9	72.4 (+37.2)	67.0	78.4 (+43.2)
Kiswahili	82.6	87.7	82.4	83.6	83.1 (-4.6)	80.2	81.5 (-6.2)
Setswana	62.0	64.8	73.8	74.0	74.7 (+9.9)	81.4	80.3 (+15.5)
Akan/Twi	52.9	50.1	62.7	65.3	64.6 (+14.5)	72.6	73.5 (+23.4)
Wolof	62.6	44.2	54.5	58.9	63.1 (+18.9)	58.1	67.2 (+23.0)
isiXhosa	69.5	24.0	61.7	71.1	70.4 (+46.4)	52.7	69.2 (+45.2)
Yoruba	58.2	36.0	38.1	36.8	41.4 (+5.4)	49.1	58.0 (+22.0)
isiZulu	60.2	43.9	68.9	73.0	74.8 (+30.9)	64.1	76.9 (+33.0)
AVG	60.4	54.5	63.6	64.9	67.1 (+12.7)	65.8	70.4 (+16.0)

Error Analysis

Underline marks the projection errors.



only marks sub-words

/ as an entity

	English Data	Augmented data in low-resource languages						
	English Data	EasyProject	Awesome-align	Codec				
chiShona	IndiaLoc and PakistanLoc have fought region of KashmirLoc	India _{Loc} ne Pakistan _{Loc} ye Kashmir _{Loc} chibviro		India _{Loc} nePakistan _{Loc} zvinetso yeKashmir _{Loc}				
isiZulu	State media quoted China _{Loc} 's top negotiator with Taipei _{Loc} , Tang Shubei _{PER} , from Taiwan _{Loc}	Imithombo we ChinaLoc ! TaipeiLoc, u Tang ShubeiPEF elivela eTaiwanLoc	R, <u>neTaipei</u> , uTang Shubeiper ,	Imithombo waseChina _{Loc} neTaipei _{Loc} , uTang Shubei _{PER} , elivela eTaiwan _{Loc}				

having difficulty to project multiple spans

Today's Talk —

1 - Cross-lingual Transfer Learning

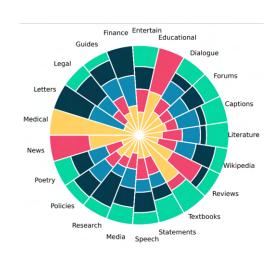
CODEC

(Le et al., ICLR 2024)

Design decoding algorithms to improve performance on non-English languages.

2 - Multilingual Multi-domain Datasets

ReadMe++ & MedReadMe



(Naous et al., EMNLP 2024 & Chao et al., EMNLP 2024)

Support not only more languages but also more text domains/genres.

Today's Talk —

1 - Cross-lingual Transfer Learning

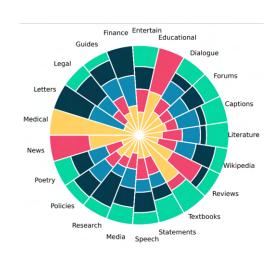


(Le et al., ICLR 2024)

Design decoding algorithms to improve performance on non-English languages.

2 - Multilingual Multi-domain Datasets

ReadMe++ & MedReadMe



(Naous et al., EMNLP 2024 & Chao et al., EMNLP 2024)

Support not only more languages but also more text domains/genres.

Rewrite complex text into simpler language while retain its original meaning.

Science

Preserved on ancient teeth, a fossilized microbial world

By Deborah Netburn, Los Angeles Times Published: 03/05/2014 Word Count: 682

The layers of calcified plaque entomb the bacteria that also live in our mouths -- turning them into small fossils even when we are alive. And when we die, these dense, calcified micro-fossils remain intact, even as most of the rest of us decomposes.

Rewrite complex text into simpler language while retain its original meaning.

The layers of calcified plaque entomb the bacteria that also live in our mouths -- turning them into small fossils even when we are alive. And when we die, these dense, calcified micro-fossils remain intact, even as most of the rest of us decomposes.

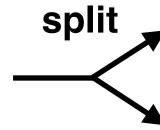
Rewrite complex text into simpler language while retain its original meaning.

The layers of calcified plaque entomb the bacteria that also live in our mouths -- turning them into small fossils even when we are alive.

And when we die, these dense, calcified micro-fossils remain intact, even as most of the rest of us decomposes.

Rewrite complex text into simpler language while retain its original meaning.

The layers of calcified plaque entomb the bacteria that also live in our mouths — turning them into small fossils even when we are alive.



The buildup of plaque can trap the bacteria that live in our mouths.

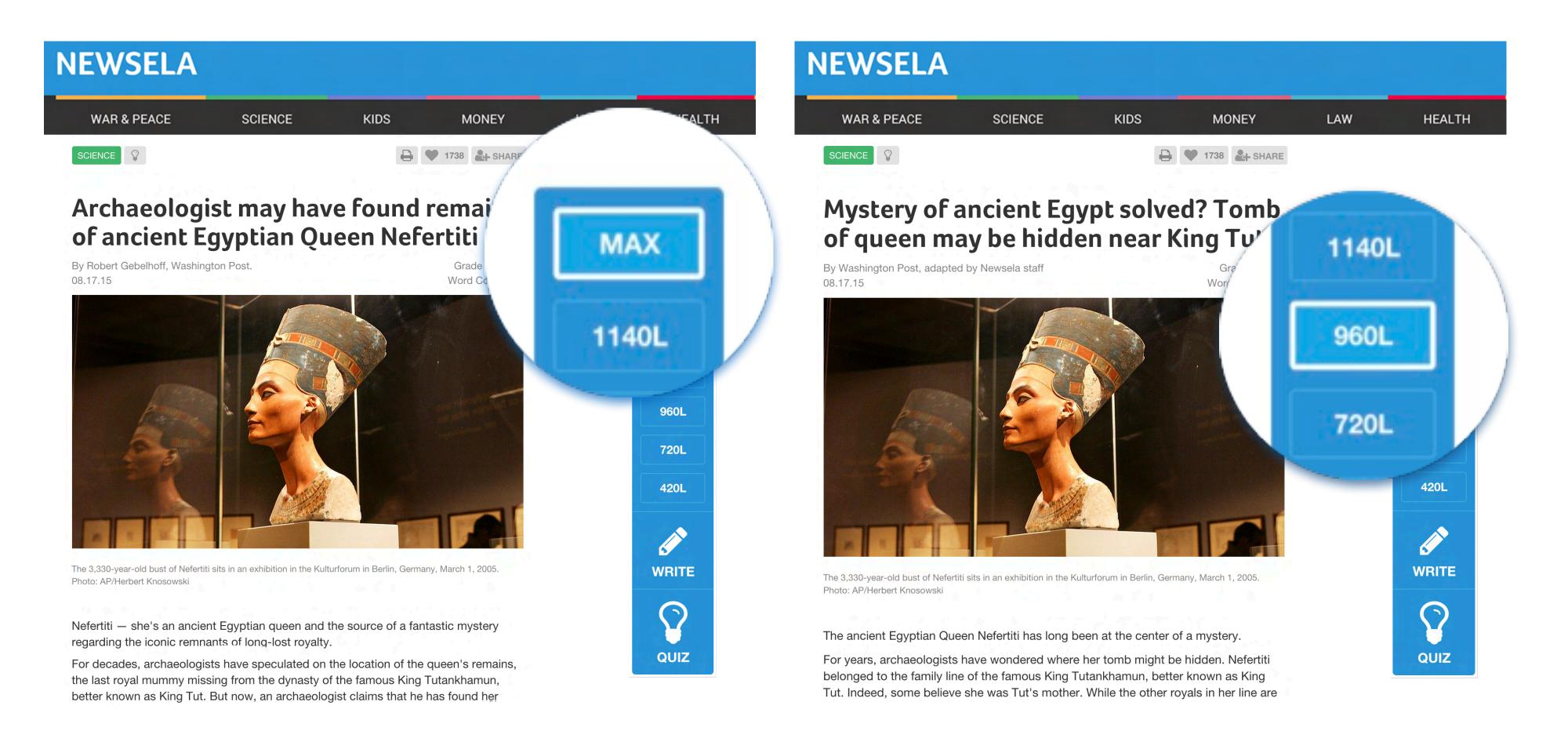
It turns them into tiny fossils.

And when we die, these dense, calcified micro-fossils remain intact, even as most of the rest of us decomposes.

Even after death, these micro-fossils don't break down.

Human Text Simplification

Professional editors rewrite news articles into 4 different readability levels for grade 3-12 students.



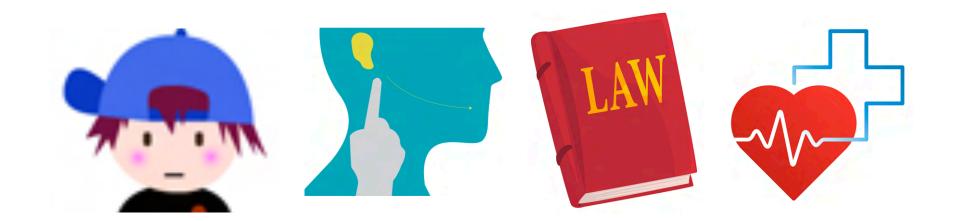
Wei Xu, Chris Callison-Burch, Courtney Napoles. "Problems in Current Text Simplification Research: New Data Can Help" (TACL 2015)
Yang Zhong, Chao Jiang, Wei Xu, Jessy Li. "Discourse Level Factors for Sentence Deletion in Text Simplification" (AAAI 2020)

Why Text Simplification?

It can help a lot of people!

- Second language learners (Housel et al., 2020)
- Deaf and hard-of-hearing students (Alonzo et al., 2020) ← using our EMNLP 2018 work on lexical simplification
- People with dyslexia (Rello at al., 2013)
- People with autism spectrum disorder (González-Navarro et al., 2014)

- and many others ... e.g., to read legal & medical documents (Trienes et al. 2024; Joseph et al. 2024), etc.



Other Text Generation Tasks

• Multilingual split and rephrase (Daniel Kim*, Mounica Maddela*, Reno Kriz, Wei Xu, Chris Callison-Burch — EMNLP 2021)

An additional advantage is that a shorter ramp can be used, thereby reducing weight and improving the rear view of the driver. Another advantage is that a shorter ramp can be used. | This saves weight and improves the look of the rear of the vehicle.

Neutralizing biased languages (Zhong Yang, Jingfeng Yang, Diyi Yang, Wei Xu — EMNLP 2021 Findings)

A Golden duck may refer to: A cricket 'golden' duck in which a batter is out for nought on the first ball he faces.

A cricket 'golden' duck in which a batter is out for nought on the first ball they face.

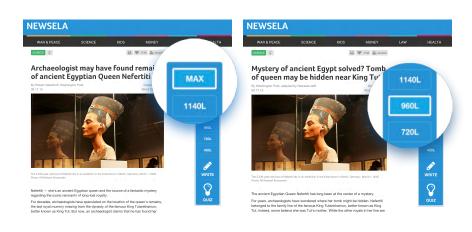
- Large-scale paraphrase identification and generation (Yao You, Chao Jiang, Wei Xu EMNLP 2022)
- Style transfer (Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, Colin Cherry COLING 2012)

If you will not be turned, you will be destroyed! — Star Wars If you will not be turn'd, you will be undone!

