A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification

Mounica Maddela and Wei Xu

INPUT: Applesauce is a puree made of apples.
OUTPUT: Applesauce is a soft paste. It is made of apples.

Text Simplification

INPUT: Applesauce is a puree made of apples.
OUTPUT: Applesauce is a soft paste. It is made of apples.

Applications

- Reading assistance for children, non-native speakers and disabled.
- Improve other NLP tasks (MT, summarization ...)

Assessing word complexity is vital!

INPUT: Applesauce is a puree made of apples.
OUTPUT: Applesauce is a soft paste. It is made of apples.

Assessing word complexity is vital!

INPUT: Applesauce is a puree made of apples.
OUTPUT: Applesauce is a soft paste. It is made of apples.

Complex Word Identification

Assessing word complexity is vital!

INPUT: Applesauce is a puree made of apples.
OUTPUT: Applesauce is a soft paste. It is made of apples.

$$
\begin{aligned}
& \text { liquidized sauce } \\
& \text { thick liquid }
\end{aligned}
$$

Complex Word Identification - Substitution Generation

Assessing word complexity is vital!

INPUT: Applesauce is a puree made of apples.
OUTPUT: Applesauce is a soft paste. It is made of apples.
thick liquid
complex \int liquidized sauce

Complex Word Identification - Substitution Generation - Substitution Ranking

A Large Word-complexity Lexicon

- 15,000 English words w/ human ratings

day	1.0	MIN 1 (simple)
convenient	2.4	
transmitted	3.2	
cohort	4.3	
assay	5.8	${ }^{\text {MAX }} 6$ (complex)

- predict relative complexity for any given words or phrases

A Pairwise Neural Ranking Model

- improve the state-of-the-art significantly for all lexical simplification tasks

Complex Word Identification - Substitution Generation - Substitution Ranking
(\% is relative error reduction)

Previous Work

Rely on heuristics and corpus level features to measure word complexity

- Word length
(Shardlow 2013, Biran et. al. 2011, and many others)
- Word frequency in corpus
(Bott et. al. 2011, Kajiwara et. al. 2013, Horn et. al. 2014, and many others)
- Language model probability
(Glavas \& Stajner 2015, Paetzold \& Special 2016/17, and many others)

