Neural Network Models for Paraphrase Identification Semantic Textual Similarity Natural Language Inference Question Answering

Wuwei Lan and Wei Xu

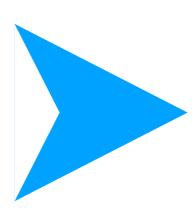
The Ohio State University

Department of Computer Science and Engineering

••• Paraphrase Identification Semantic Textual Similarity Natural Language Inference Question Answering

• • •

Paraphrase Identification Semantic Textual Similarity Natural Language Inference Question Answering



Sentence Pair Modeling

Type I: The Sentence Encoding-based Models

Type I: The Sentence Encoding-based Models

- Gated recurrent average network [Wieting and Gimpel, 2017]
- Directional self-attention network [Shen et al., 2017]
- InferSent BiLSTM with max-pooling [Conneau et al., 2017]
- Gumbel Tree-LSTM [Choi et al., 2017]
- SSE Shortcut-stacked BiLSTM [Nie and Bansal, 2017]
- and many others ...

Type I: The Sentence Encoding-based Models

- Gated recurrent average network [Wieting and Gimpel, 2017]
- Directional self-attention network [Shen et al., 2017]
- InferSent BiLSTM with max-pooling [Conneau et al., 2017]
- Gumbel Tree-LSTM [Choi et al., 2017]
- SSE Shortcut-stacked BiLSTM [Nie and Bansal, 2017]
- and many others ...

Type II: The Word Interaction-based Models

Type I: The Sentence Encoding-based Models

- Gated recurrent average network [Wieting and Gimpel, 2017]
- Directional self-attention network [Shen et al., 2017]
- InferSent BiLSTM with max-pooling [Conneau et al., 2017]
- Gumbel Tree-LSTM [Choi et al., 2017]
- SSE Shortcut-stacked BiLSTM [Nie and Bansal, 2017]
- and many others ...

Type II: The Word Interaction-based Models

- PWIM Pairwise word interaction [He and Lin, 2016]
- Subword-based pairwise word interaction [Lan and Xu, 2018]
- Attention based CNN [Yin et al., 2016]
- DecAtt Decomposable attention [Parikh et al., 2017]
- ESIM Enhanced LSTM for NLI [Chen et al., 2017]
- and many others ...

Motivation for this Work

		SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
Type l	InferSent	0.845	-	-	-	-	0.700	-	_
	SSE	0.860	0.746	-	-	-	-	-	-
Type II	DecAtt	0.863	-	0.865	-	-	-	-	_
	ESIM_seq	0.880	0.723	-	-	-	-	-	-
	ESIM_tree	0.878	-	-	-	-	-	-	-
	ESIM_seq+tree	0.886	-	-	-	-	-	-	-
	PWIM	-	-	-	0.749	0.667	0.767	0.709	0.759

• Previous systems only reported results on a few selected datasets.

Reproduced Results for Sentence Pair Modeling

		SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
Type I	InferSent	0.846	0.705	0.866	0.746	0.451	0.715	0.287	0.521
	SSE	0.855	0.740	0.878	0.650	0.422	0.378	0.624	0.628
Type II	DecAtt	0.856	0.719	0.865	0.652	0.430	0.317	0.603	0.660
	ESIM_seq	0.870	0.752	0.850	0.748	0.520	0.602	0.652	0.771
	ESIM_tree	0.864	0.736	0.755	0.740	0.447	0.493	0.618	0.698
	ESIM_seq+tree	0.871	0.753	0.854	0.759	0.538	0.589	0.647	0.749
	PWIM	0.822	0.722	0.834	0.761	0.656	0.743	0.706	0.739

• We filled in the blanks and systematically compared 7 models on 8 datasets.

Reproduced Results for Sentence Pair Modeling

		SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
Type l	InferSent	0.846	0.705	0.866	0.746	0.451	0.715	0.287	0.521
	SSE	0.855	0.740	0.878	0.650	0.422	0.378	0.624	0.628
Type II	DecAtt	0.856	0.719	0.865	0.652	0.430	0.317	0.603	0.660
	ESIM_seq	0.870	0.752	0.850	0.748	0.520	0.602	0.652	0.771
	ESIM_tree	0.864	0.736	0.755	0.740	0.447	0.493	0.618	0.698
	ESIM_seq+tree	0.871	0.753	0.854	0.759	0.538	0.589	0.647	0.749
	PWIM	0.822	0.722	0.834	0.761	0.656	0.743	0.706	0.739

- We filled in the blanks and systematically compared 7 models on 8 datasets.
- No model consistently performs well across all tasks!

 \bullet \bullet \bullet

paraphrase

non-paraphrase

Dataset: Quora (400k), URL (51k), PIT (16k)

paraphrase

non-paraphrase

Dataset: Quora (400k), URL (51k), PIT (16k)

Semantic Textual Similarity

score[0,5]

Dataset: STS14 (11k)

Dataset: Quora (400k), URL (51k), PIT (16k)

Semantic Textual Similarity

non-paraphrase

score[0,5]

paraphrase

Dataset: STS14 (11k)

Natural Language Inference

entailment

neutral

contradiction

Dataset: SNLI (570k), MNLI (432k)

Dataset: Quora (400k), URL (51k), PIT (16k)