Automatic Text Simplification

It is a great benchmark for natural language generation (NLG) models.

Need both diversity and controllability from the model to meet users' varied reading needs.



complicated rewriting

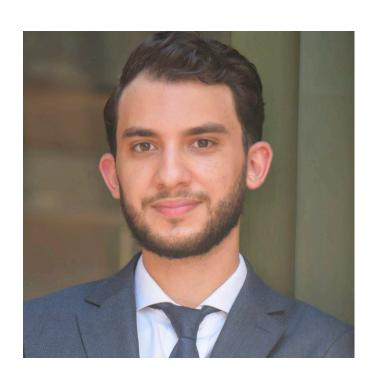
good training data

~reliable evaluation

(covers other text-to-text tasks: splitting, compression, paraphrase generation, style transfer, etc.)

Revisiting Non-English Text Simplification: a Unified Multilingual Benchmark

Michael J. Ryan



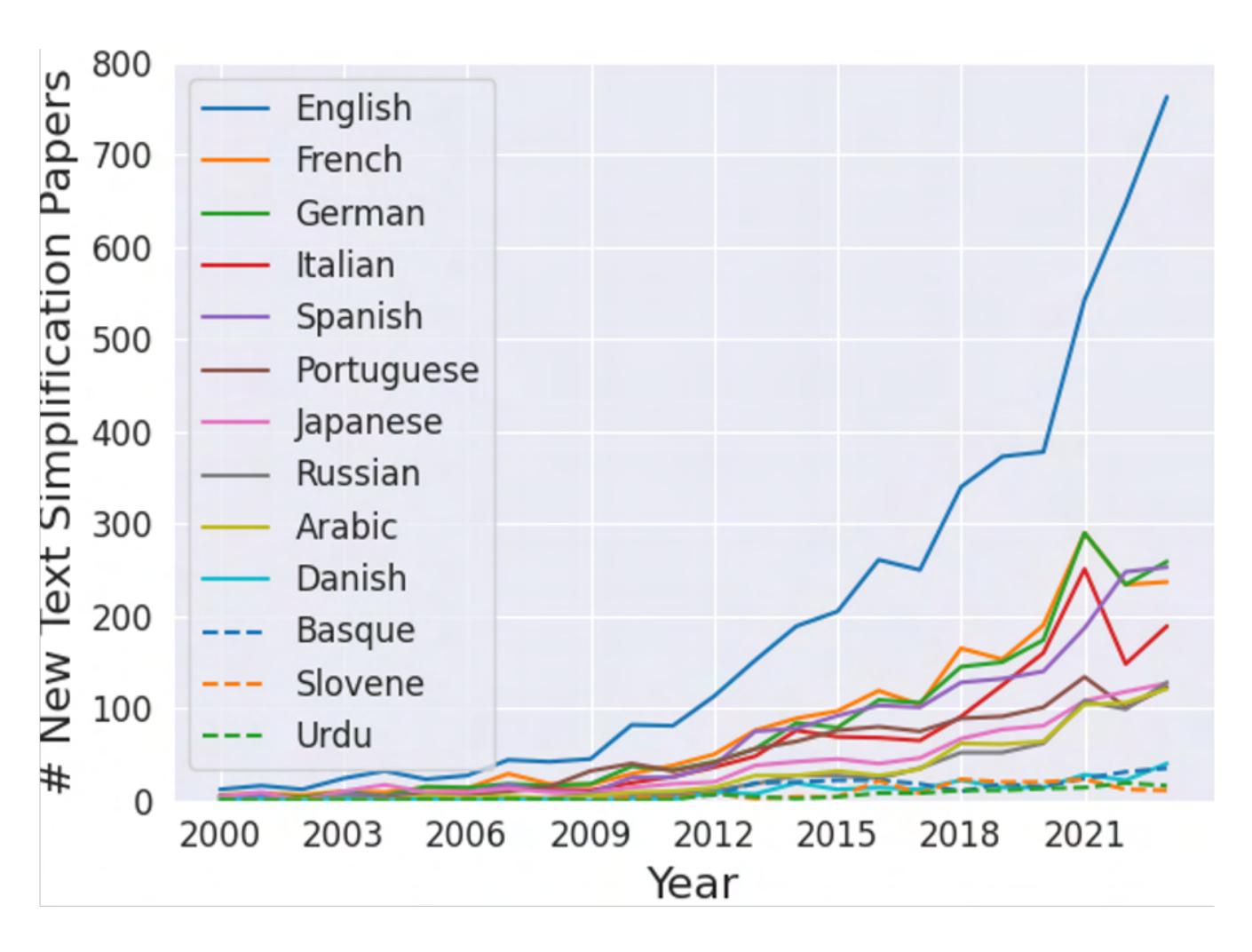
Tarek Naous.

Wei Xu

Growth of Text Simplification Research

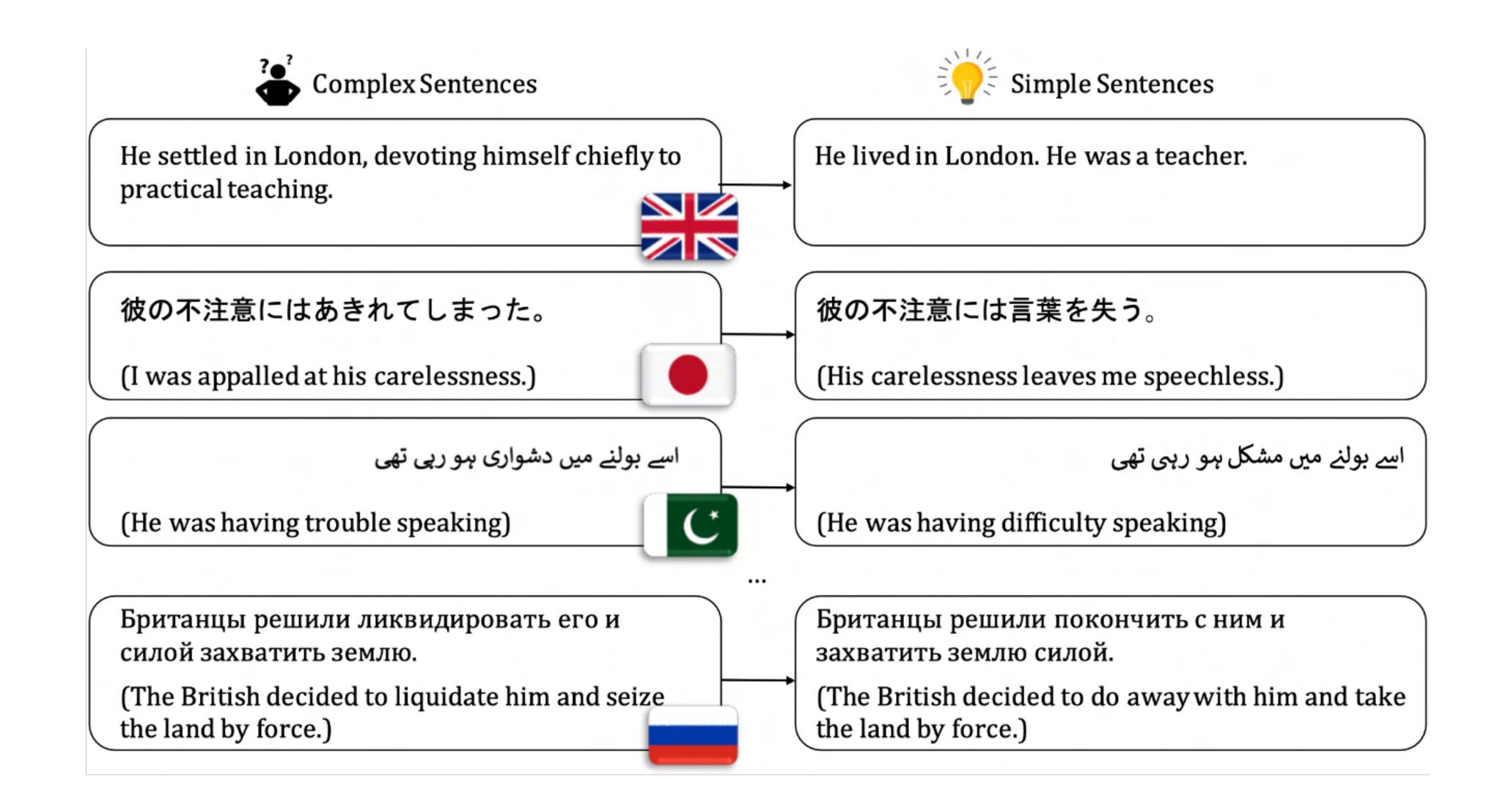
In 2023 alone:

- 763 new papers on English text simplification
- 237 new papers on French
- <20 papers related to Urdu or Slovene simplification



(Count based on Google Scholar)

We introduce MultiSim of parallel texts



12 languages and growing (now 15)

Corpus	Source(s)	Simplification Author	Collection Strategy	Alignment Level	Sentence Aligned	_	Simple Sentences	Access
Arabic Corpora Saaq al-Bambuu (Khallaf and Sharoff, 2022)		writer	*	sentence	auto	2,980	2,980	private
Basque Corpora CBST (Gonzalez-Dios et al., 2018)	Д	translator, teacher	•	document	manual	458	591	on request
Brazilian Portuguese Corpora PorSimples (Aluísio and Gasperin, 2010)	■Ⅱ	linguist	•	document	manual	7,902	10,174	on request
Danish Corpora DSim (Klerke and Søgaard, 2012)	=	journalists	*	sentence	auto	47,887	60,528	on request
English Corpora† ASSET (Alva-Manchego et al., 2020) Newsela EN (Xu et al., 2015) Wiki-Auto (Jiang et al., 2020)	W W W	crowdsource experts crowdsource	/ * *	sentence document document	manual auto auto	2,359 393,798 10,144,476	23,590 402,222 1,241,671	open source on request open source
French Corpora Alector (Gala et al., 2020) CLEAR (Grabar and Cardon, 2018) WikiLarge FR (Cardon and Grabar, 2020)	WE WE	experts crowdsource, experts crowdsource	AE	document sentence sentence	NA auto auto	1,230 4,596 307,067	1,192 4,596 308,409	open source open source open source
German Corpora GEOLinoTest (Mallinson et al., 2020) German News (Säuberli et al., 2020) Klexikon (Aumiller and Gertz, 2022) Simple Patho (Trienes et al., 2023) Simple German (Battisti et al., 2020) TextComplexityDE (Naderi et al., 2019)	■ W B W W	linguist news agency crowdsource medical students government native speaker	*0*\	sentence document document paragraph document document	manual auto NA manual auto manual	1,198 15,239 771,059 22,191 12,806 250	1,198 14,344 96,870 26,551 8,400 250	open source on request open source private on request* open source
Italian Corpora AdminIT (Miliani et al., 2022) SIMPITIKI Wiki (Tonelli et al., 2016) PaCCSS-IT (Brunato et al., 2016) Teacher (Brunato et al., 2015) Terence (Brunato et al., 2015)	> W	researchers crowdsource crowdsource teachers experts	10011	sentence sentence sentence document document	manual manual auto manual manual	777 575 63,006 204 1,035	763 575 63,006 195 1,060	open source open source open source open source
Japanese Corpora EasyJapanese (Maruyama and Yamamoto, 2018) EasyJapaneseExtended (Katsuta and Yamamoto, 2018) Japanese News (Goto et al., 2015)		students crowdsource journalists, teachers	; *	sentence sentence document	manual manual auto	50,000 34,400 13,356	50,000 35,000 13,356	open source open source private
Russian Corpora RuAdapt Encyclopedia (Dmitrieva et al., 2021) RuAdapt Fairytale (Dmitrieva et al., 2021) RuAdapt Lit (Dmitrieva and Tiedemann, 2021) RSSE (Sakhovskiy et al., 2021) RuWikiLarge (Sakhovskiy et al., 2021)	G W W	researchers researchers writers crowdsource crowdsource	J' J' AR	document document document sentence sentence	auto auto auto manual auto	9,729 310 24,152 2,000 278,499	10,230 404 28,259 6,804 289,788	open source open source on request open source on request
Slovene Corpora SloTS (Gorenc and Robnik-Šikonja, 2022)	e	experts	*	sentence	manual	1,181	1,287	open source
Spanish Corpora FIRST (Orasan et al., 2013) Newsela ES (Xu et al., 2015) Simplext (Saggion et al., 2015)		experts experts researchers	*	document document document	manual auto manual	320 46,256 1,108	332 45,519 1,742	private on request on request
Urdu Corpora SimplifyUREval (Qasmi et al., 2020)		expert	•	sentence	manual	500	736	open source