Weakness of Previous Work

```
Assumption \#1: shorter words are simpler
```


$$
\begin{aligned}
\text { duly } & >\text { thoroughly } \\
\text { pundit } & >\text { professional } \\
\text { alien } & >\text { stranger }
\end{aligned}
$$

```

\section*{Weakness of Previous Work}

Assumption \#2: more frequent words are simpler
Wrong! (14\% of time*)

\author{
folly > foolishness \\ scheme > outline \\ distress > discomfort
}

A Large Word-complexity Lexicon
- 15,000 most frequent English words from Google 1T ngram corpus
- Rated on a 6-point Likert scale

- 15,000 most frequent English words from Google 1T ngram corpus
- Rated on a 6-point Likert scale

- 11 annotators (non-native speakers)
- \(5 \sim 7\) ratings for each word
- 2.5 hours to rate 1000 words
\begin{tabular}{|c|}
\hline hath \\
gnome \\
cohort \\
beacon \\
scrutiny \\
activism \\
stochastic \\
humanitarian \\
accountability \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline voyeur \\
swivel \\
claimant \\
facsimile \\
symposium \\
\hline
\end{tabular}
- Inter-annotator agreement is 0.64 (Pearson correlation)
- One annotator rating vs. mean of the rest
\begin{tabular}{c|c|c|c|c|c|c} 
Word & Score & A1 & A2 & A3 & A4 & A5 \\
\hline muscles & 1.6 & 2 & 1 & 2 & 2 & 1 \\
\hline pattern & 2.4 & 2 & 3 & 1 & 1 & 3 \\
\hline educational & 3.2 & 3 & 3 & 3 & 3 & 4 \\
\hline cortex & 4.2 & 4 & 4 & 4 & 4 & 5 \\
\hline assay & 5.8 & 6 & 6 & 6 & 5 & 6
\end{tabular}
< 0.5 for \(\mathbf{4 7 \%}\) of annotations
difference (one vs. rest)
< 1.0 for \(\mathbf{7 8 \%}\) of annotations
< 1.5 for \(93 \%\) of annotations

\section*{Evaluation* - Complex Word Identification}
- Complex Word Identification Shared Task - BEA@NAACL'18
- 34879 sentences from Wikipedia and news articles
- 27299 training, 3328 development, 4252 test instances
\begin{tabular}{|l|l|}
\hline Input & The whale was sensing him with sound pulses. \\
\hdashline Output & [Complex, simple] \\
\hline
\end{tabular}

\section*{Evaluation}
- Complex Word Identification Shared Task 2018
- 27299 training, 3328 development, 4252 test instances
\begin{tabular}{l:c:c:c} 
& & F-score & Accuracy \\
\hdashline SimpleWiki Frequency & 63.3 & 54.1 \\
\hdashline Length & 65.9 & 67.6 \\
(Yimam et al. 2017) & 66.6 & 76.7 \\
\hline (Paetzold et al. 2016) & 73.8 & 78.7 \\
\hline
\end{tabular}

\section*{Evaluation}
- Complex Word Identification Shared Task 2018
- 27299 training, 3328 development, 4252 test instances


\section*{Evaluation}
- Complex Word Identification Shared Task 2018
- 27299 training, 3328 development, 4252 test instances
\begin{tabular}{|c|c|c|}
\hline & F-score & Accuracy \\
\hline Senses & 62.3 & 54.1 \\
\hline SimpleWiki Frequency & 63.3 & 61.6 \\
\hline Length & 65.9 & 67.7 \\
\hline \begin{tabular}{l}
(Yimam et al. 2017) \\
(Paetzold et al. 2016)
\end{tabular} & \[
\begin{aligned}
& 66.6 \\
& 73.8
\end{aligned}
\] & \[
\begin{aligned}
& 76.7 \\
& 78.7
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Our Lexicon \\
(Yimam et al. 2017) + Our Lexicon \\
(Paetzold et al. 2016) + Our Lexicon
\end{tabular} & \[
\begin{gathered}
67.5 \\
* \\
* \\
* \\
*
\end{gathered}
\] & \[
\left.\begin{array}{c}
69.8 \\
{ }^{*} 78.1 \\
{ }^{*} 80.2
\end{array}\right)
\] \\
\hline
\end{tabular}

A Pairwise Neural Ranking Model


\section*{Word-Complexity Lexicon Score 0/1 binary indicator}
word length
word frequency number of syllables ngram probabilities

\(f\left(w_{a}\right) \quad f\left(w_{b}\right)\)

\section*{Word-Complexity Lexicon Score 0/1 binary indicator}
word length
word frequency number of syllables ngram probabilities

PPDB paraphrase score word2vec cosine similarity

\(f\left(w_{b}\right)\)
\(f\left(w_{a}\right)-f\left(w_{b}\right) f\left(\left\langle w_{a}, w_{b}\right\rangle\right)\)


\[
\overrightarrow{f_{1}\left(w_{a}\right)}=[\sim 0.0, \quad 0.44, \quad 0.54, \quad \sim 0.02, \sim 0.0]