Semantic Textual Similarity

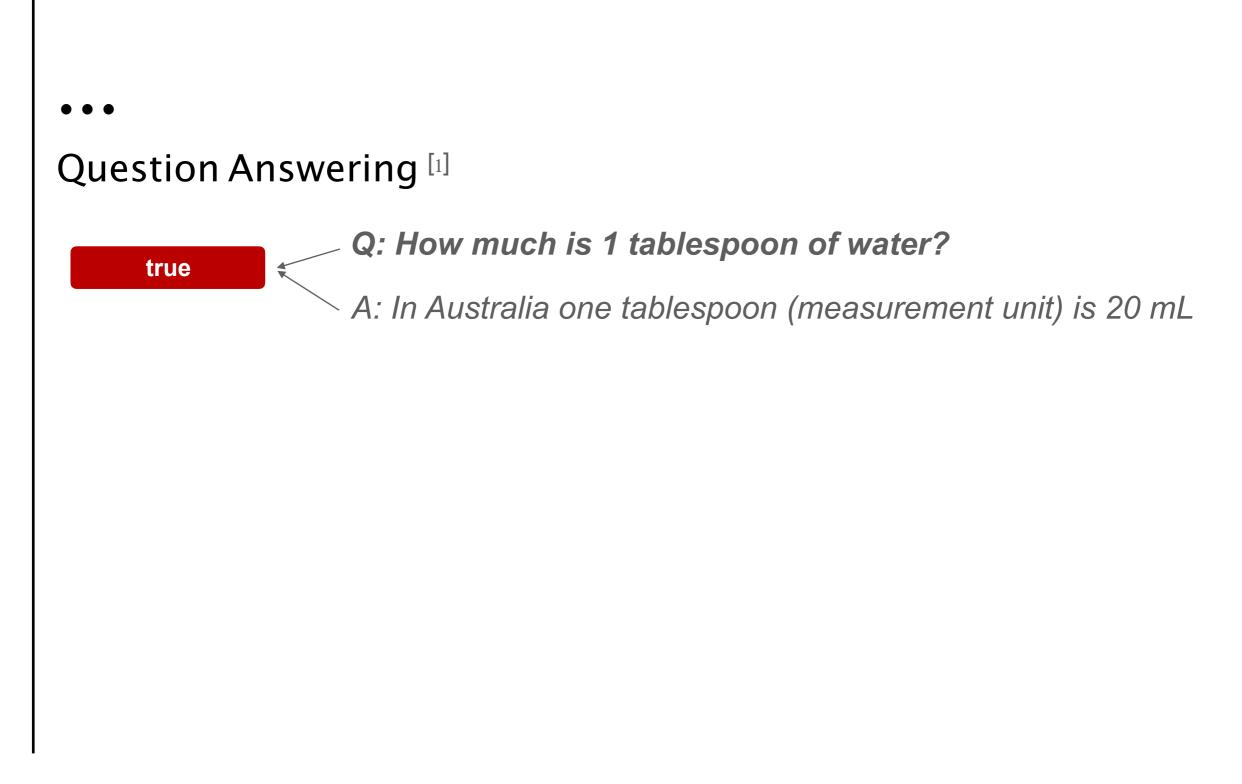
non-paraphrase

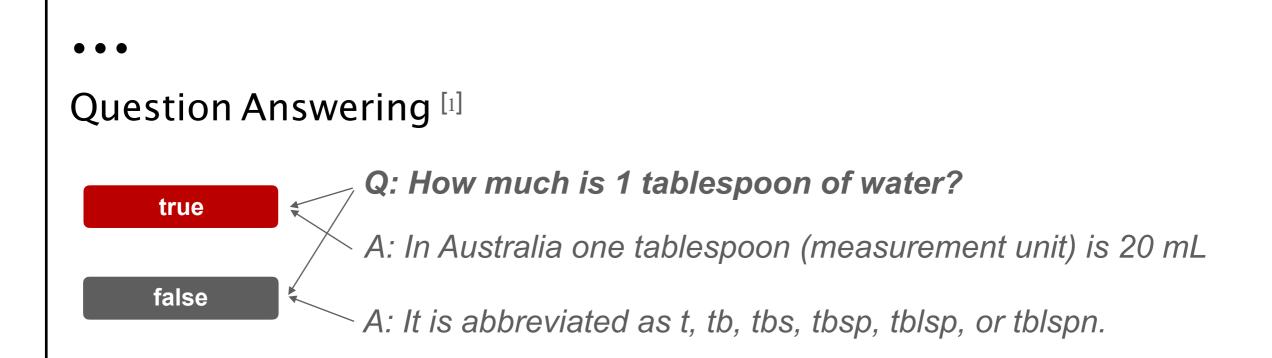
score[0,5]

paraphrase

Dataset: STS14 (11k)

Natural Language Inference





Question Answering [1]

true

false

-, **Q**: How much is 1 tablespoon of water?

A: In Australia one tablespoon (measurement unit) is 20 mL

A: It is abbreviated as t, tb, tbs, tbsp, tblsp, or tblspn.

Paraphrase Identification [2]

paraphrase CO2 levels haven't been this high for 3 to 5 million years. CO2 levels mark 'new era' in the world's changing climate.

Question Answering [1]

true

false

-, **Q**: How much is 1 tablespoon of water?

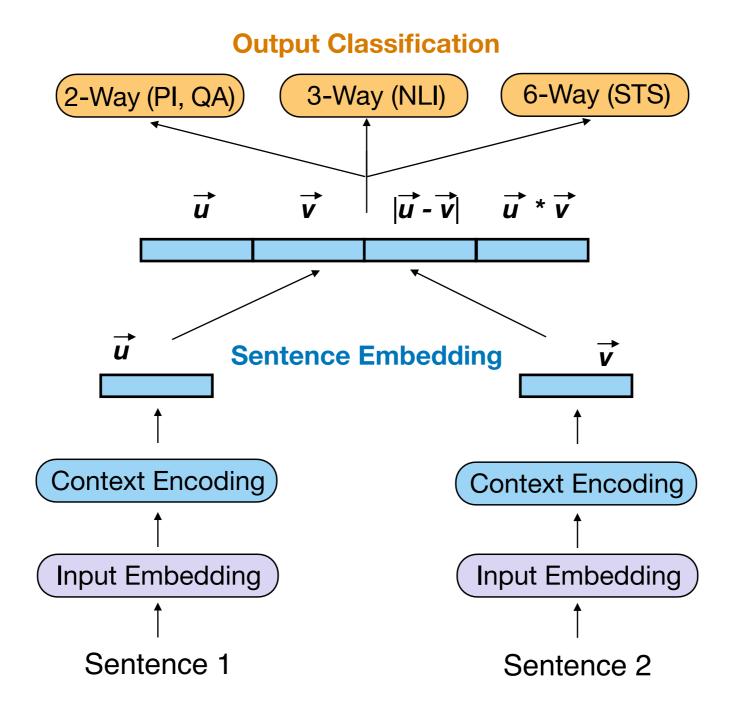
A: In Australia one tablespoon (measurement unit) is 20 mL

A: It is abbreviated as t, tb, tbs, tbsp, tblsp, or tblspn.

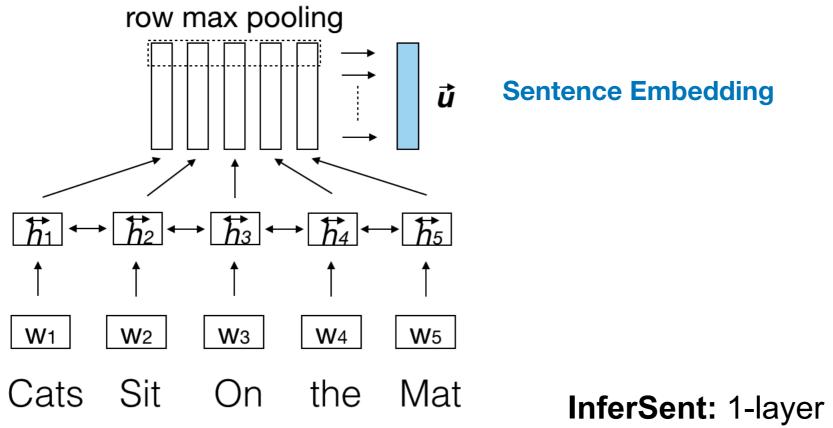
Paraphrase Identification [2]

paraphrase CO2 levels haven't been this high for 3 to 5 million years. CO2 levels mark 'new era' in the world's changing climate. First whole year over 400ppm. We are too complacent with this news.