Table 1: Important properties of text simplification parallel corpora. †Common English corpora included for comparison. Many other English corpora omitted. *Only scripts to replicate the corpus are available upon request. Simple German results differ from original paper because of changes to availability of online articles. Sources: ■ Literature, ♣ Science Communications, ➡ News, Wikipedia, ♠ Websites, ♣ Medical Documents, ♣ Government, ♣ Encyclopedic. Collection Strategies: ♠ Automatic, ♠ Translation, ♠ Annotator, ♠ Target Audience Resource.

Open Source

202

May

5

N

[cs.CL]

5678v1

305

1 Intuaduation

MultiSim data and code (loaders) are available - https://github.com/XenonMolecule/MultiSim

Paper on arXiv

Revisiting non-English Text Simplification: A Unified Multilingual Benchmark

Michael J. Ryan, Tarek Naous, Wei Xu

School of Interactive Computing Georgia Institute of Technology

{michaeljryan, tareknaous}@gatech.edu; wei.xu@cc.gatech.edu

Abstract

Recent advancements in high-quality, largescale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MULTI-SIM benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MULTISIM with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot crosslingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming finetuned models in most languages. We validate these findings through human evaluation.¹

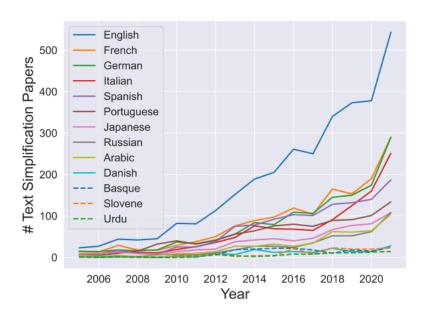


Figure 1: Papers published each year with content related to text simplification and a specific language according to Google Scholar. The quantity of English text simplification work vastly exceeds all other languages.

with the same content written using both complicated and simple sentences (Xu et al., 2015; Jiang et al., 2020; Alva-Manchego et al., 2020). These resources enable the training of large language models for ATS in English (Scarton and Specia, 2018; Martin et al., 2020; Omelianchuk et al., 2021). ATS research in other languages has received much less

Data on Huggingface

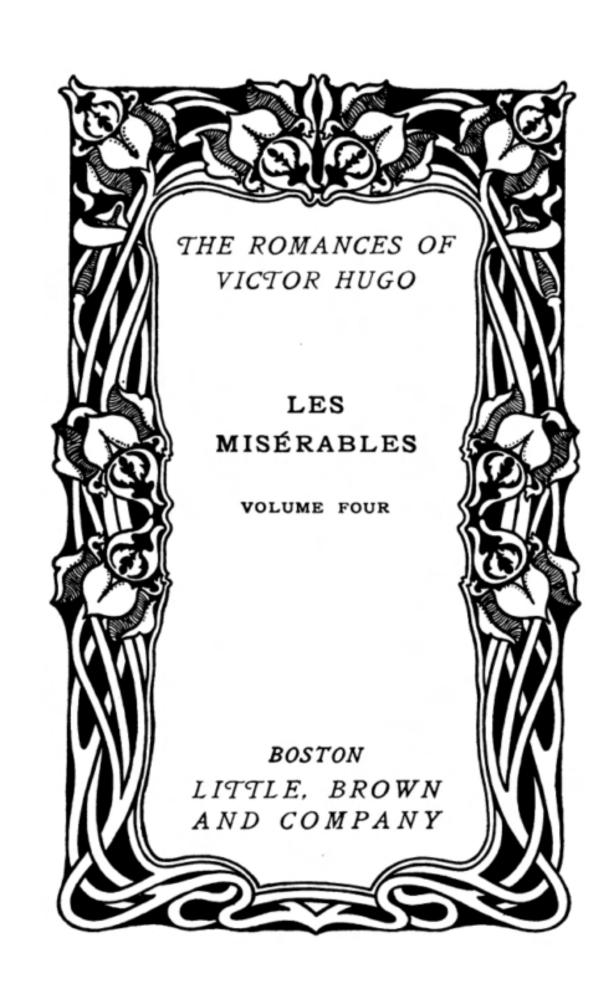
Benchmarking Multilingual LMs for Multi-domain Readability Assessment (ReadMe++)

Tarek Naous

Michael J. Ryan Anton Lavrouk Mohit Chandra

Wei Xu

Different Readability Levels



"In the uncoerced slowness of its gait, suppleness and agility were discernible."

"In its voluntary slow movement, its flexibility and agility were noticeable."

"In its voluntary slow movement, you could still see how flexible and quick it is."

Prior Work on Readability Measurements

Human-annotated Resources (Arase et al. 2022, Brunato et al. 2018, and more)

- CEFR: Common European Framework of Reference for Languages
- Mostly using either Wikipedia or news data

Level	Description	Rating
A1	Can understand very short, simple texts a single phrase at a time, picking up familiar names, words and basic phrases and rereading as required.	1
A2	Can understand short, simple texts on familiar matters of a concrete type.	2
B1	Can read straightforward factual texts on subjects related to his/her field and interest with a satisfactory level of comprehension.	3
B2	Can read with a large degree of independence, adapting style and speed of reading to different texts and purpose.	4
C1	Can understand in detail lengthy, complex texts, whether or not they relate to his/her own area of speciality, provided he/she can reread difficult sections.	5
C2	Can understand and interpret critically virtually all forms of the written language including abstract, structurally complex, or highly colloquial literary and non-literary writings.	6

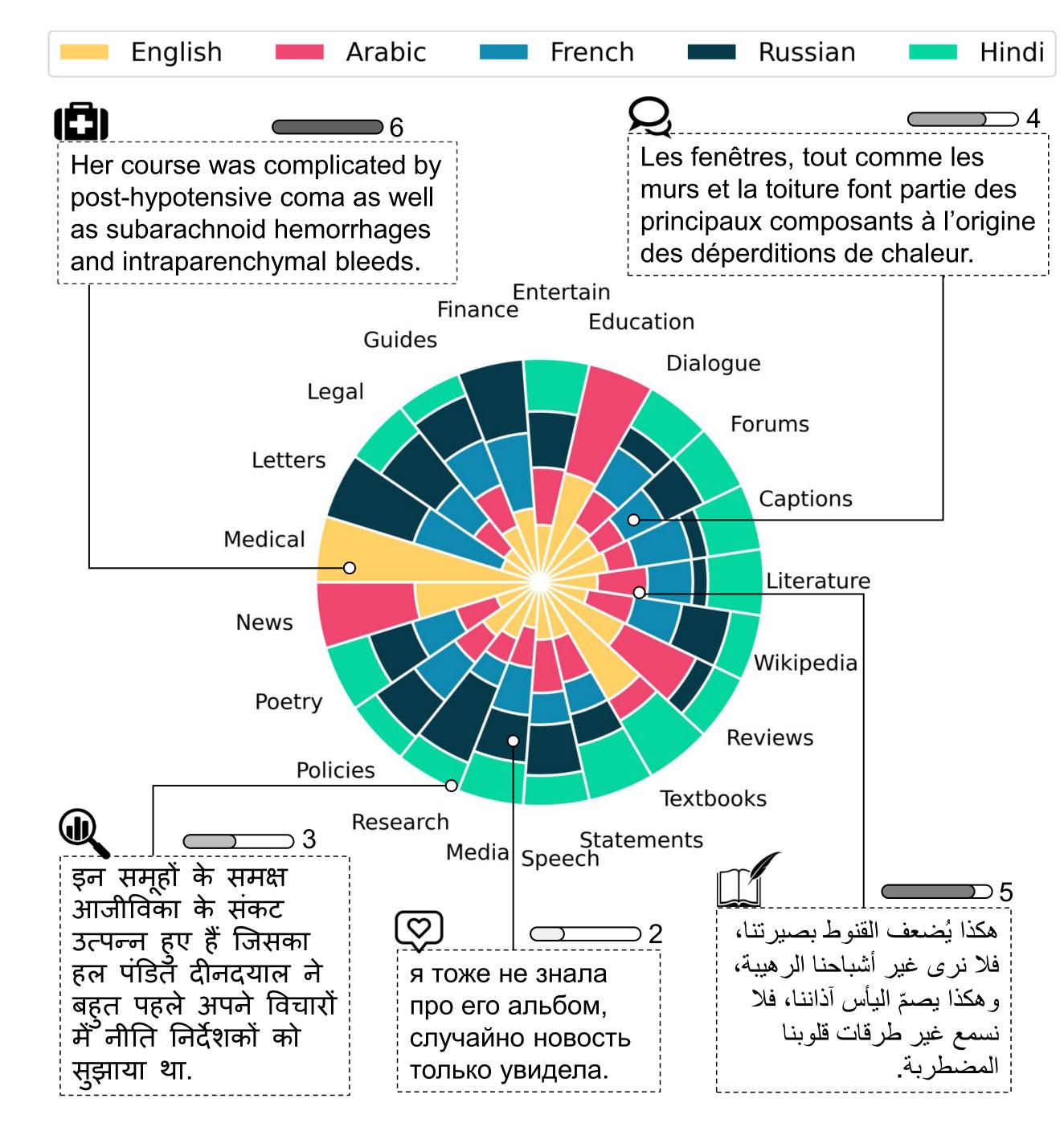
Our Work - Readme++

More diverse languages

- 5 different languages
- written in 4 different scripts
- 9,465 human-annotated sentences

