Automatic Paraphrase Collection and Identification in Twitter

Wuwei Lan, Siyu Qiu, Hua He, Wei Xu

Willy Wonka was famous for his delicious candy. Children and adults loved to eat it.

Willy Wonka was famous for his delicious candy.

Children and adults loved to eat it.

Willy Wonka was famous for his delicious candy.

Children and adults loved to eat it.

Willy Wonka was famous for his delicious candy.

Children and adults loved to eat it.

Willy Wonka was famous for his delicious candy.

Children and adults loved to eat it.

Search

python how to sort dictionary by value

search

Search

python how to sort dictionary by value

search

Q: Sort a Python dictionary by value

Q: How to sort a Python dictionary by value?

Q: Python how to sort a dictionary by value in reverse order

[Question]

In May 1898 Portugal celebrated the 400th anniversary of this explorer's arrival in India

[Question]

In May 1898 Portugal celebrated the 400th anniversary of this explorer's arrival in India

[Supporting Evidence]

On the 27th of May 1498, Vasco da Gama landed in Kappad Beach

[Question]

[Supporting Evidence]

On the 27th of May 1498, Vasco da Gama landed in Kappad Beach

[Question]

[Supporting Evidence]

[Question]

In May 1898 Portugal celebrated the 400th anniversary of this explorer's arrival in India celebrated May 1898 400th anniversary Portugal arrival in India explorer

[Supporting Evidence]

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html

The New York Times ② @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

261

144

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html

The New York Times ② @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

261

144

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html

The New York Times <> @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

5

Ł7

261

V

144

Career Synchronicity @careersync_now · 12 Oct 2016

Fears for King's Health Shake Thailand ift.tt/2d7frGd

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html

The New York Times <> @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

5

Ł7

261

144

Career Synchronicity @careersync_now · 12 Oct 2016 Fears for King's Health Shake Thailand ift.tt/2d7frGd

Paraphrase

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html

The New York Times <> @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

5

Ł7

261

144

Career Synchronicity @careersync_now · 12 Oct 2016 Fears for King's Health Shake Thailand ift.tt/2d7frGd

Paraphrase

https://www.nytimes.com/2016/10/13/ world/asia/thailand-king.html

The New York Times @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

Career Synchronicity @careersync_now · 12 Oct 2016 Fears for King's Health Shake Thailand ift.tt/2d7frGd

17

Paraphrase

New bulletin from Thai palace: King is still on a ventilator and in unstable condition. nyti.ms/2dW1A37

https://www.nytimes.com/2016/10/13/ world/asia/thailand-king.html

The New York Times @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

Career Synchronicity @careersync_now · 12 Oct 2016

Fears for King's Health Shake Thailand ift.tt/2d7frGd

Paraphrase

New bulletin from Thai palace: King is still on a ventilator and in unstable condition. nyti.ms/2dW1A37

Non-Paraphrase

Paraphrases? We can get many in Twitter

https://www.nytimes.com/2016/10/13/ world/asia/thailand-king.html

The New York Times @ @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

1 261

Career Synchronicity @careersync_now · 12 Oct 2016 Fears for King's Health Shake Thailand ift.tt/2d7frGd

New bulletin from Thai palace: King is still on a ventilator and in unstable condition. nyti.ms/2dW1A37

Paraphrases? We can get many in Twitter

The New York Times @nytimes · 12 Oct 2016

Worries over the health of King Bhumibol Adulyadej are shaking Thailand nyti.ms/2dRzPcr

Career Synchronicity @careersync_now · 12 Oct 2016 Fears for King's Health Shake Thailand ift.tt/2d7frGd

17

New bulletin from Thai palace: King is still on a ventilator and in unstable condition. nyti.ms/2dW1A37

Paraphrases? We can get many in Twitter

Only exist two sentential paraphrase corpora

(which contain meaningful non-paraphrases)

clustered news articles

5,801 annotated pairs

Only exist two sentential paraphrase corpora

(which contain meaningful non-paraphrases)

Key for success:

clustered news articles

5,801 annotated pairs

[PIT-2015_[2]]

Twitter trending topics
14,035 annotated pairs

Key for success:

narrow the search space

[MSRP[1]]
clustered

5,801 annotated pairs

news articles

[PIT-2015_[2]]

Twitter trending topics

14,035 annotated pairs

Key for success:

- narrow the search space
- ensure diversity among sentences

[MSRP[1]]

clustered
news articles
5,801 annotated pairs

[PIT-2015_[2]]

Twitter trending topics
14,035 annotated pairs

Key for success:

- narrow the search space
- ensure diversity among sentences

Also Pitfalls ...