Type I: Sentence Encoding-based Models



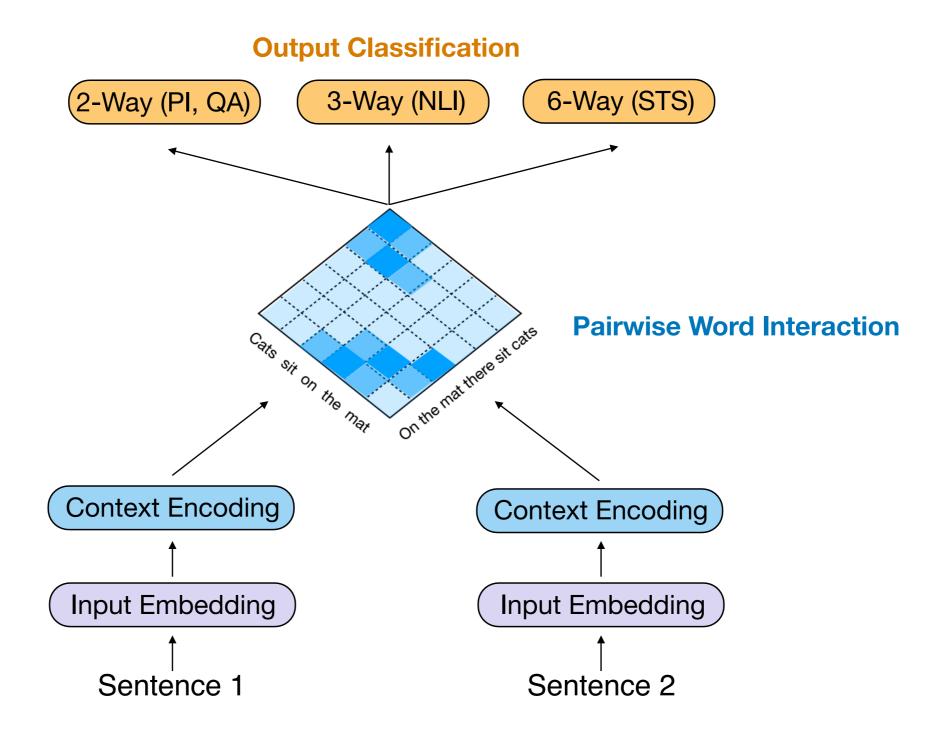
Type I: Sentence Encoding-based Models



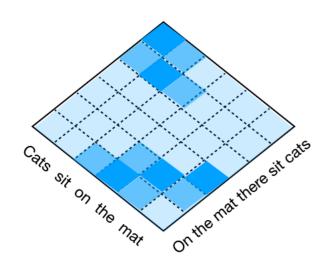
InferSent: 1-layer Bi-LSTM.^[3] **SSE:** 3-layer Bi-LSTM with skip connection.^[4]

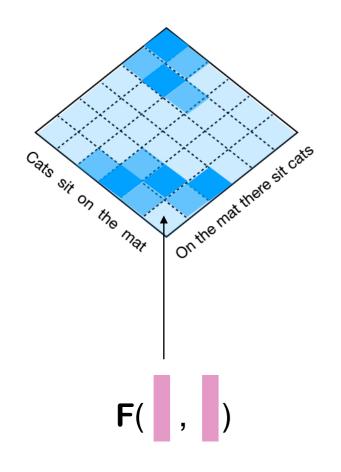
[3] Jihun Choi, Kang Min Yoo, and Sang-goo Lee: Unsupervised learning of task-specific tree structures with tree-LSTMs. (EMNLP 2017).[4] Yixin Nie and Mohit Bansal. Shortcut-stacked sentence encoders for multi-domain inference. (RepEval 2017)

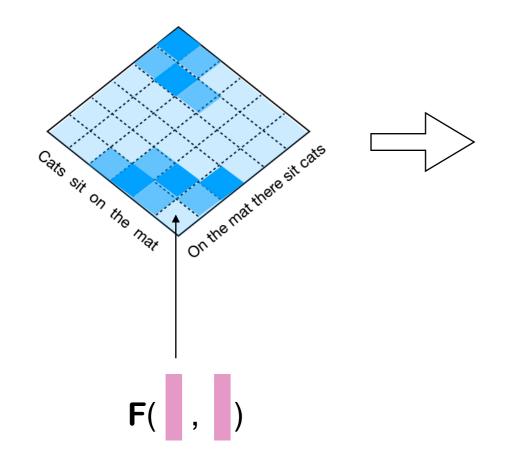
Type II: Word Interaction-based Models



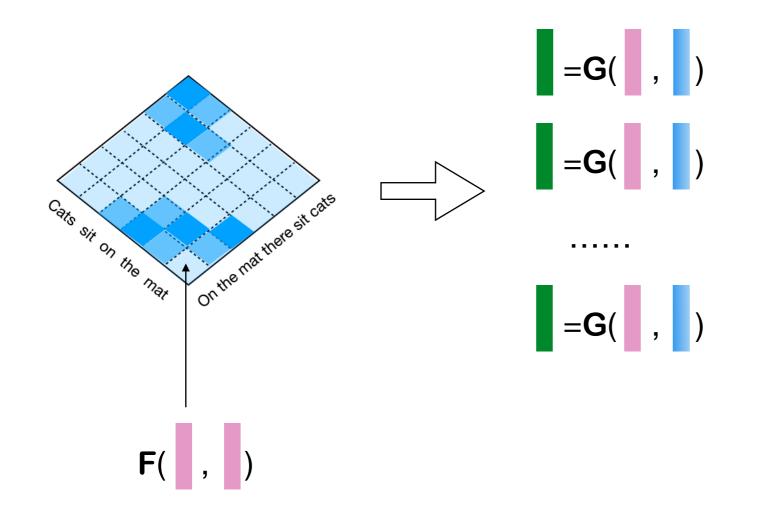
• semantic relation between two sentences depends largely on aligned words/phrases