And, more diverse domains

- 21 top-level domains
- 112 data sources
- all with open license



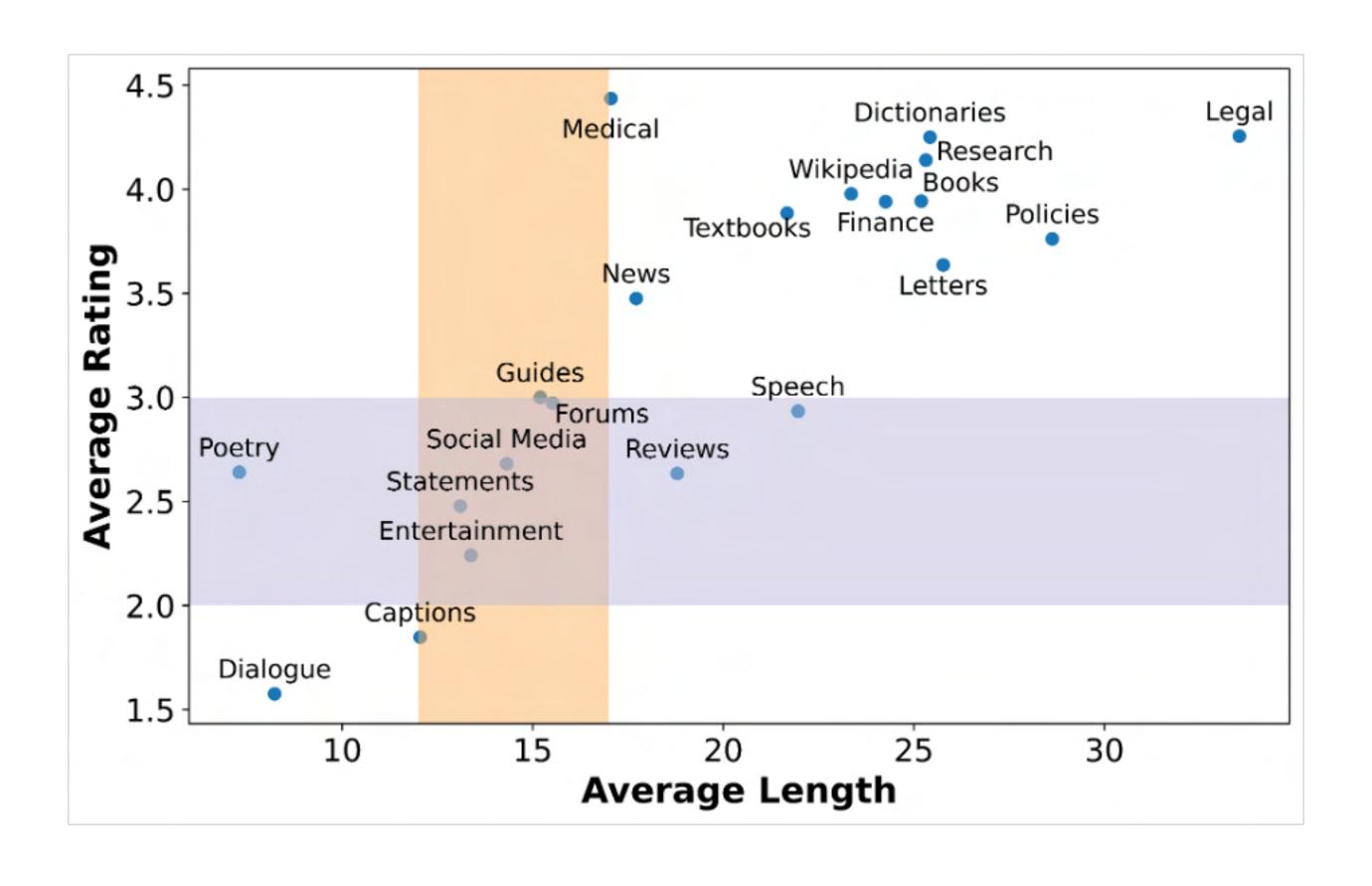
Our Work - Readme++

A (partial) list of representative sources we sampled data from:

		Examples of Data Sources — Full list for all languages in Appendix A						
Domain (Abrv)	#	Arabic (ar)	English (en)	Hindi (hi)				
CAPTIONS (Cap)	9	Images (ElJundi et al., 2020)	Videos (Wang et al., 2019)	Movies (Lison and Tiedemann, 2016)				
DIALOGUE (Dia)	7	Open-domain (Naous et al., 2020)	Negotiation (He et al., 2018)	Task-oriented (Malviya et al., 2021)				
DICTIONARIES (Dic)	2	Dictionaries (almaany.com)	Dictionaries (dictionary.com)	_				
ENTERTAINMENT (Ent)	4	Jokes (almrsal.com)	Jokes (Weller and Seppi, 2019)	Jokes (123hindijokes.com)				
FINANCE (Fin)	3	_	Finance (Malo et al., 2014)	_				
FORUMS (For)	7	QA Websites (hi.quora.com)	StackOverflow (Tabassum et al., 2020)	Reddit (reddit.com)				
GUIDES (Gui)	6	Online Tutorials (ar.wikihow.com)	Code Documentation (mathworks.com)	Cooking Recipes (narendramodi.in)				
LEGAL (Leg)	9	UN Parliament (Ziemski et al., 2016)	Constitutions (constitutioncenter.org)	Judicial Rulings (Kapoor et al., 2022				
LETTERS (Let)	3	_	Letters (oflosttime.com)	_				
LITERATURE (Lit)	3	Novels (hindawi.org/books/)	History (gutenberg.org)	Biographies (Public Domain Books)				
MEDICAL TEXT (Med)	1	_	Clinical Reports (Uzuner et al., 2011)					
NEWS ARTICLES (New)	2	Sports (Alfonse and Gawich, 2022)	Economy (Misra, 2022)					
POETRY (Poe)	5	Poetry (aldiwan.net)	Poetry (poetryfoundation.org)	Poetry (hindionlinejankari.com)				
POLICIES (Pol)	7	Olympic Rules (specialolympics.org)	Contracts (honeybook.com)	Code of Conduct (lonza.com)				
RESEARCH (Res)	15	Politics (jcopolicy.uobaghdad.edu.iq)	Science & Engineering (arxiv.org)	Economics (journal.ijarms.org)				
SOCIAL MEDIA (Soc)	3	Twitter (Zheng et al., 2022)	Twitter (Zheng et al., 2022)	Twitter (Zheng et al., 2022)				
SPEECH (Spe)	4	Public Speech (state.gov/translations)	Public Speech (whitehouse.gov)	Ted Talks (ted.com/talks)				
STATEMENTS (Sta)	6	Quotes (arabic-quotes.com)	Rumours (Zheng et al., 2022)	Quotes (wahh.in)				
TEXTBOOKS (Tex)	3	Business (hindawi.org/books/)	Agriculture (open.umn.edu)	Psychology (ncert.nic.in)				
USER REVIEWS (Rev)	12	Products (ElSahar and El-Beltagy, 2015)	Books (goodreads.com)	Movies (hindi.webdunia.com)				
WIKIPEDIA (Wik)	1	Wikipedia (wikipedia.com)	Wikipedia (wikipedia.com)	Wikipedia (wikipedia.com)				
Total	112							

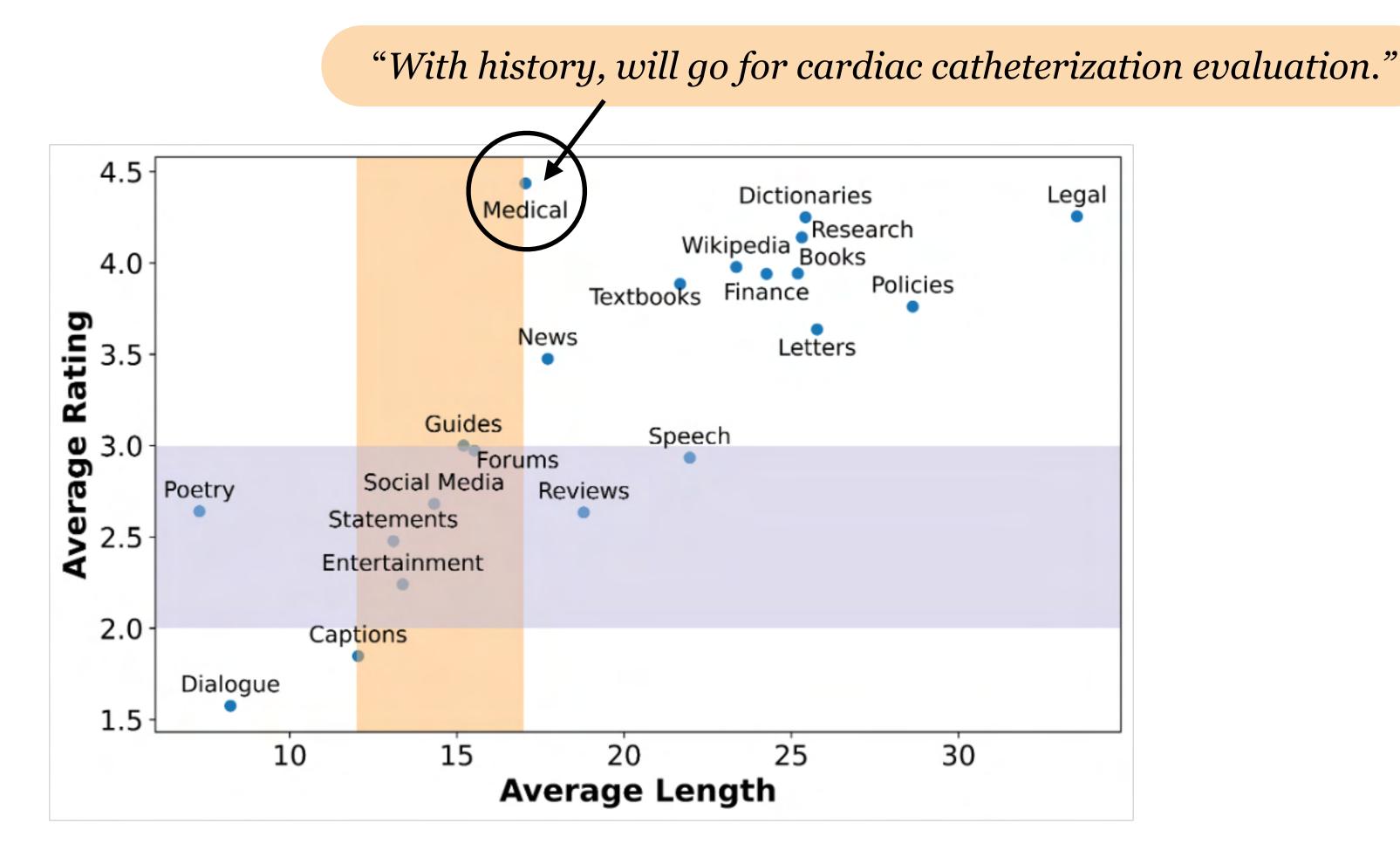
What difference does this make?