[MSRP[1]]

clustered
news articles
5,801 annotated pairs

[PIT-2015_[2]]

Twitter trending topics
14,035 annotated pairs

Key for success:

- narrow the search space
- ensure diversity among sentences

Also Pitfalls ...

[MSRP[1]]

clustered
news articles
5,801 annotated pairs

[PIT-2015_[2]]

Twitter trending topics
14,035 annotated pairs

Key for success:

- narrow the search space
- ensure diversity among sentences

Also Pitfalls ...

[MSRP[1]]

clustered news articles
5,801 annotated pairs

[PIT-2015_[2]]

Twitter trending topics
14,035 annotated pairs

needed a SVM classifier to select sentences before data annotation

[1] Dolan et al., 2004[2] Xu et al., 2014

needed human-in-the-loop to avoid "bad" topics

Key for success:

- narrow the search space
- ensure diversity among sentences

Also Pitfalls:

[MSRP[1]]

clustered news articles
5,801 annotated pairs

[PIT-2015_[2]]

Twitter trending topics
14,035 annotated pairs

needed a SVM classifier to select sentences before data annotation

[1] Dolan et al., 2004[2] Xu et al., 2014

needed human-in-the-loop to avoid "bad" topics

Key for success:

- narrow the search space
- ensure diversity among sentences

Also Pitfalls: cause over-identification when applied to unlabeled data

[MSRP[1]]

clustered news articles
5,801 annotated pairs

[PIT-2015_[2]]

Twitter trending topics
14,035 annotated pairs

We created the 3rd paraphrase corpora

(largest annotated corpus to date)

Key for success:

- narrow the search space
- ensure diversity among sentences
- the simpler the better!

clustered news articles

5,801 annotated pairs

[1] Dolan et al., 2004[2] Xu et al., 2014

[Twitter URL Corpus]

URL-linked
Tweets

51,524 annotated pairs

no clustering or topic detection needed no data selection steps needed

[PIT-2015_[2]]

Twitter trending topics

14,035 annotated pairs

We created the 3rd paraphrase corpora (largest annotated corpus to date)

Key for success:

- narrow the search space
- ensure diversity among sentences
- the simpler the better!

[1] Dolan et al., 2004

[2] Xu et al., 2014

[PIT-2015_[2]] Twitter trending topics 14,035 annotated pairs

no data selection steps needed

We created the 3rd paraphrase corpora

(which also dynamically updates!)

Key for success:

- narrow the search space
- ensure diversity among sentences
- the simpler the better! more effective automatic paraphrase identification

clustered news articles

5,801 annotated pairs

[Twitter URL Corpus]

URL-linked
Tweets

51,524 annotated pairs

30,000 new sentential paraphrases every month

[PIT-2015_[2]]

Twitter trending topics

14,035 annotated pairs

Once we have a lot of up-to-date sentential paraphrases

(we can, for example, learn name variations fully automatically)

Once we have a lot of up-to-date sentential paraphrases (we can, for example, learn name variations fully automatically)

Donald Trump, DJT, Drumpf, Mr Trump, Idiot Trump, Chump, Evil Donald, #OrangeHitler, Donald @realTrump, D*nald Tr*mp, Comrade #Trump, Crooked #Trump, CryBaby Trump, Daffy Trump, Donald KKKrump, Dumb Trump, GOPTrump, Incompetent Trump, He-Who-Must-Not-Be-Named, Preselect Trump, President-Elect Trump, President-elect Donald J. Trump, PEOTUS Trump, Emperor Trump

Once we have a lot of up-to-date sentential paraphrases (we can, of course, learn other synonyms in large quantity via word alignment)

FBI Director backs CIA finding

FBI agrees with CIA

FBI backs CIA view

FBI finally backs CIA view

FBI now backs CIA view

FBI supports CIA assertion

FBI Clapper back CIA's view

The FBI backs the CIA's assessment

FBI Backs CIA ...