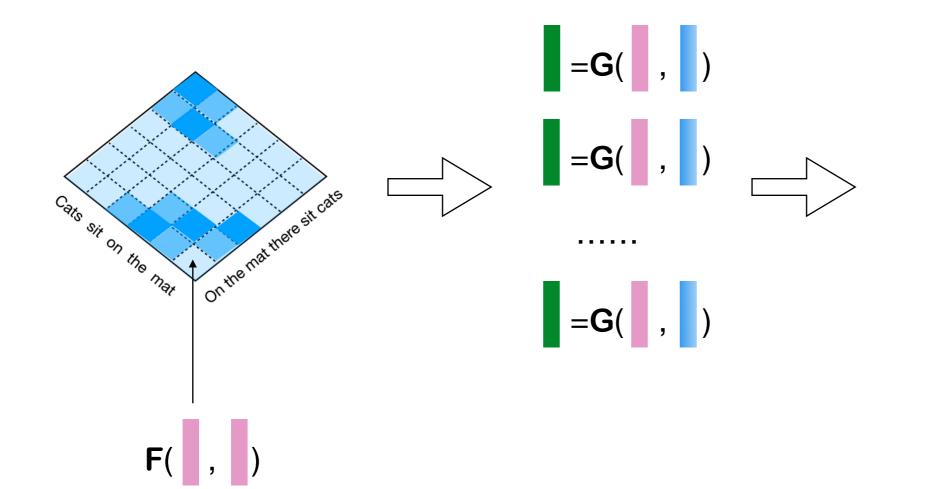


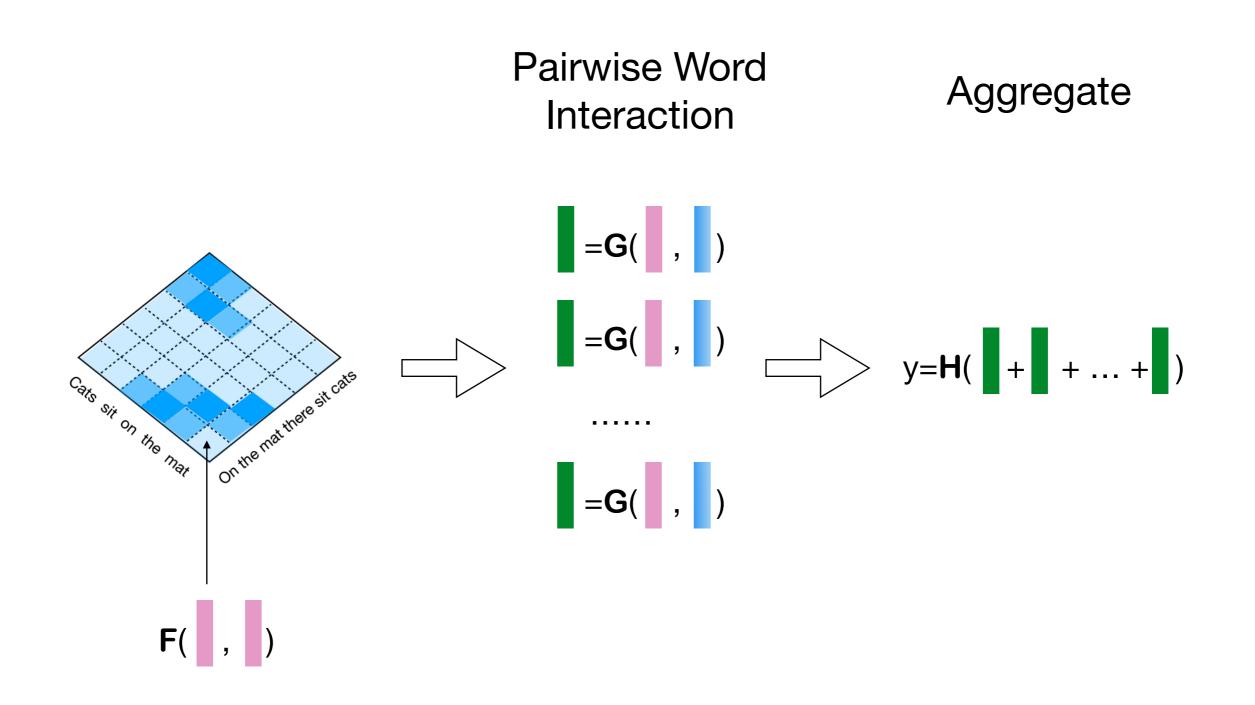


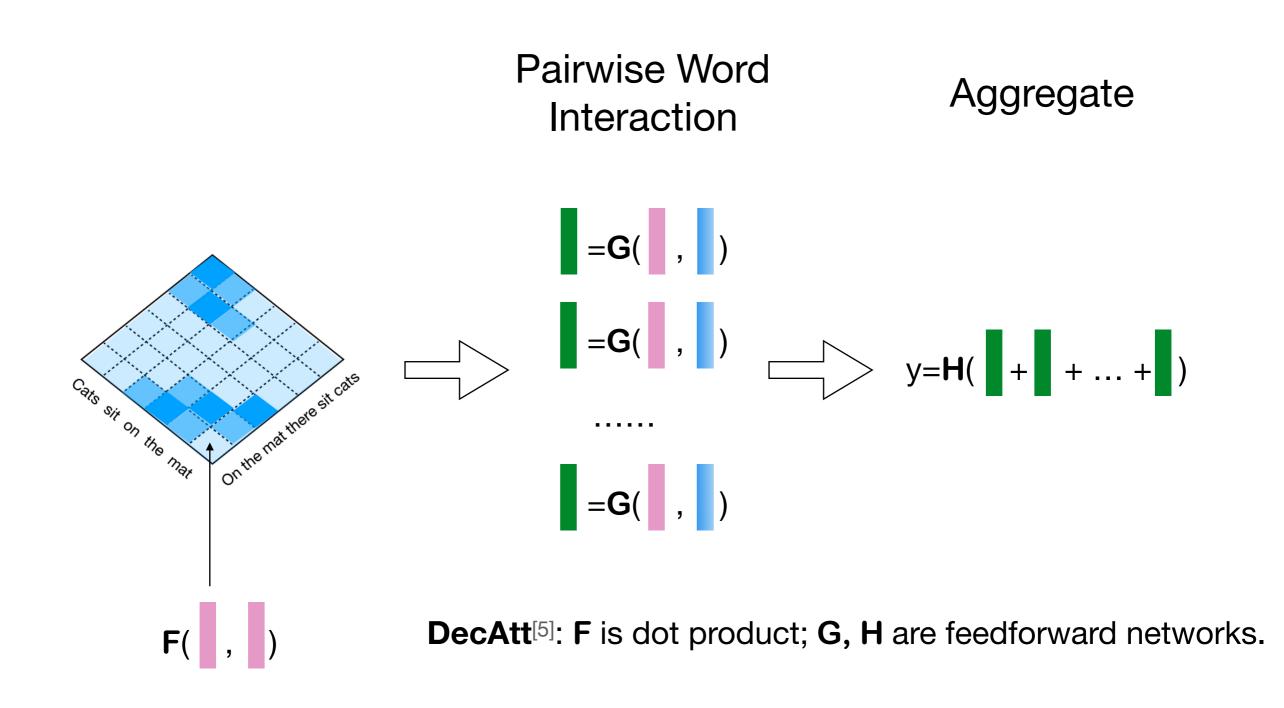
Pairwise Word Interaction

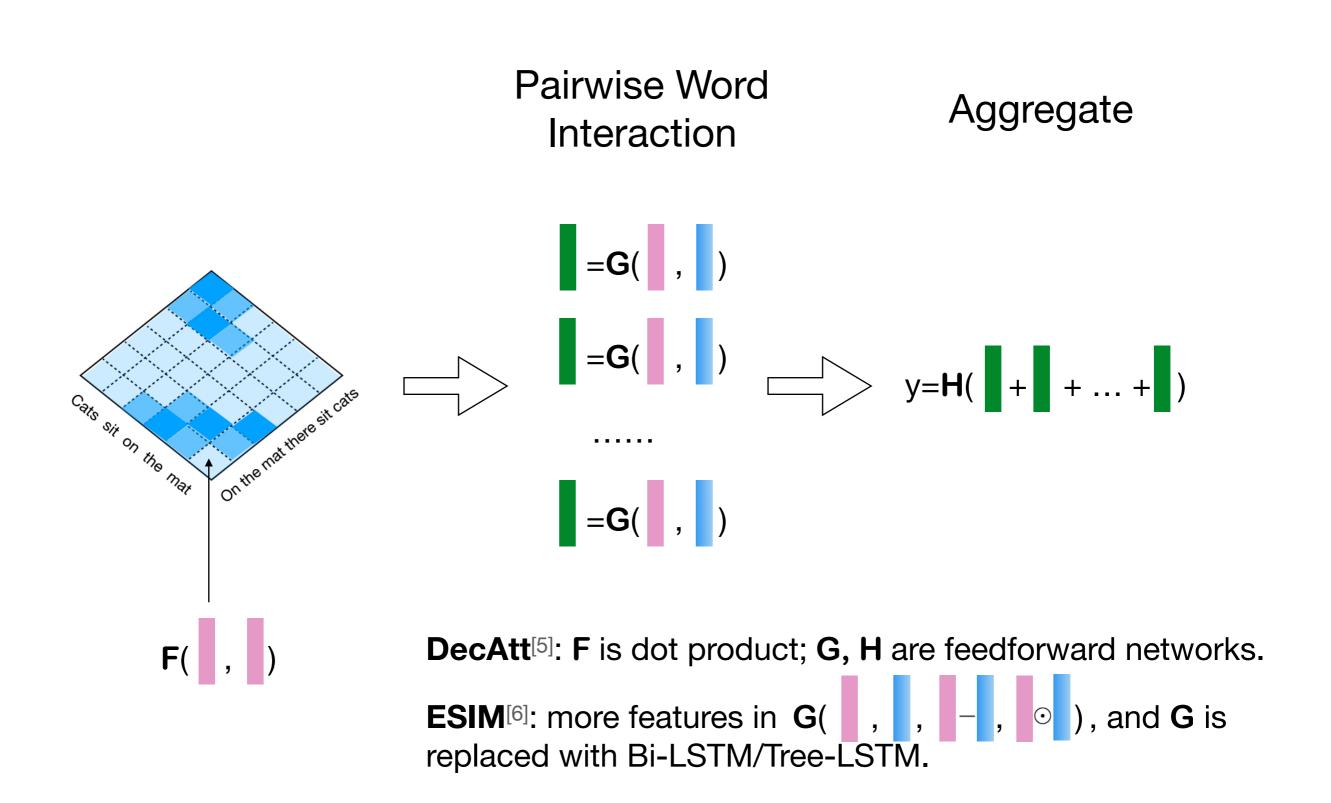


Pairwise Word Interaction

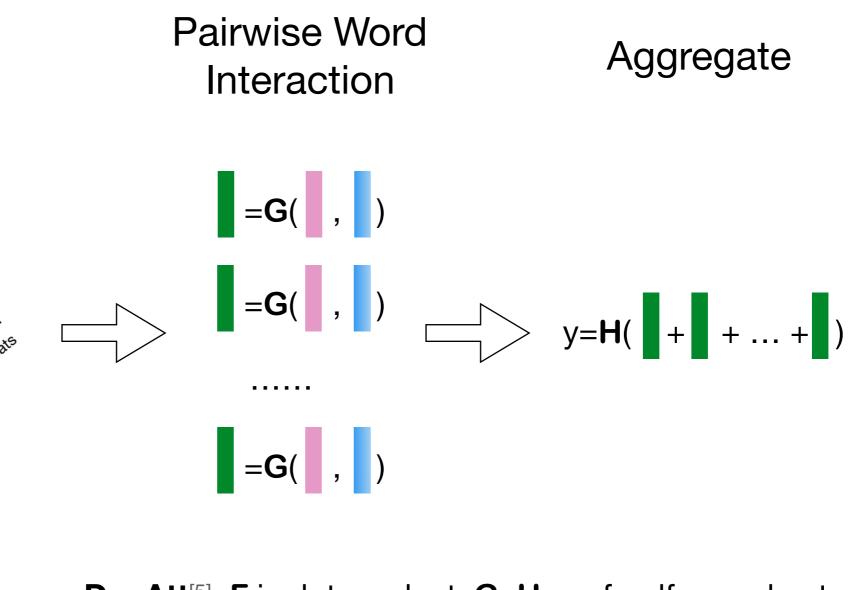








[5] Ankur Parikh, Oscar Tackstrom, Dipanjan Das, and Jakob Uszkorei. A decomposable " attention model for natural language inference. (EMNLP 2016)
 [6] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM for natural language inference. (ACL 2017)



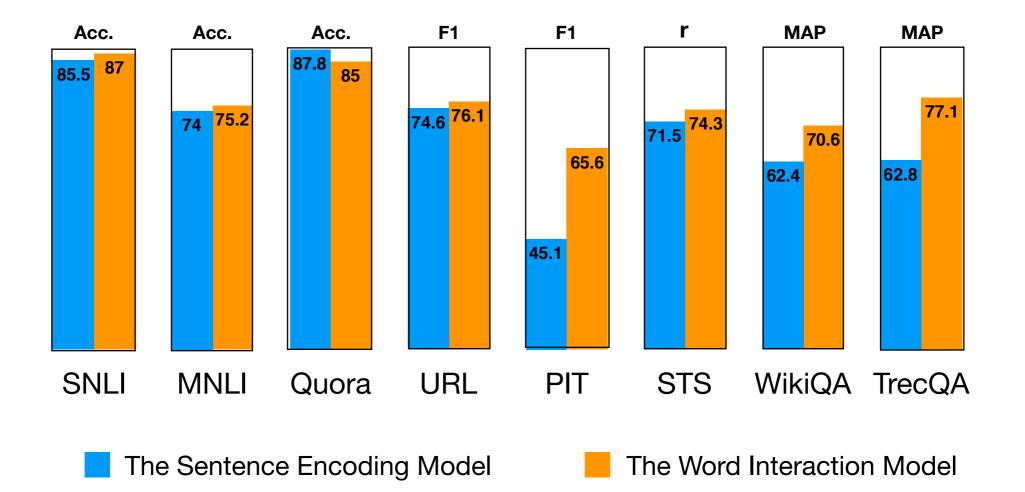
F(,)

PWIM^[7]: **F** uses cosine, L2 and dot product; **G** (,) is "hard" attention; **H** is deep CNN.

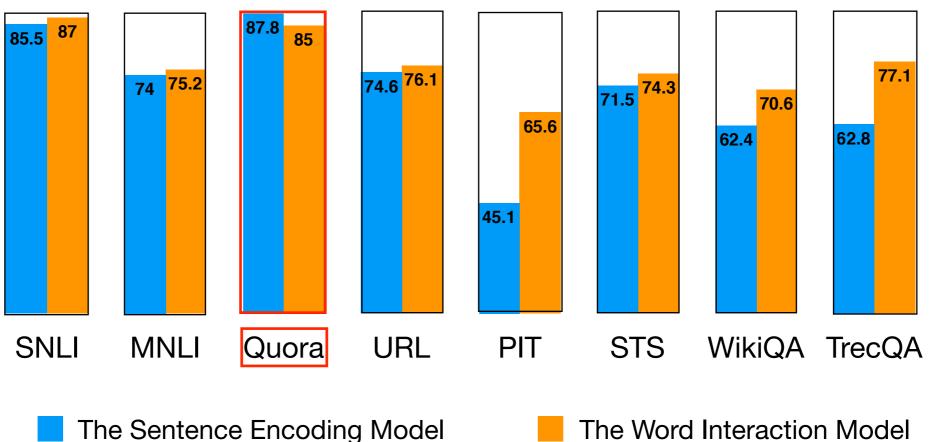
[5] Ankur Parikh, Oscar Tackstrom, Dipanjan Das, and Jakob Uszkorei. A decomposable " attention model for natural language inference. (EMNLP 2016)
[6] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM for natural language inference. (ACL 2017)
[7] Hua He and Jimmy Lin. Pairwise word interaction modeling with deep neural networks for semantic similarity measurement. (NAACL 2016)

What Type of Model performs better?

What Type of Model performs better?



What Type of Model performs better?



Paraphrase Identification

• Word Interaction-based Models perform much better (except Quora).

Why is Quora an exception?

paraphrase

How can I be a great public speaker?

How can I learn to <u>be a great public speaker?</u>

- How can I be a great public speaker?

paraphrase

How can I learn to be a great public speaker?