A wider range of topics and lengths of sentences that impact the readability are accounted for.



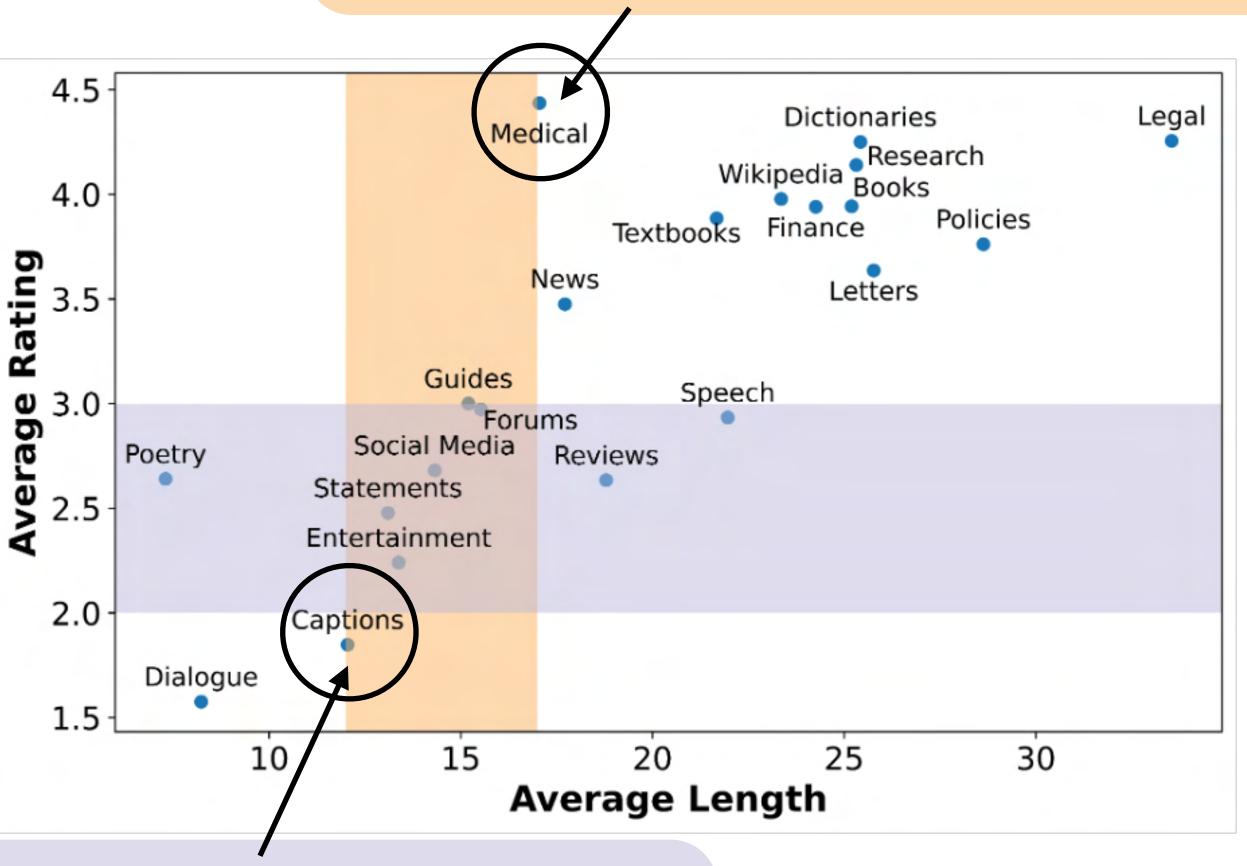
What difference does this make?

A wider range of topics and lengths of sentences that impact the readability are accounted for.



What difference does this make?

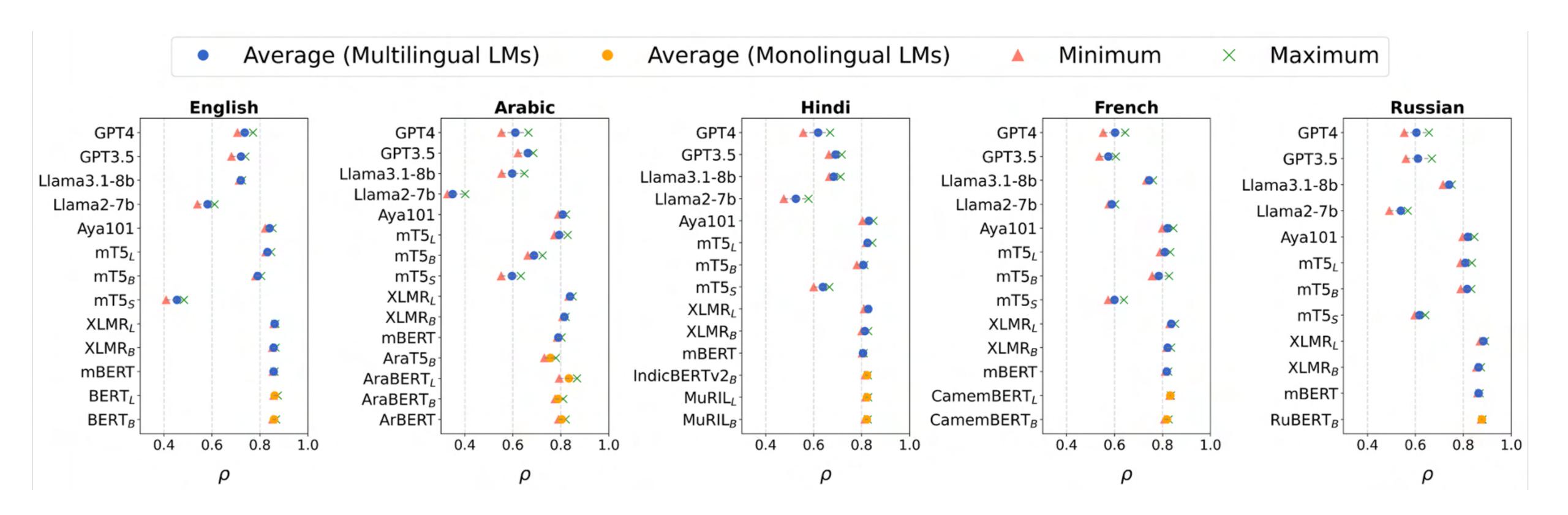
A wider range of topics and lengths of sentences that impact the readability are accounted for.



"A young boy is indoors showing his family his dance moves."

Benchmarking multilingual LLMs

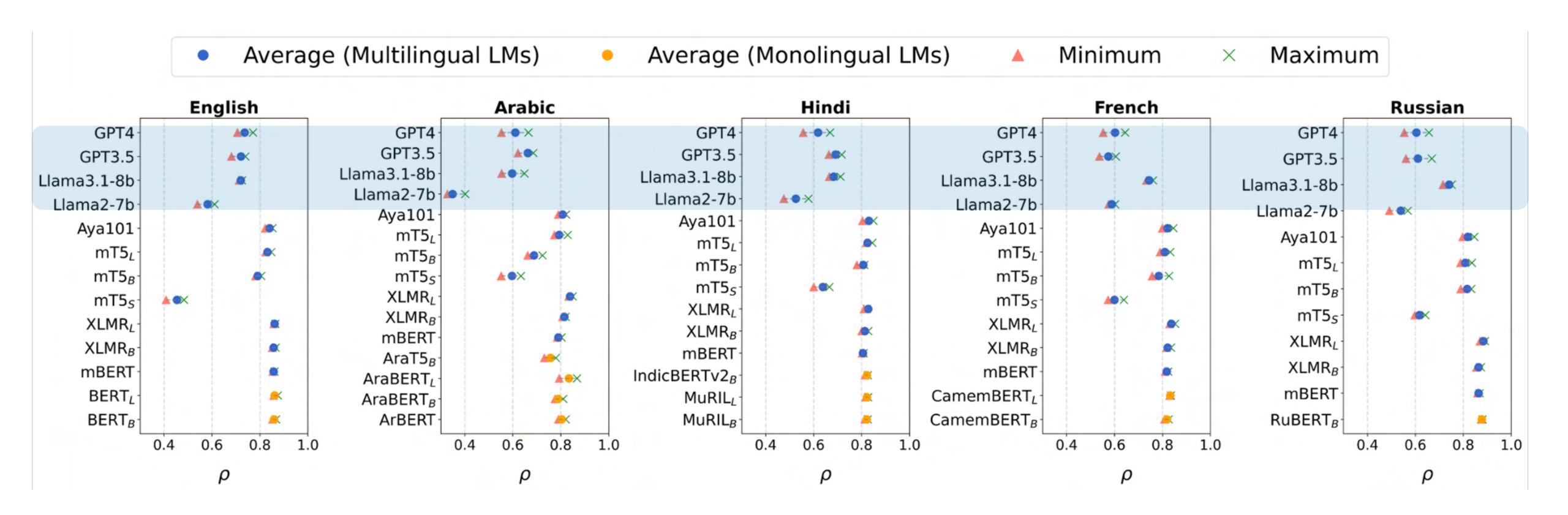
Fine-tuning LLMs perform better than 5-shot prompting of GPT-4 / Llama-3.1 (6-way classification)



i.e., human annotated data is very useful, not only for evaluation but also for fine-tuning.

Benchmarking multilingual LLMs

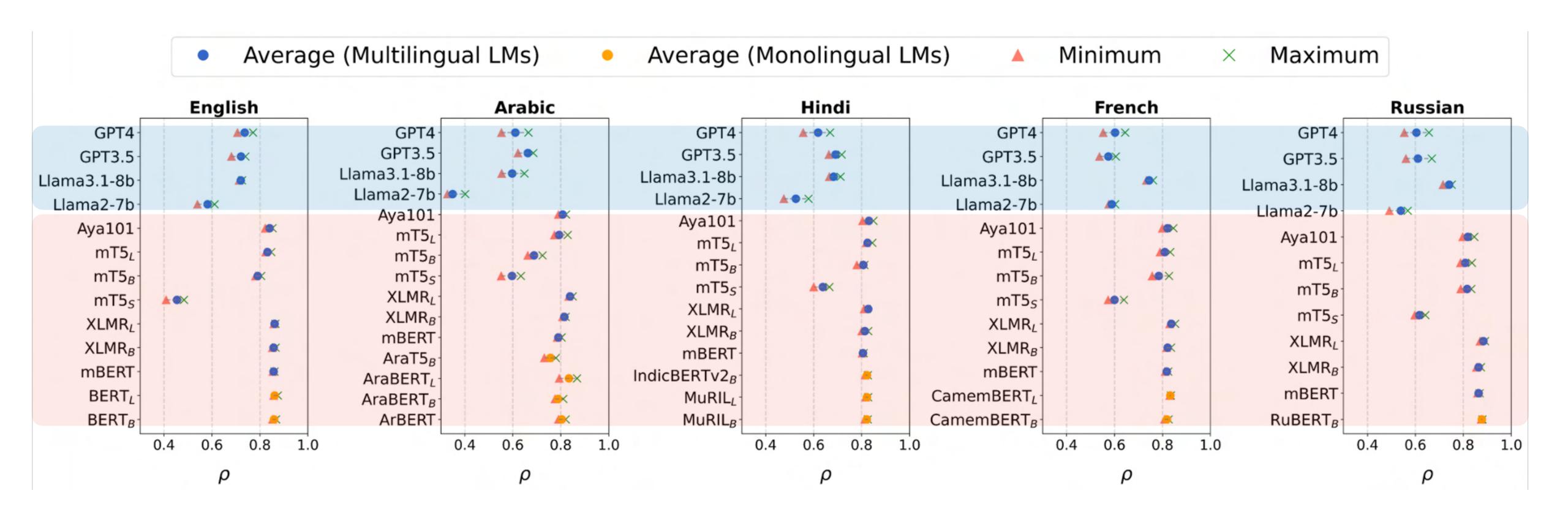
Fine-tuning LLMs perform better than 5-shot prompting of GPT-4 / Llama-3.1 (6-way classification)



i.e., human annotated data is very useful, not only for evaluation but also for fine-tuning.