\]


\(\mathbf{P}>\mathbf{0} \Rightarrow w_{a}\) is more complex than \(w_{b}\)
\(\mathbf{P}<\mathbf{0} \Rightarrow w_{a}\) is simpler than \(w_{b}\)
| P | indicates complexity difference
\[
\left\langle w_{a}: \text { adversary }, w_{b}: \text { enemy }\right\rangle
\]

\section*{Neural Readability Ranking Model}


\section*{Evaluation**}
- English Lexical Simplification Shared Task - SemEval 2012
- 300 training sentences, 1710 test sentences
\begin{tabular}{|l|l|}
\hline Input & \begin{tabular}{l} 
There were also pieces that would have been \\
terrible in any environment.
\end{tabular} \\
\hline (Paetzold \& Specia 2017) & awful, very bad, dreadful \\
\hline Our Model + Our Lexicon & very bad, awful, dreadful \\
\hline Gold truth & very bad, awful, dreadful \\
\hline
\end{tabular}

\section*{Evaluation}
- English Lexical Simplification Shared Task - SemEval 2012
- 300 training sentences, 1710 test sentences
\begin{tabular}{|c|c|c|c|}
\hline & & Precision@1 & Pearson \\
\hline heuristics & (Biran et al. 2011) & 51.3 & 0.505 \\
\hline SVM & (Jauhar \& Specia 2012) & 60.2 & 0.575 \\
\hline heuristics & (Kajiwara et al. 2013) & 60.4 & 0.649 \\
\hline SVM & (Horn et al. 2014) & 63.9 & 0.673 \\
\hline heuristics & (Glavaš \& Štajner 2015) & 63.2 & 0.644 \\
\hline SVM & (Paetzold \& Specia 2015) & \(65.3-{ }^{2}+2\) & \(0.677 \%+0.002\) \\
\hline neural & (Paetzold \& Specia 2017) & 65.6 & 0.679 \\
\hline \multicolumn{2}{|l|}{neural Our Model + Lexicon + Gaussian} & \(67.3^{*}\) & \(0.714^{\text {k }}\) \\
\hline
\end{tabular}

\section*{Evaluation}
- English Lexical Simplification Shared Task - SemEval 2012
- 300 training sentences, 1710 test sentences
\begin{tabular}{|c|c|c|c|}
\hline & & Precision@1 & Pearson \\
\hline heuristics & (Biran et al. 2011) & 51.3 & 0.505 \\
\hline SVM & (Jauhar \& Specia 2012) & 60.2 & 0.575 \\
\hline heuristics & (Kajiwara et al. 2013) & 60.4 & 0.649 \\
\hline SVM & (Horn et al. 2014) & 63.9 & 0.673 \\
\hline heuristics & (Glavaš \& Štajner 2015) & 63.2 & 0.644 \\
\hline SVM & (Paetzold \& Specia 2015) & \(65.3-{ }^{2}+2\) & \(0.677 \%+0.002\) \\
\hline neural & (Paetzold \& Specia 2017) & 65.6 & 0.679 \\
\hline neural \({ }^{\text {neural }}\) Our & \begin{tabular}{l}
Our Model + Gaussian \\
del + Lexicon + Gaussian
\end{tabular} & \[
\left.\begin{array}{l}
66.6 \\
67.3^{*}
\end{array}\right)^{+17}
\] & \[
\left.\begin{array}{l}
0.702^{*} \\
0.714^{*}
\end{array}\right)+0.035
\] \\
\hline
\end{tabular}

\footnotetext{
* statistically significant ( \(p<0.05\) ) based on the paired bootstrap test
}

\section*{Evaluation}
- English Lexical Simplification Shared Task - SemEval 2012
- 300 training sentences, 1710 test sentences
\begin{tabular}{|c|c|c|c|}
\hline & & Precision@1 & Pearson \\
\hline heuristics & (Biran et al. 2011) & 51.3 & 0.505 \\
\hline SVM & (Jauhar \& Specia 2012) & 60.2 & 0.575 \\
\hline heuristics & (Kajiwara et al. 2013) & 60.4 & 0.649 \\
\hline SVM & (Horn et al. 2014) & 63.9 & 0.673 \\
\hline heuristics & (Glavaš \& Štajner 2015) & 63.2 & 0.644 \\
\hline SVM & (Paetzold \& Specia 2015) & \(65.3-{ }^{2}+2\) & \(0.677 \%+0.002\) \\
\hline neural & (Paetzold \& Specia 2017) & 65.6 & 0.679 \\
\hline neural & Our Model & 65.4 +7 & 0.682 \\
\hline neural & Our Model + Gaussian & \(66.6)^{+1}\) & \(0.702^{*}+\) \\
\hline neural Our & del + Lexicon + Gaussian & \(67.3^{*}\) & \(0.714^{*}\) \\
\hline
\end{tabular}

\footnotetext{
* statistically significant ( \(p<0.05\) ) based on the paired bootstrap test
}

\section*{Evaluation - Error Analysis}
\begin{tabular}{|l|c|}
\hline Input & The colonies of one strain appeared smooth. \\
\hline (Paetzold \& Specia 2017) & sort, type, breed, variety \\
\hline Our Model + Our Lexicon & type, sort, breed, variety \\