How different from existing paraphrase corpora?

Model Performance

Dataset Difference

• LEX-OrMF[1] (Orthogonal Matrix Factorization[2])

[1] Xu et al., 2014[2] Guo et al., 2014

- LEX-OrMF[1] (Orthogonal Matrix Factorization[2])
- DeepPairwiseWord[3] (Deep Neural Networks)

[1] Xu et al., 2014[2] Guo et al., 2014[3] He et al., 2016

- LEX-OrMF[1] (Orthogonal Matrix Factorization[2])
- DeepPairwiseWord[3] (Deep Neural Networks)
- MultiP[4] (Multiple Instance Learning)

Decompose sentence input into word context to reduce modeling difficulty

 $coU(\overrightarrow{h_1}, \overrightarrow{h_2}) = \{cos(\overrightarrow{h_1}, \overrightarrow{h_2}), L_2Euclid(\overrightarrow{h_1}, \overrightarrow{h_2}), DotProduct(\overrightarrow{h_1}, \overrightarrow{h_2})\}$

$$coU(\overrightarrow{h_1}, \overrightarrow{h_2}) = \{cos(\overrightarrow{h_1}, \overrightarrow{h_2}), L_2Euclid(\overrightarrow{h_1}, \overrightarrow{h_2}), DotProduct(\overrightarrow{h_1}, \overrightarrow{h_2})\}$$

Multiple vector similarity measurement used to capture word pair relationship

More attention added to top ranked word pairs.

4. 19-Layer Deep ConvNet

4. 19-Layer Deep ConvNet

Input Size: 32 by 32 Input Size: 48 by 48 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 164: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, sz Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer LogSoftMax	Deep ConvNet Configurations	
ReLU Max Pooling: size 2×2 , stride 2 Spatial Conv 164: size 3×3 , stride 1, pad 1 ReLU Max Pooling: size 2×2 , stride 2 Spatial Conv 192: size 3×3 , stride 1, pad 1 ReLU Max Pooling: size 2×2 , stride 2 Spatial Conv 192: size 3×3 , stride 1, pad 1 ReLU Max Pooling: size 2×2 , stride 2 Spatial Conv 192: size 3×3 , stride 1, pad 1 ReLU Max Pooling: size 2×2 , stride 2 Spatial Conv 128: size 3×3 , stride 1, pad 1 ReLU Max Pooling: 2×2 , sz Max Pooling: 3×3 , s1 Fully-Connected Layer ReLU Fully-Connected Layer	Input Size: 32 by 32	Input Size: 48 by 48
Max Pooling: size 2 × 2, stride 2 Spatial Conv 164: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Spatial Conv 128: size 3×3 , stride 1, pad 1	
Spatial Conv 164: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	ReLU	
ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Max Pooling: size 2×2 , stride 2	
Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, sz Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Spatial Conv 164: size 3×3 , stride 1, pad 1	
Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	ReLU	
ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Max Pooling: size 2×2 , stride 2	
Max Pooling: size 2 × 2, stride 2 Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Spatial Conv 192: size 3×3 , stride 1, pad 1	
Spatial Conv 192: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	ReLU	
ReLU Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Max Pooling: size 2×2 , stride 2	
Max Pooling: size 2 × 2, stride 2 Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Spatial Conv 192: size 3×3 , stride 1, pad 1	
Spatial Conv 128: size 3 × 3, stride 1, pad 1 ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	ReLU	
ReLU Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Max Pooling: size 2×2 , stride 2	
Max Pooling: 2 × 2, s2 Max Pooling: 3 × 3, s1 Fully-Connected Layer ReLU Fully-Connected Layer	Spatial Conv 128: size 3×3 , stride 1, pad 1	
Fully-Connected Layer ReLU Fully-Connected Layer	ReLU	
ReLU Fully-Connected Layer	Max Pooling: 2×2 , s2	Max Pooling: 3×3 , s1
Fully-Connected Layer	Fully-Connected Layer	
· ·	ReLU	
LogSoftMax	Fully-Connected Layer	
l.		

Table 1: Deep ConvNet architecture given two padding size configurations for final classification.