Benchmarking multilingual LLMs

Fine-tuning LLMs perform better than 5-shot prompting of GPT-4 / Llama-3.1 (6-way classification)



i.e., human annotated data is very useful, not only for evaluation but also for fine-tuning.

Open Source

ization and enhanced cross-lingual transfer ca-

nahilities by models trained on README++

ReadMe++ data and models are available - https://github.com/tareknaous/readme

Paper on arXiv

README++: Benchmarking Multilingual Language Models for **Multi-Domain Readability Assessment** Tarek Naous, Michael J. Ryan, Anton Lavrouk, Mohit Chandra, Wei Xu College of Computing Georgia Institute of Technology {tareknaous, michaeljryan, antonlavrouk, mchandra9}@gatech.edu; wei.xu@cc.gatech.edu **Abstract** Les fenêtres, tout comme les We present a comprehensive evaluation of large post-hypotensive coma as well language models for multilingual readability assessment. Existing evaluation resources lack domain and language diversity, limiting the ability for cross-domain and cross-lingual analyses. This paper introduces README++, a multilingual multi-domain dataset with human annotations of 9757 sentences in Arabic, English, French, Hindi, and Russian, collected from 112 different data sources. This benchmark will encourage research on developing robust multilingual readability assessment methods. Using README++, we benchmark multilingual and monolingual language models in the supervised, unsupervised, and few-shot про его альбом, prompting settings. The domain and language случайно новость diversity in README++ enable us to test голько увидела. more effective few-shot prompting, and iden-Figure 1: Language distribution per each domain in tify shortcomings in state-of-the-art unsuper-README++. Example sentences from each language vised methods. Our experiments also reveal are shown along with their human-annotated readability exciting results of superior domain general-

levels on a 6-point scale (1: easiest, 6: hardest).

Models on Huggingface

English: https://huggingface.co/tareknaous/readabert-en Arabic: https://huggingface.co/tareknaous/readabert-ar Hindi: https://huggingface.co/tareknaous/readabert-hi French: https://huggingface.co/tareknaous/readabert-fr Russian: https://huggingface.co/tareknaous/readabert-ru

MedReadMe: A Systematic Study for Finegrained Sentence Readability in Medical Domain

Chao Jiang

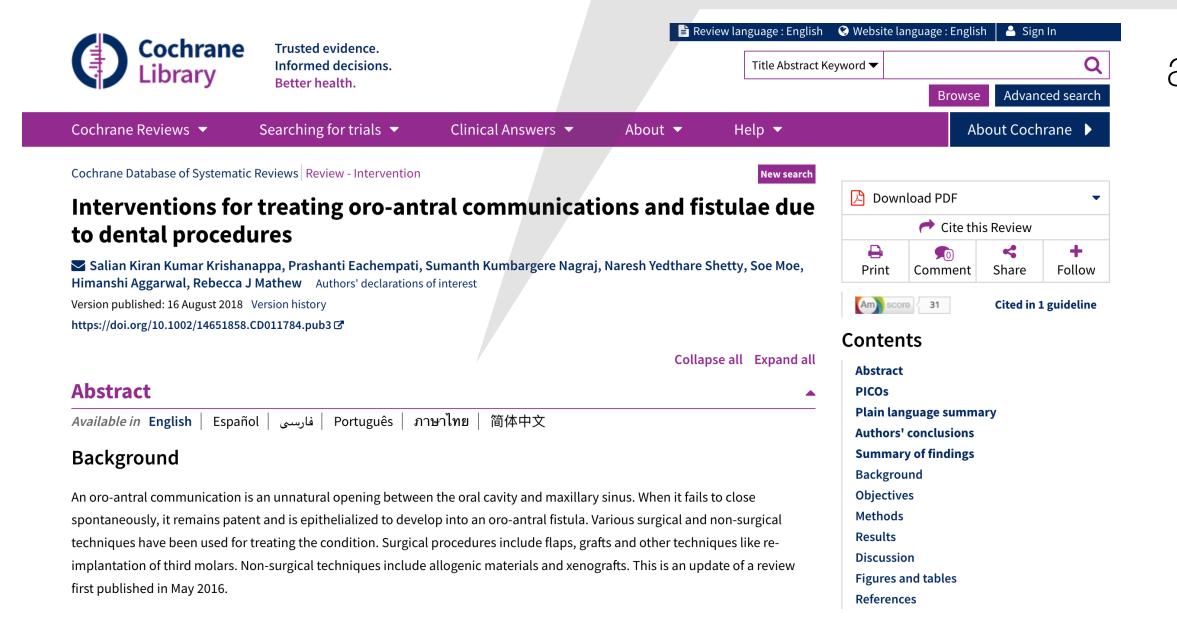
Wei Xu

"An oro-antral communication (OAC) is an unnatural opening between the oral cavity and maxillary sinus. When it fails to close spontaneously, it remains patent and is epithelialized to develop into an oro-antral fistula. These complications occur most commonly during extraction of upper molar and premolar teeth (48%)."



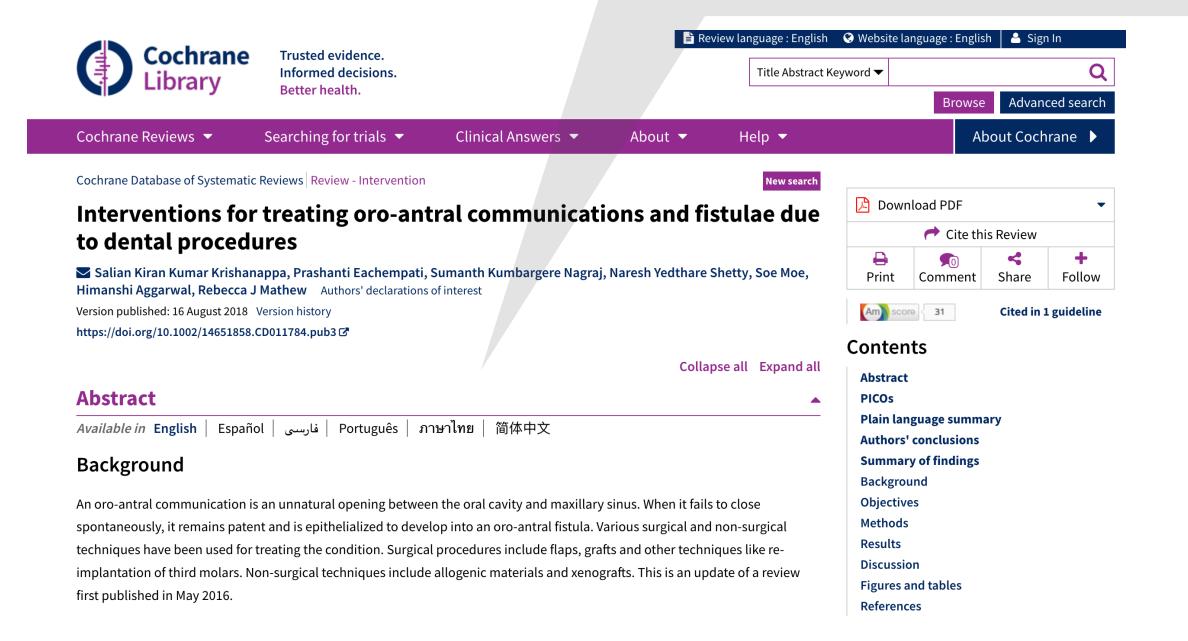
an snippet discussing oral and dental health from Cochrane

"An oro-antral communication (OAC) is an unnatural opening between the oral cavity and maxillary sinus. When it fails to close spontaneously, it remains patent and is epithelialized to develop into an oro-antral fistula. These complications occur most commonly during extraction of upper molar and premolar teeth (48%)."



an snippet discussing oral and dental health from Cochrane

"An oro-antral communication (OAC) is an unnatural opening between the oral cavity and maxillary sinus. When it fails to close spontaneously, it remains patent and is epithelialized to develop into an oro-antral fistula. These complications occur most commonly during extraction of upper molar and premolar teeth (48%)."