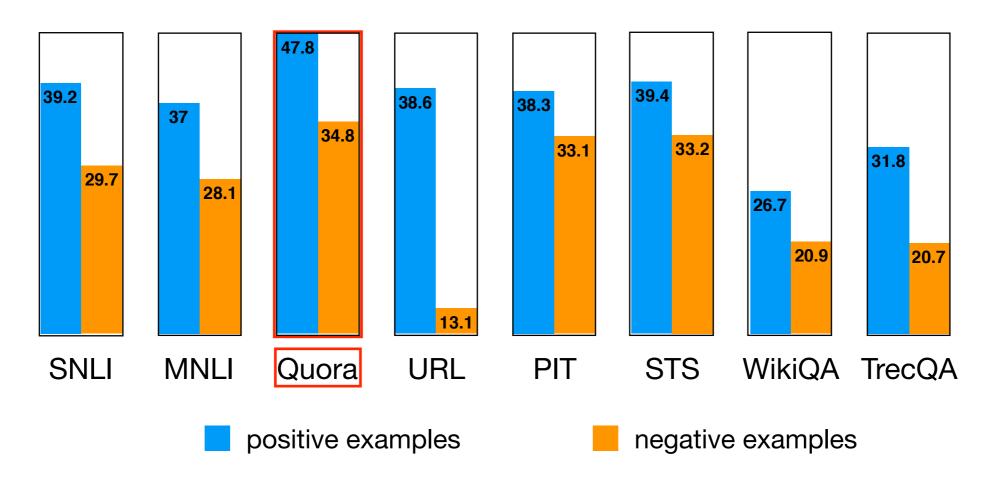
Longest Common Sequence / Sentence Length (%)

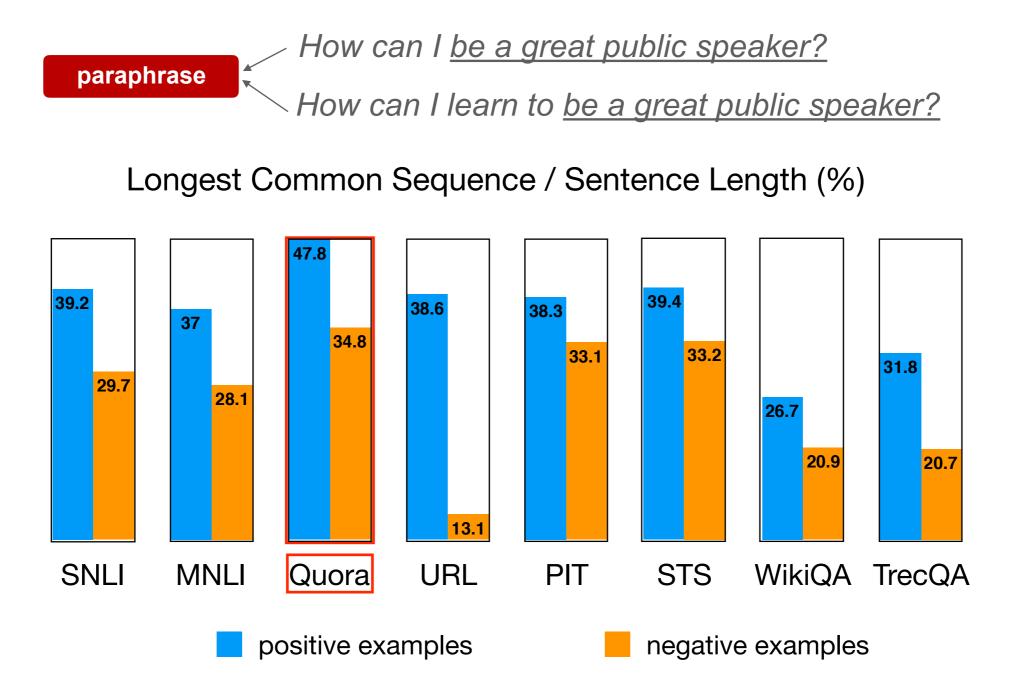
paraphrase

How can I be a great public speaker?

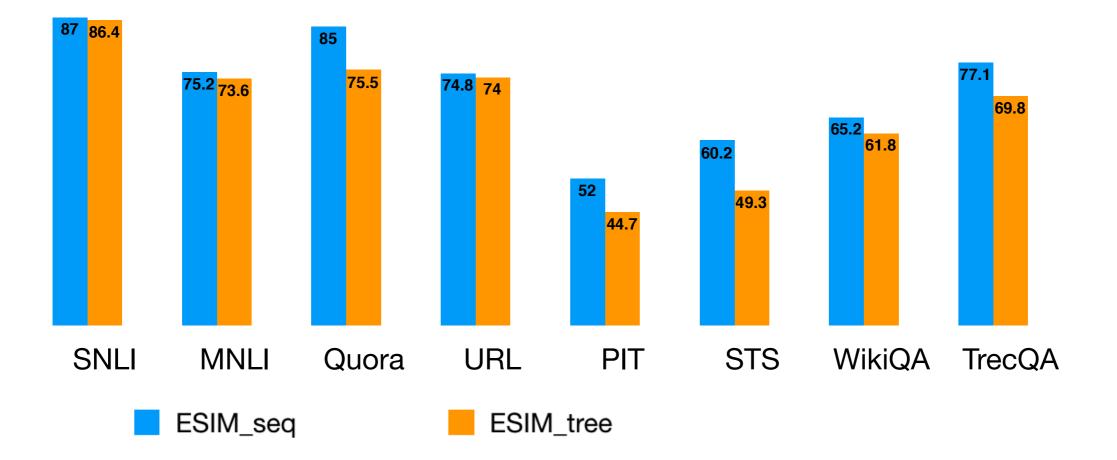
How can I learn to <u>be a great public speaker?</u>

Longest Common Sequence / Sentence Length (%)