4. 19-Layer Deep ConvNet

Deep ConvNet Configurations	
Input Size: 32 by 32 Input Size: 48 by 48	
Spatial Conv 128: size 3×3 , stride 1, pad 1	
ReLU	
Max Pooling: size 2×2 , stride 2	
Spatial Conv 164: size 3×3 , stride 1, pad 1	
ReLU	
Max Pooling: size 2×2 , stride 2	
Spatial Conv 192: size 3×3 , stride 1, pad 1	
ReLU	
Max Pooling: size 2×2 , stride 2	
Spatial Conv 192: size 3×3 , stride 1, pad 1	
ReLU	
Max Pooling: size 2×2 , stride 2	
Spatial Conv 128: size 3×3 , stride 1, pad 1	
ReLU	
Max Pooling: 2×2 , s2 Max Pooling: 3×3 , s1	
Fully-Connected Layer	
ReLU	
Fully-Connected Layer	
LogSoftMax	

Table 1: Deep ConvNet architecture given two padding size configurations for final classification.

4. 19-Layer Deep ConvNet

Sentence pair relationship can be identified by pattern recognition through ConvNet.

From Sentence Representation to Word Representation

From Sentence Representation to Word Representation

From Word Representation to Word Pair Interaction

From Sentence Representation to Word Representation

From Word Representation to Word Pair Interaction

From Normal Interaction to Attentive Interaction

From Sentence Representation to Word Representation

From Word Representation to Word Pair Interaction

From Normal Interaction to Attentive Interaction

From Interaction to Pattern Recognition

System Performance v.s. Human Upper-bound

System Performance v.s. Human Upper-bound

Error Analysis: Falsely Negative

This newly discovered species of moth has been named after Donald Trump.

New #moth named in honor of Donald Trump @realDonaldTrump

Error Analysis: Falsely Negative

This newly discovered species of moth has been named after Donald Trump.

New #moth named in honor of Donald Trump @realDonaldTrump

Error Analysis: Falsely Negative

This newly discovered species of moth has been named after Donald Trump.

New #moth named in honor of Donald Trump @realDonaldTrump

Out-of-Vocabulary Word Problem

Out-of-Vocabulary Word Problem

Dataset	Training Size	Test Size	# INV	# OOV	OOV Ratio	Source
PIT-2015	11530	838	7771	1238	13.7%	Twitter trends
Twitter-URL	42200	9324	24905	11440	31.5%	Twitter/news
MSRP	4076	1725	16226	1614	9.0%	news

Out-of-Vocabulary Word Problem

Dataset	Training Size	Test Size	# INV	# OOV	OOV Ratio	Source	
PIT-2015	11530	838	7771	1238	13.7%	Twitter trends	
Twitter-URL	42200	9324	24905	11440	31.5%	Twitter/news	
MSRP	4076	1725	16226	1614	9.0%	news	

Out-of-Vocabulary Word Problem

Dataset	Training Size	Test Size	# INV	# OOV	OOV Ratio	Source	
PIT-2015	11530	838	7771	1238	13.7%	Twitter trends	
Twitter-URL	42200	9324	24905	11440	31.5%	Twitter/news	
MSRP	4076	1725	16226	1614	9.0%	news	

Randomly initialized word embeddings fail to capture word syntax and semantics

Representing Word with Smaller Units

Representing Word with Smaller Units

Unit	Output of σ (brexit)				
unigram	b, r, e, x, i, t				
bigram w overlap	br, re, ex, xi, it				
bigram w/o overlap	br, ex, it				
trigram w overlap	bre, rex, exi, xit				
trigram w/o overlap	bre, xit				
whole word	brexit				

Table 1: Ngram examples for word *brexit*.