not all jargon and complex terms are equally difficult

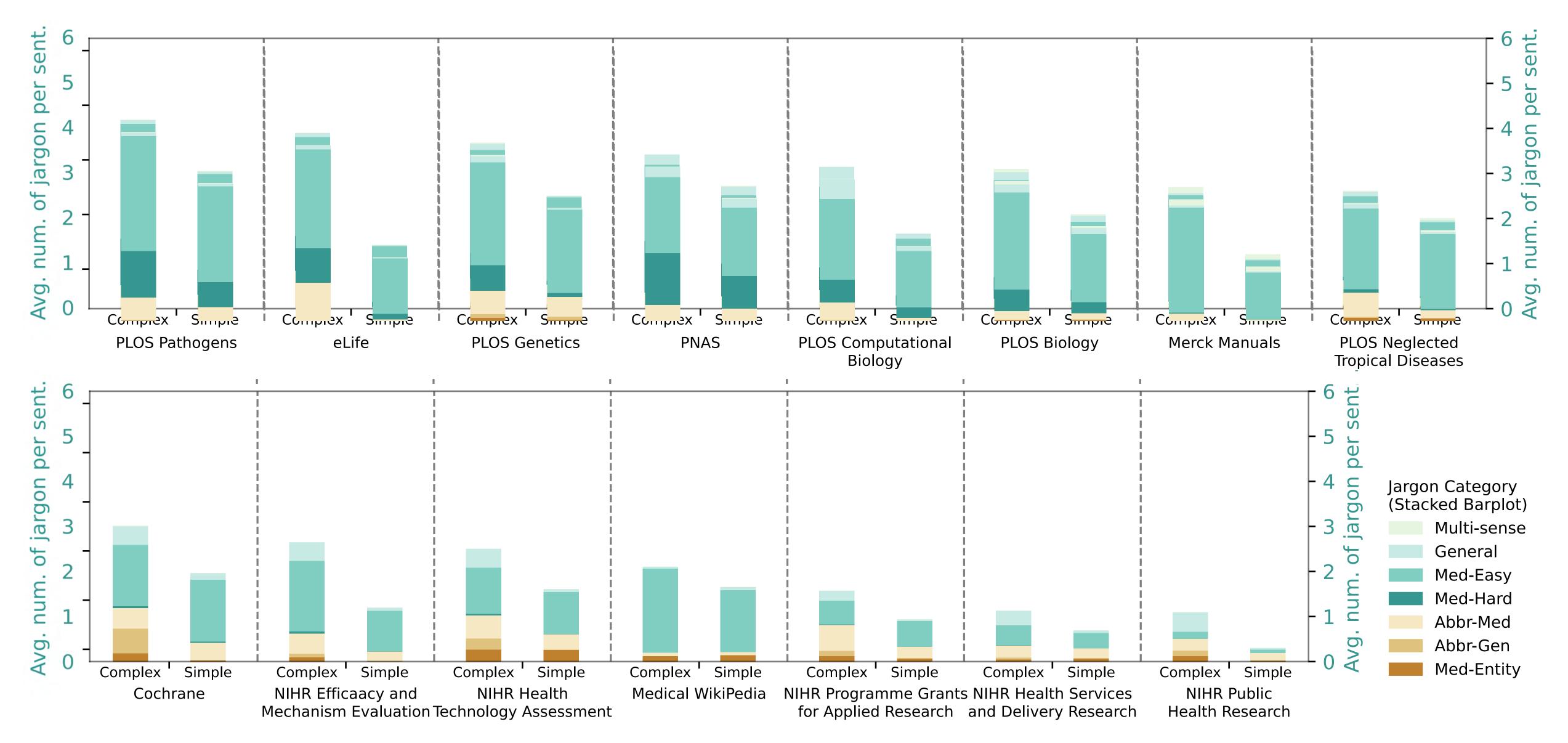
Medical - Google Hard

Abbreviations

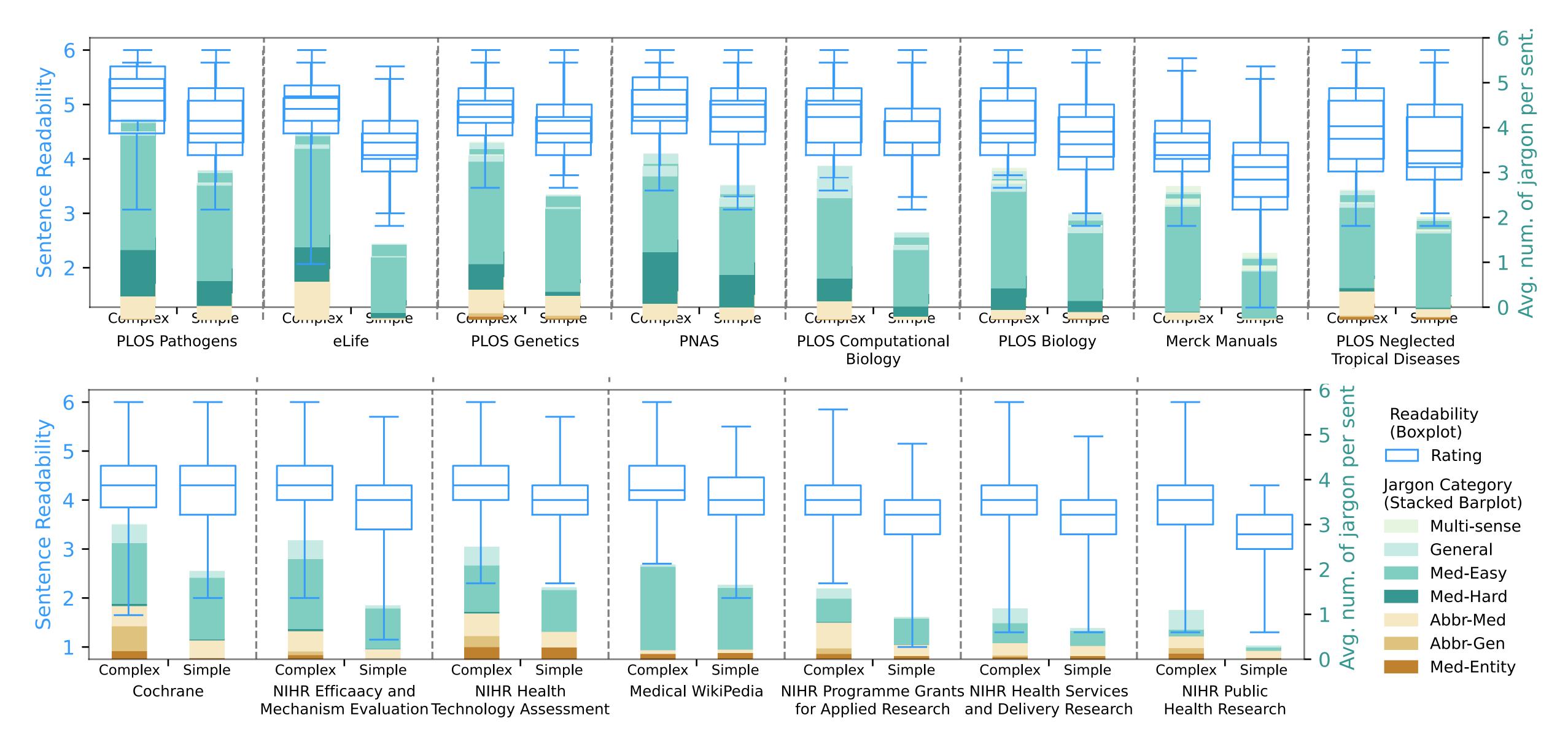
Medical - Google Easy

General Complex Words

Different Biomedical Data Sources also Vary



Different Biomedical Data Sources also Vary



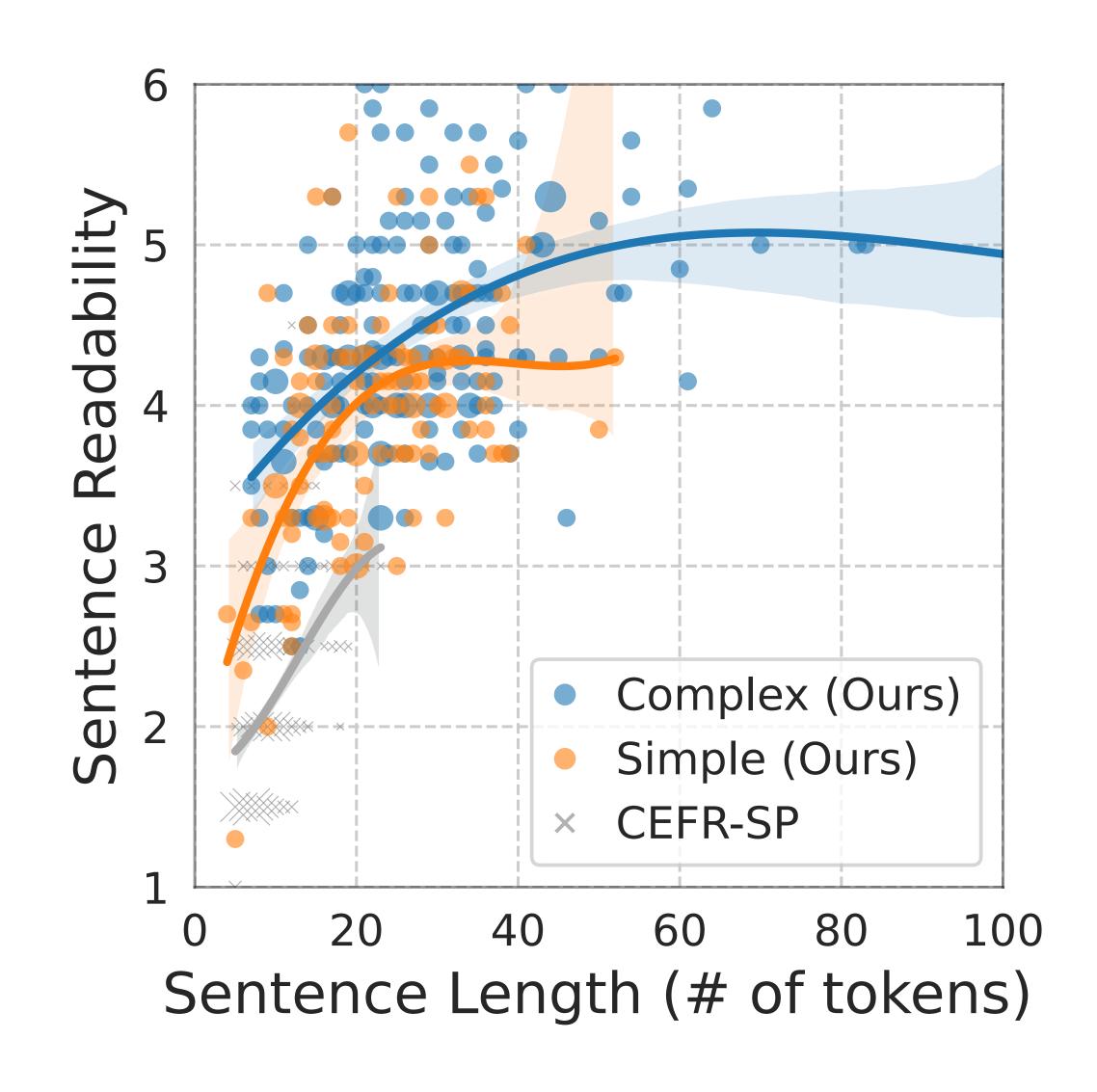
Rank-and-Rate Annotation Framework

Rank and Rate Sentences on Readability

Signed in as Sign out

Batch ID:	Submit and Continue
3	Jean Valjean remained silent, motionless, with his back towards the door, seated on the chair from which he had not stirred, and holding his breath in the dark.
3 3- 3+	These bead-like structures are called nucleosomes, and interactions between histones in different nucleosomes can link one nucleosome to another, to package the DNA into a very condensed form.
+ Context	In a sketch or outline drawing, lines drawn often follow the contour of the subject, creating depth by looking like shadows cast from a light in the artist's position.
+ Context	The long-term functional outcomes of early administration of RDI of amino acids and the use of SMOFlipid, including neurodevelopment, body composition and metabolic health, should be evaluated.
+ Context	All these initiatives take hold as they do, from lead pipes being removed from schools and homes, to new factories being built in communities with a resurgence of American manufacturing.
+ Context	The illumination of the subject is also a key element in creating an artistic piece, and the interplay of light and shadow is a valuable method in the artist's toolbox.