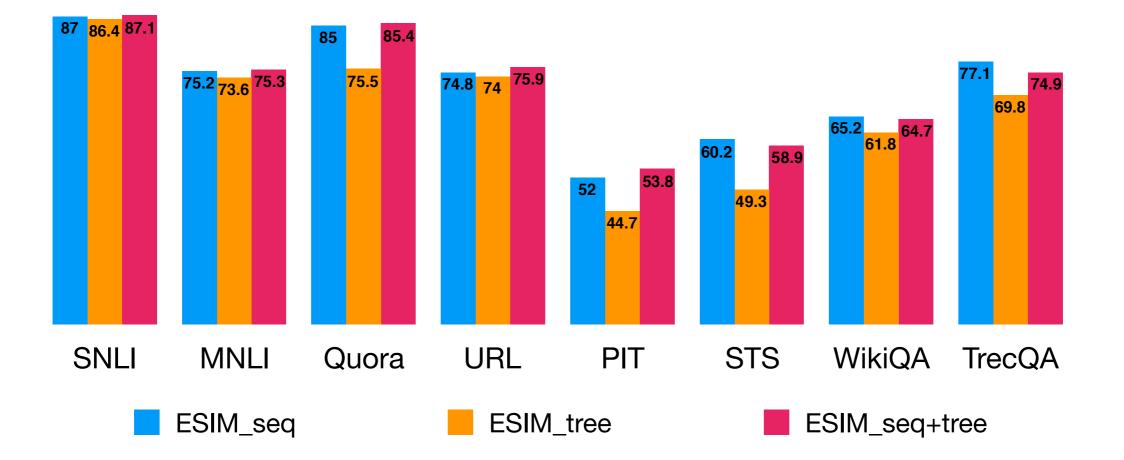




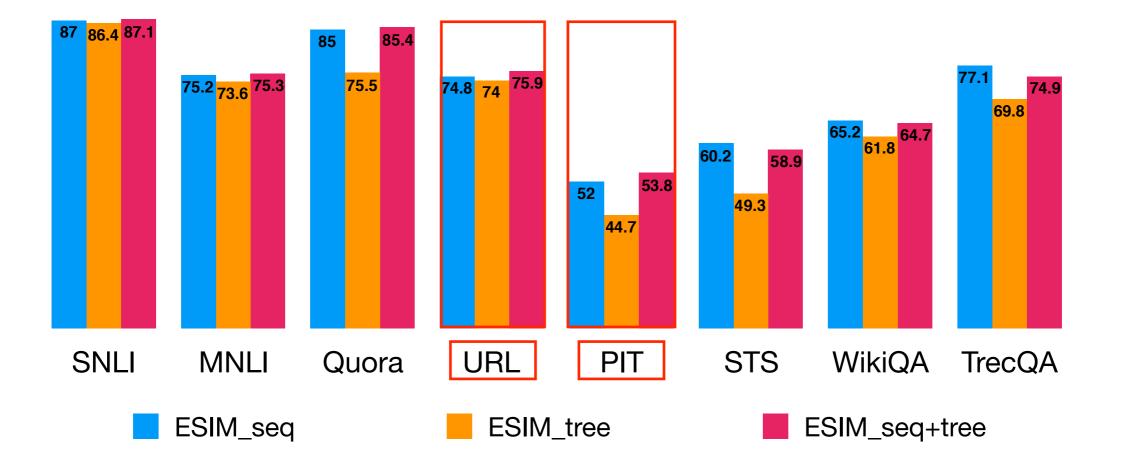
• Longer common sequences results in similar (RNN-based) sentence embeddings.



• ESIM_seq (Bi-LSTM) performs better than ESIM_tree (Tree-LSTM) on every dataset.

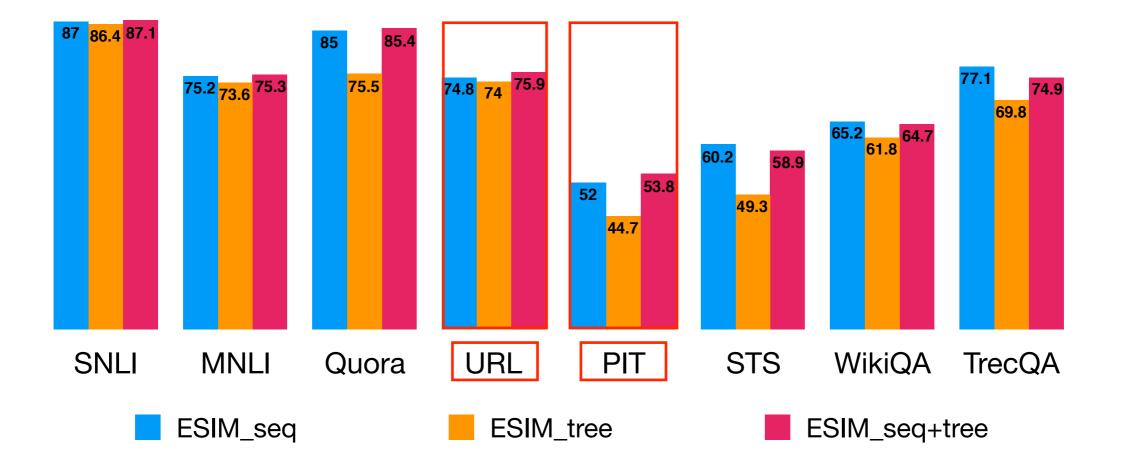


• ESIM_seq (Bi-LSTM) performs better than ESIM_tree (Tree-LSTM) on every dataset.

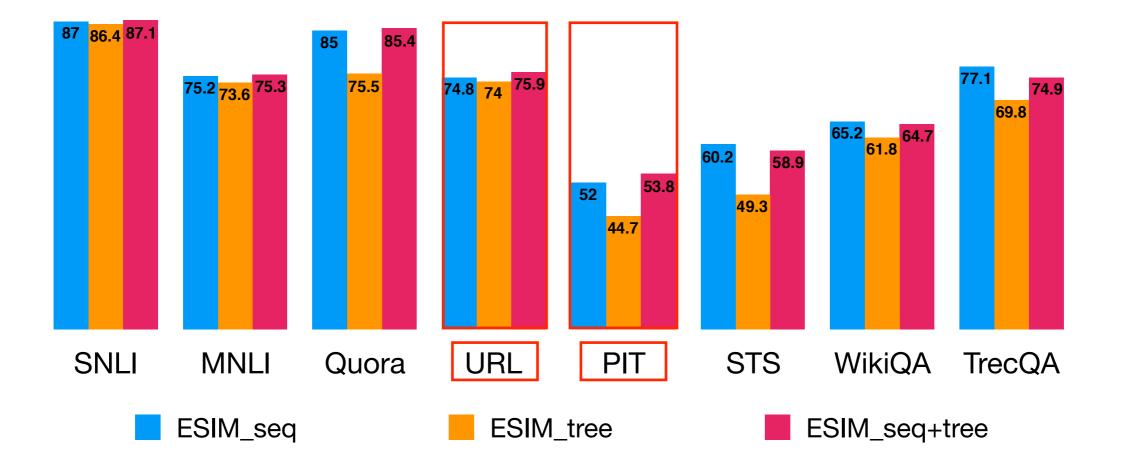


- ESIM_seq (Bi-LSTM) performs better than ESIM_tree (Tree-LSTM) on every dataset.
- Adding Tree_LSTM (ESIM_seq+tree) helps on Twitter data (URL and PIT).

Why Tree-LSTM helps with Twitter data?



Why Tree-LSTM helps with Twitter data?



Paraphrase
Paraphrase
why do our recorded voices sound so weird to us?

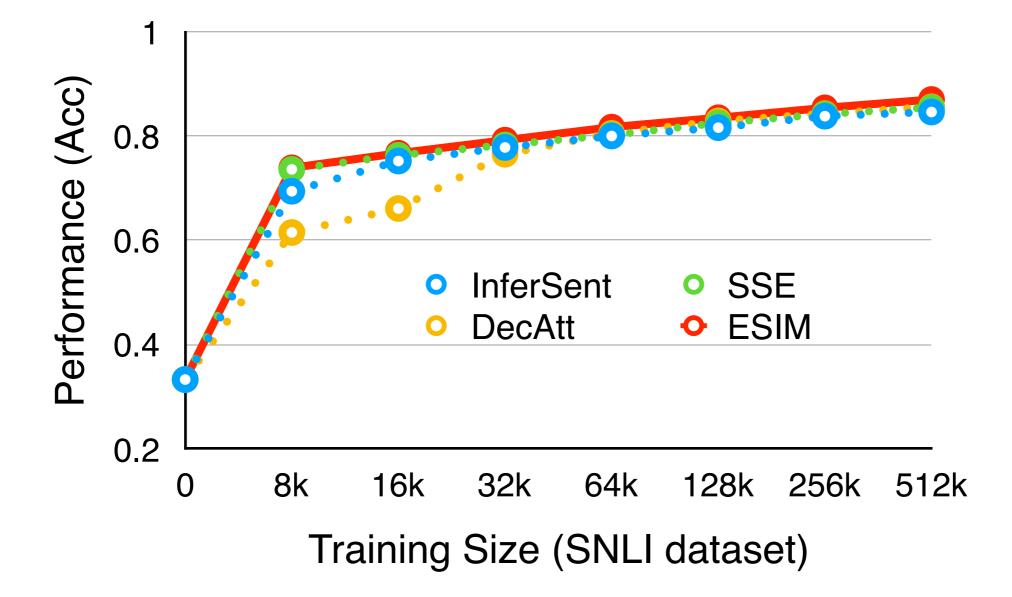
• Disruptive context can be put into less important position in Tree-LSTM.