\hline Gold truth & type, sort, variety, breed \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline Input & No damage or casualties were reported. \\
\hline (Paetzold \& Specia 2017) & injuries, accidents, deaths, fatalities \\
\hline Our Model + Our Lexicon & injuries, deaths, accidents, fatalities \\
\hline Gold truth & deaths, injuries, accidents, fatalities \\
\hline
\end{tabular}

\section*{SimplePPDB++}
- 14.1 million paraphrase rules w/ improved complexity ranking scores
\begin{tabular}{|c|c|}
\hline Paraphrase Rule & Score \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \rightarrow \text { self-supporting } \\
\text { self-reliant } & \rightarrow \text { self-sufficient } \\
& \rightarrow \text { self-sustainable }
\end{aligned}
\]} & 0.93 \\
\hline & 0.48 \\
\hline & -0.60 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \rightarrow \text { possible } \\
\text { viable } & \rightarrow \text { realistic } \\
& \rightarrow \text { plausible }
\end{aligned}
\]} & 0.94 \\
\hline & 0.15 \\
\hline & -0.91 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \rightarrow \text { in-depth review } \\
\text { detailed assessement } & \rightarrow \text { careful examination } \\
& \rightarrow \text { comprehensive evaluation }
\end{aligned}
\]} & 0.89 \\
\hline & 0.28 \\
\hline & -0.87 \\
\hline
\end{tabular}

\section*{Thanks}
- Word-Complexity Lexicon \& SimplePPDB++ are available!
\begin{tabular}{c:c|c} 
day & 1.0 & MIN 1 (simple) \\
\hdashline convenient & 2.4 & \\
\hdashline transmitted & 3.2 & \\
\hdashline cohort & 4.3 & \\
\hdashline assay & 5.8 & MAX 6 (complex)
\end{tabular}
- PyTorch Code for the Neural Ranking model is also available! https://github.com/mounicam/lexical_simplification
- Contacts: Mounica Maddela \& Wei Xu (Ohio State University)

t-SNE visualization of the complexity scores, ranging between 1.0 and 6.0

\section*{Word-Complexity Lexicon}

Coverage over Penn Treebank ( \(\sim 1.1\) million words)


\section*{Gaussian Feature Vectorization}

Single feature value : \(f(w)=0.41, \quad f(w) \in[0,1]\)
Vectorized feature : \(f(w)=[\sim 0.0,0.44, \quad 0.54, \sim 0.02, \sim 0.0]\)


\section*{Gaussian Feature Vectorization}

Single feature value : \(f(w)=0.41, \quad f(w) \in[0,1]\)
Vectorized feature : \(f(w)=[\sim 0.0,0.44, \quad 0.54, \sim 0.02, \sim 0.0]\)


\section*{Gaussian Feature Vectorization}

Single feature value : \(f(w)=0.41, \quad f(w) \in[0,1]\)

Vectorized feature : \(f(w)=[\sim 0.0\),


\section*{Gaussian Feature Vectorization}

Single feature value : \(f(w)=0.41, \quad f(w) \in[0,1]\)

Vectorized feature : \(f(w)=[\sim 0.0,0.44\),


\section*{Gaussian Feature Vectorization}

Single feature value : \(f(w)=0.41, \quad f(w) \in[0,1]\)

Vectorized feature : \(f(w)=[\sim 0.0,0.44,0.54\),


\section*{Gaussian Feature Vectorization}

Single feature value : \(f(w)=0.41, \quad f(w) \in[0,1]\)
Vectorized feature : \(f(w)=\left[\begin{array}{ll}\sim 0.0,0.44, & 0.54, \sim 0.02, \sim 0.0\end{array}\right]\)


\section*{Substitution Ranking - Correct Examples}
- Our Model predicts the correct output
\begin{tabular}{|l|l|}
\hline Input & \begin{tabular}{l} 
The concept of a "picture element" dates to \\
the \begin{tabular}{l} 
earliest days of television.
\end{tabular} \\
\hline (Paetzold \& Specia 2017)
\end{tabular} \\
\hline theory, thought, idea \\
\hline Our Model + Our Lexicon & idea, thought, theory \\
\hline Gold truth & idea, thought, theory \\
\hline
\end{tabular}
- Our Model handles phrases better than previous SOTA.
\begin{tabular}{|l|l|}
\hline Input & \begin{tabular}{l} 
There were also pieces that would have been \\
terrible in any environment.
\end{tabular} \\
\hdashline (Paetzold \& Specia 2017) & awful, very bad, dreadful \\
\hdashline Our Model + Our Lexicon & very bad, awful, dreadful \\
\hdashline Gold truth & very bad, awful, dreadful
\end{tabular}```