LSTM Based Character Embedding (C2W)[1]

LSTM Based Character Embedding (C2W)[1]

LSTM Based Character Embedding (C2W)[1]

[1] Kim et al., 2016

b r e x i t

Embedding Concatenation

Embedding Concatenation

Convolution with multiple filters

$$\mathbf{f}^{k}[i] = \tanh(\langle \mathbf{C}^{k}[*, i: i+w-1], \mathbf{H}\rangle + b)$$

b r e x i t

Embedding Concatenation

Convolution with multiple filters

$$\mathbf{f}^{k}[i] = \tanh(\langle \mathbf{C}^{k}[*, i: i+w-1], \mathbf{H}\rangle + b)$$

max pooling

$$y^k = \max_i \mathbf{f}^k[i]$$

b r e x i t

Embedding Concatenation

Convolution with multiple filters

$$\mathbf{f}^{k}[i] = \tanh(\langle \mathbf{C}^{k}[*, i: i+w-1], \mathbf{H}\rangle + b)$$

max pooling

$$y^k = \max_i \mathbf{f}^k[i]$$

highway network

$$\mathbf{t} = \sigma(\mathbf{W}_T\mathbf{y} + \mathbf{b}_T)$$
 $\mathbf{z} = \mathbf{t} \odot g(\mathbf{W}_H\mathbf{y} + \mathbf{b}_H) + (\mathbf{1} - \mathbf{t}) \odot \mathbf{y}$

[1] Kim et al., 2016

Subword Based Pairwise Word Interaction Model

Subword Based Pairwise Word Interaction Model

Word Embedding v.s. Subword Embedding

Word Embedding v.s. Subword Embedding

	Model Variations	pre-train	#parameters	Twitter URL	PIT-2015	MSRP
	Logistic Regression	-	-	0.683	0.645	0.829
	(Lan et al., 2017)	Yes	9.5M	0.749	0.667	0.834
Word Models	pretrained, fixed	Yes	2.2M	0.753	0.632	0.834
Word Models	pretrained, updated	Yes	9.5M	0.756	0.656	0.832
	randomized, fixed	_	2.2M	0.728	0.456	0.821
	randomized, updated	_	9.5M	0.735	0.625	0.834
Subword Models	C2W, unigram	_	2.6M	0.742	0.534	0.816
	C2W, bigram	_	2.7M	0.742	0.563	0.825
	C2W, trigram	_	3.1M	0.729	0.576	0.824
	CNN, unigram	_	6.5M	0.756	0.589	0.820
	CNN, bigram	_	6.5M	0.760	0.646	0.814
	CNN, trigram	_	6.7M	0.753	0.667	0.818

Multi-task Language Model

Multi-task Language Model

Multi-task Language Model

$$E_{joint} = E + \gamma (\overrightarrow{E}_{LM} + \overleftarrow{E}_{LM})$$

New State-of-the-art with Multi-task Language Model

	Model Variations	Pre-train	#Parameters	Twitter URL	PIT-2015	MSRP
	Logistic Regression	-	-	0.683	0.645	0.829
	(Lan et al., 2017)	Yes	9.5M	0.749	<u>0.667</u>	0.834
Word Models	pretrained, fixed	Yes	2.2M	0.753	0.632	0.834
word widders	pretrained, updated	Yes	9.5M	0.756	0.656	0.832
	randomized, fixed	_	2.2M	0.728	0.456	0.821
	randomized, updated	_	9.5M	0.735	0.625	0.834
	C2W, unigram	_	2.6M	0.742	0.534	0.816
	C2W, bigram	_	2.7 M	0.742	0.563	0.825
Subword Models	C2W, trigram	_	3.1M	0.729	0.576	0.824
Subword Models	CNN, unigram	_	6.5M	0.756	0.589	0.820
	CNN, bigram	_	6.5M	0.760	0.646	0.814
	CNN, trigram	_	6.7M	0.753	<u>0.667</u>	0.818
Subword+LM	LM, C2W, unigram	_	3.5M	0.760	0.691	0.831
	LM, C2W, bigram	_	3.6M	0.768	0.651	0.830
	LM, C2W, trigram	_	4.0M	<u>0.765</u>	0.659	0.831
	LM, CNN, unigram	_	7.4M	0.754	0.665	0.840
	LM, CNN, bigram	_	7.4M	0.761	<u>0.667</u>	<u>0.835</u>
	LM, CNN, trigram	_	7.6M	0.759	0.667	0.831

Takeaways

- Simple but effective paraphrase collection method
- Largest annotated paraphrase corpora to date
- Continuously growing, providing up-to-date data
- Subword embedding for paraphrase identification
- Data and Code: https://github.com/lanwuwei/paraphrase-dataset

Backup slides: Lexical Dissimilarity