Training Time on SNLI

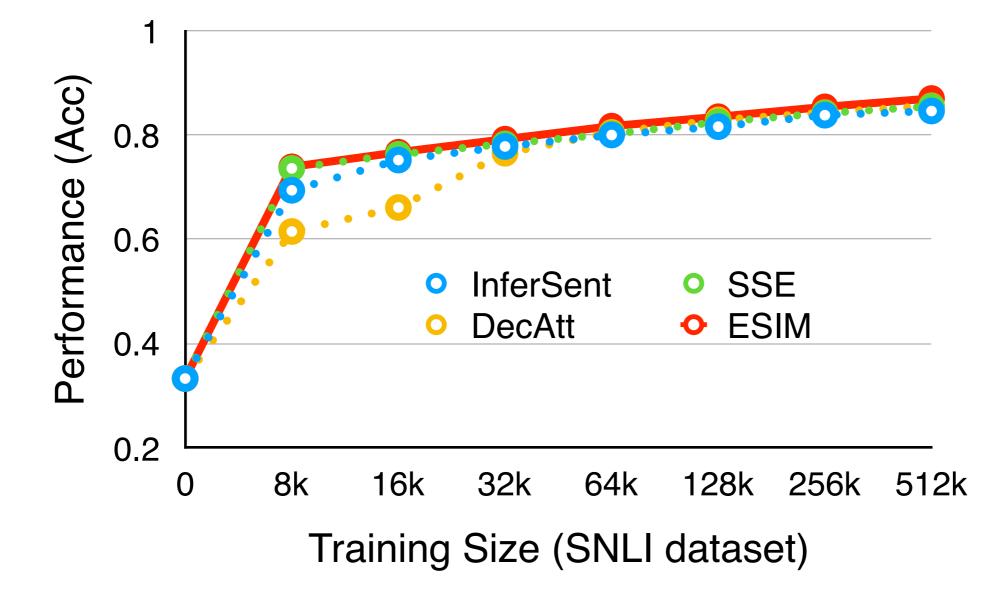
	# of hours	1h	2h	5h	10h	15h	20h	25h	30h
Type l	InferSent		2	.5h					
	SSE				7.5h				
	DecAtt		2.	.2h					
	ESIM_seq					12.5h			
Type II	ESIM_tree						17.5h		
	ESIM_seq+tree								30h
	PWIM					_	_	_	26h

• Training time comparison across different models on SNLI dataset (550k sent pairs).

Do we need more data?



Do we need more data?



• The learning curves are still increasing. More data can help!

• Natural data — two sentences are written independently and have no label bias.

• Natural data — two sentences are written independently and have no label bias.

SNLI is large but contains data annotation artifacts.^[8]

[8] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman, and Noah A. Smith. Annotation Artifacts in Natural Language Inference Data (NAACL 2018).

• Natural data — two sentences are written independently and have no label bias.

SNLI is large but contains data annotation artifacts.^[8]

Twitter data contains natural paraphrases in large quantity, though can be noisy. [9]

[8] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman, and Noah A. Smith. Annotation Artifacts in Natural Language Inference Data (NAACL 2018).

[9] Wei Xu, Alan Ritter, Chris Callison-Burch, Bill Dolan, and Yangfeng Ji. Extracting Lexically Divergent Paraphrases from Twitter (TACL 2014).

• Natural data — two sentences are written independently and have no label bias.

SNLI is large but contains data annotation artifacts.^[8]

Twitter data contains natural paraphrases in large quantity, though can be noisy. [9]

 paraphrase
 Ezekiel Ansah is wearing real3D glasses with the lenses punched out

 Ezekiel Ansah wearing 3D glasses wout the lens

 non-paraphrase
 I wore the 3D glasses wout lenses before Ezekiel Ansah

[8] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman, and Noah A. Smith. Annotation Artifacts in Natural Language Inference Data (NAACL 2018).

[9] Wei Xu, Alan Ritter, Chris Callison-Burch, Bill Dolan, and Yangfeng Ji. Extracting Lexically Divergent Paraphrases from Twitter (TACL 2014).

• Natural data — two sentences are written independently and have no label bias.

SNLI is large but contains data annotation artifacts.^[8]

Twitter data contains natural paraphrases in large quantity, though can be noisy. [9]

more for future work!

 paraphrase
 Ezekiel Ansah is wearing real3D glasses with the lenses punched out

 Ezekiel Ansah wearing 3D glasses wout the lens

 non-paraphrase
 I wore the 3D glasses wout lenses before Ezekiel Ansah

[8] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman, and Noah A. Smith. Annotation Artifacts in Natural Language Inference Data (NAACL 2018).

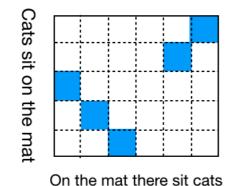
[9] Wei Xu, Alan Ritter, Chris Callison-Burch, Bill Dolan, and Yangfeng Ji. Extracting Lexically Divergent Paraphrases from Twitter (TACL 2014).

Takeaways

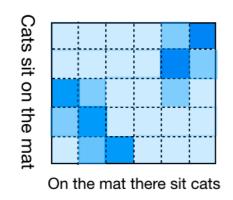
- Systematic comparison of **5** representative models on **8** datasets
- Large, clean, and more natural data is needed for studying semantics!
- Code is available: https://github.com/lanwuwei/SPM_toolkit

Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering

Backup slides: word alignment



PWIM^[8]: hard alignment.



DecAtt^[9] **ESIM**^[10]: soft alignment.

[8] Hua He and Jimmy Lin. Pairwise word interaction modeling with deep neural networks for semantic similarity measurement. (NAACL 2016)
[9] Ankur Parikh, Oscar Tackstrom, Dipanjan Das, and Jakob Uszkorei. A decomposable " attention model for natural language inference. (EMNLP 2016)
[10] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM for natural language inference. (ACL 2017)

Length	SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
21					1 1 2 1 1 1 1 1 1 1 1 1 1			18.66
18		16.81		15.30		15.54	15.31	
15								
12								
9					8.28			
6								
3								

Length	SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
21								18.66
18		16.81		15.30		15.54	15.31	
15								
12								
9					8.28			
6								
3								

Natural Language Inference

paraphrase identification

Length	SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
21								18.66
18		16.81		15.30		15.54	15.31	
15								
12	11.14							
9					8.28			
6								
3								

semantic textual similarity

Length	SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
21								18.66
18		16.81		15.30		15.54	15.31	
15								
12								
9					8.28			
6								
3								

question answering

Length	SNLI	MNLI	Quora	URL	PIT	STS14	WikiQA	TrecQA
21								18.66
18		16.81		15.30		15.54	15.31	
15								
12								
9					8.28			
6								
3								

Backup slides: experiment settings

Word Embedding: Glove Twitter 200d vectors for PIT and URL; Glove Common Crawl (840B tokens) 300d vectors for other datasets.

Hyper-parameters: the same settings as in the original papers/ implementations. Check appendix in arXiv paper for more details.

Fine tuning: No. Because we want to test their generalization ability, fine tuning can make models overfit on specific datasets.