Jargon Greatly Affects Readability

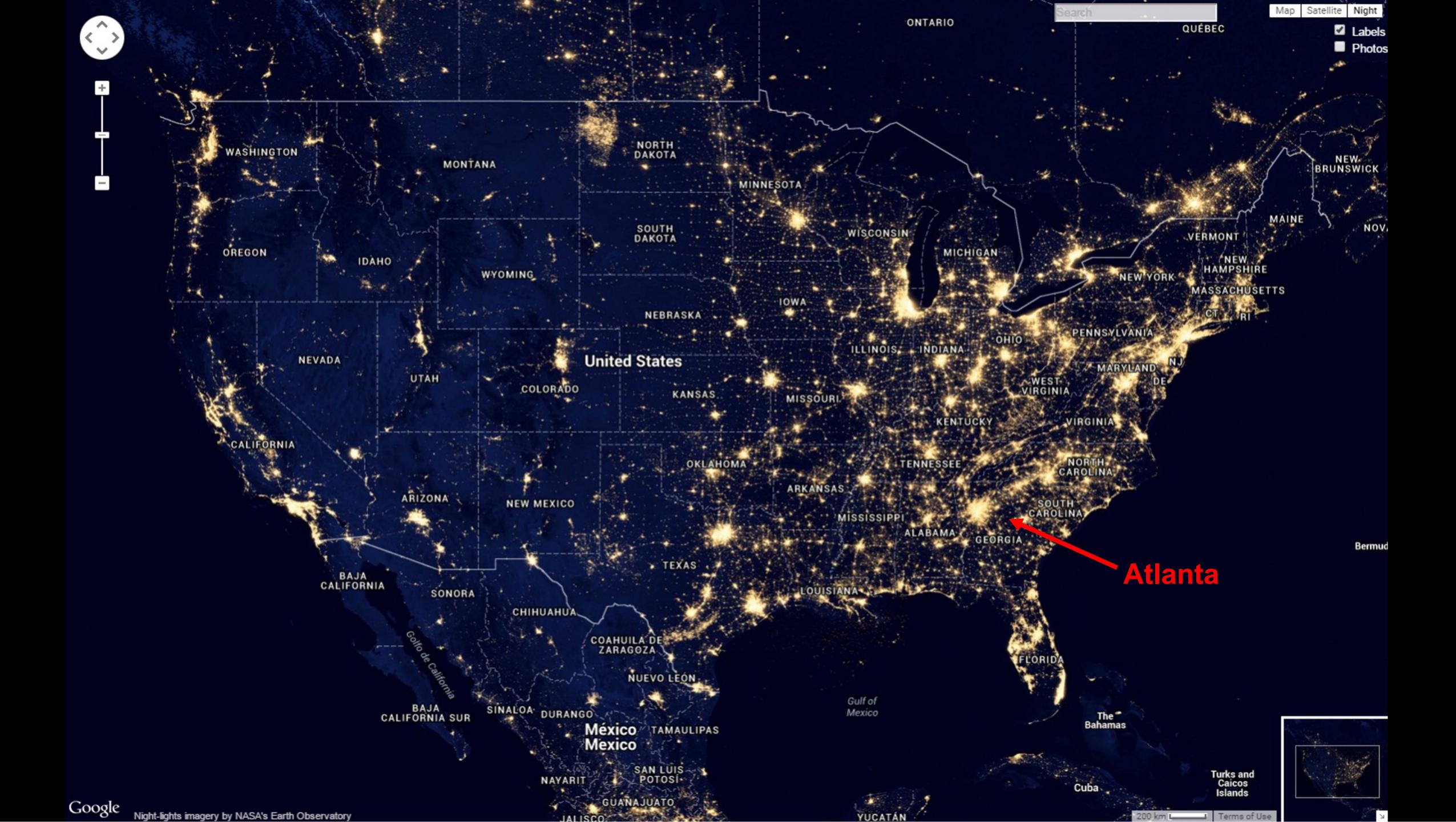


Medical Sentence Readability Measurements

ReadMe++Jar = RoBERTa-large (fine-tuned on ReadMe++) + $\alpha \times \#$ Jargon

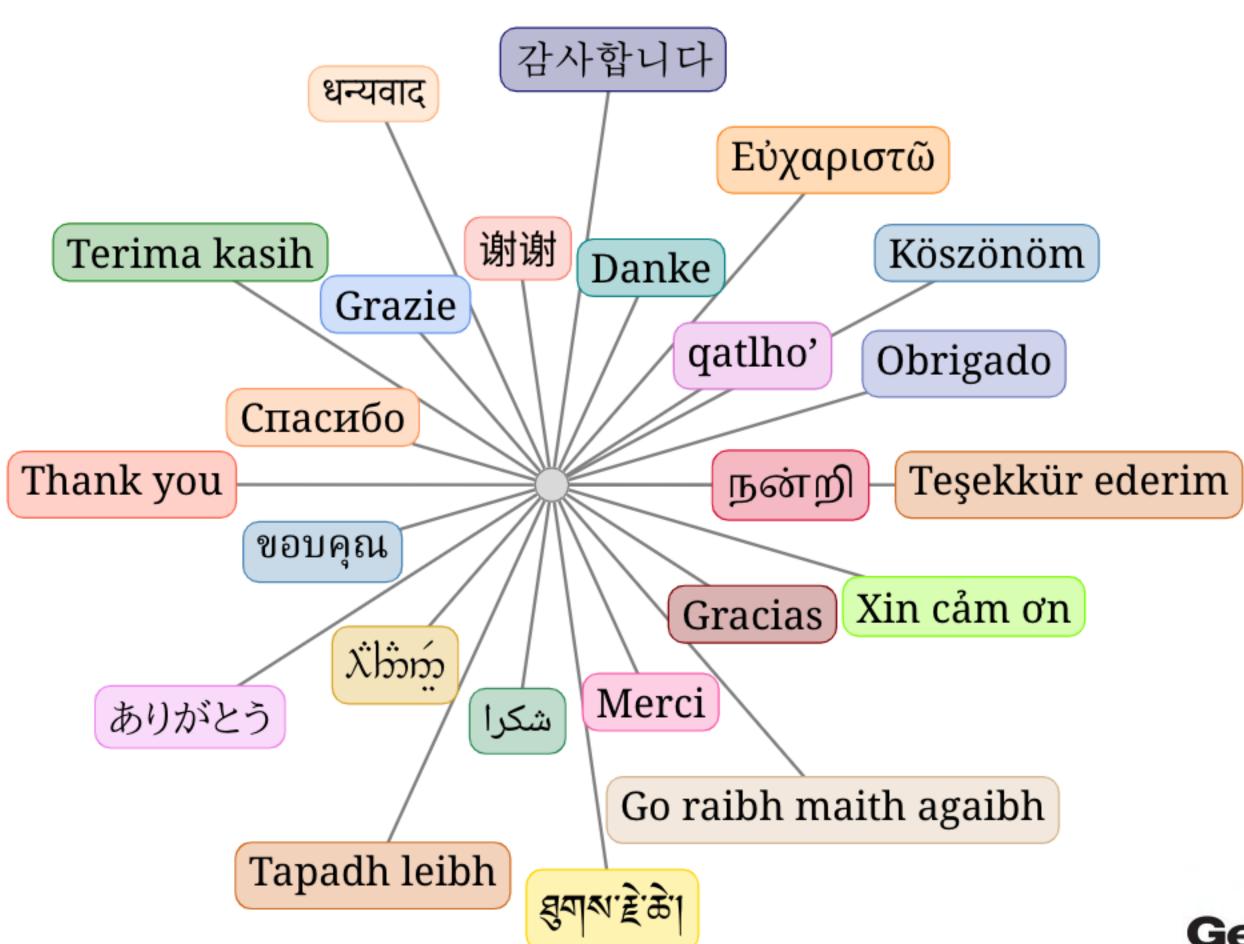
Sources	5-sl	hots	Trained on Each Corpus				The Trained 🏅 + an Jargon Term			
	GPT-4 (Achiam et al.)	Llama 2-7b (Touvron et al.)	ReadMe++ (Naous et al.)	CEFR-SP (Arase et al.)	CompDS (Brunato et al.)	MEDREADME (Ours)	ReadMe++ _{Jar} (Ours)	CEFR-SP _{Jar} (Ours)	CompDS _{Jar} (Ours)	MEDREADME _{Jar} (Ours)
Cochrane	0.908	0.549	0.858	0.899	0.870	0.947	0.842	0.850	0.785	0.882
PNAS	0.780	0.574	0.852	0.820	0.791	0.874	0.780	0.824	0.744	0.873
NIHR Series	0.713	0.580	0.824	0.753	0.706	0.885	0.697	0.687	0.634	0.700
eLife	0.538	0.127	0.594	0.715	0.608	0.712	0.812	0.802	0.777	0.861
PLOS Series	0.672	0.309	0.680	0.691	0.635	0.702	0.787	0.843	0.744	0.850
Wiki	0.670	0.429	0.824	0.709	0.607	0.843	0.712	0.619	0.673	0.709
MSD	0.766	0.328	0.784	0.778	0.757	0.867	0.918	0.880	0.863	0.937
Mean ± Std	0.721 ± 0.115	0.414 ± 0.17	0.774 ± 0.1	0.766 ± 0.073	0.711 ± 0.101	0.833 ± 0.092	0.793 ± 0.076	0.786 ± 0.096	0.746 ± 0.075	0.830 ± 0.090

Table 7: Pearson correlation (†) between human ground-truth readability and each **prompting** and **supervised** readability metric. All numbers are averaged over five runs, and all correlations are statistically significant. denotes RoBERTa-large models. "**-Jar**" means adding a "jargon" term (more details in §4.2). Prompt-based methods are competitive, while still outperformed by fine-tuned models in much smaller sizes.

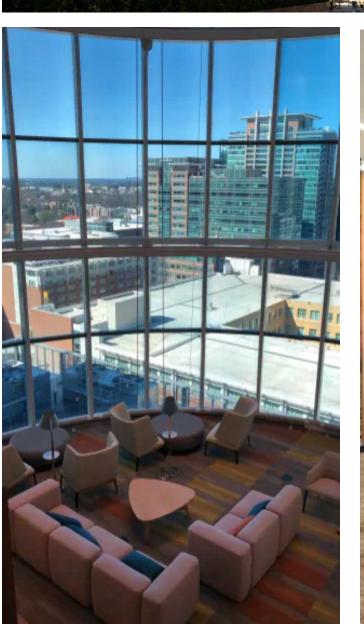


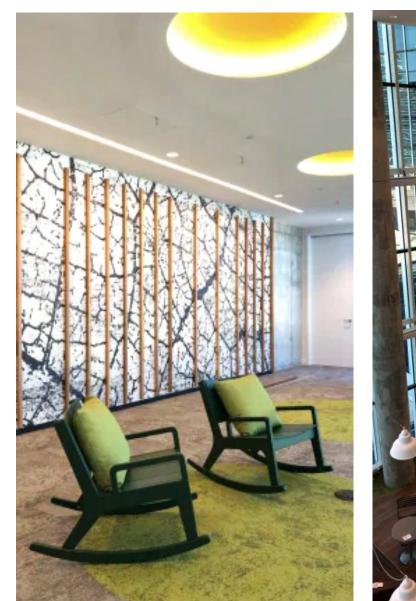
Thank you!

https://cocoxu.github.io/



(image credit: Overleafl)





(image credit: Georgia Tech)

