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[Question]

In May 1898 Portugal celebrated the 400th
anniversary of this explorer’s arrival in India
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In May 1898 Portugal celebrated the 400th
anniversary of this explorer’s arrival in India

[Supporting Evidence]

On the 27th of May 1498, Vasco da
Gama landed in Kappad Beach
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Only exist two sentential paraphrase corpora
(which contain meaningful non-paraphrases)

Key for success:

* narrow the search space

* ensure diversity among sentences
Also Pitfalls:

[MSRP1] [PIT-2015/2]

Twitter
trending topics

clustered
news articles

5,801 annotated pairs

14,035 annotated pairs

needed a SVM classifier to select sentences [1] Dolan et al., 2004 needed human-in-the-loop to
before data annotation [2] Xu et al., 2014 avoid “bad” topics



Only exist two sentential paraphrase corpora
(which contain meaningful non-paraphrases)

Key for success:

* narrow the search space

* ensure diversity among sentences

Also Pitfalls: cause over-identification when applied to unlabeled data

[MSRP1] [PIT-2015/2]

Twitter
trending topics

clustered
news articles

5,801 annotated pairs

14,035 annotated pairs

needed a SVM classifier to select sentences [1] Dolan et al., 2004 needed human-in-the-loop to
before data annotation [2] Xu et al., 2014 avoid “bad” topics



We created the 3rd paraphrase corpora
(largest annotated corpus to date)

Key for success:
* narrow the search space

e ensure diversity among sentences

* the simpler the better!

[MSRP;1]]

clustered
news articles

,801 annotated pair

[1] Dolan et al., 2004
[2] Xu et al., 2014

RN
[Twitter URL Corpus]

URL-linked

Tweets
1,524 annotated pair

no clustering or topic detection needed
no data selection steps needed

[PIT-2015/2]

Twitter
trending topics

14,035 annotated pairs



We created the 3rd paraphrase corpora
(largest annotated corpus to date)

Key for success:

* narrow the search space

e ensure diversity among sentences
* the simpler the better!

RN

IMSRP; ] [Twitter URL Corpus] [PIT-2015)]

Twitter
trending topics

URL-linked

Tweets
largest
21,524 annotated pairs [ F (s 2o -] (=

clustered
news articles

,801 annotated pair

14,035 annotated pairs

[1] Dolan et al., 2004 no clustering or topic detection needed
[2] Xu et al., 2014 no data selection steps needed



We created the 3rd paraphrase corpora
(which also dynamically updates!)

Key for success:

* narrow the search space

e ensure diversity among sentences

* the simpler the better! more effective automatic paraphrase identification

[MSRP::] [Twitter URL COerS]

URL-linked
Tweets
1,524 annotated pair

30,000 new sentential paraphrases

[1] Dolan et al., 2004 every mohnth
2] Xu et al., 2014

[PIT-2015/2]

Twitter
trending topics

clustered
news articles

,801 annotated pair 14,035 annotated pairs



Once we have a lot of up-to-date sentential paraphrases
(we can, for example, learn name variations fully automatically)



Donald Trump, DJT, Drumpf, Mr Trump, Idiot Trump, Chump,
Evil Donald, #OrangeHitler, Donald @realTrump, D*nald
Tr*mp, Comrade #Trump, Crooked #Trump, CryBaby Trump,
Daffy Trump, Donald KKKrump, Dumb Trump, GOPTrump,
Incompetent Irump, Re-Who-Must-Not-Be-Named, Pres-
elect Trump, President-Elect Trump, President-elect Donalo
J . Trump, PEOTUS Trump, Emperor Trump



Once we have a lot of up-to-date sentential paraphrases
(we can, of course, learn other synonyms in large quantity via word alignment)

FBI Director backs CIA finding
FBI agrees with CIA

FBI backs CIA view

FBI finally backs CIA view

FBI now backs CIA view

FBI supports CIA assertion
FBI Clapper back ClA's view

The FBI backs the ClIA's assessment
FBl Backs CIA ...



How different from existing paraphrase corpora?

Model Performance » Dataset Difference



Automatic Paraphrase Identification



Automatic Paraphrase Identification

[

X QT

>
N
O

o LEX-OrMF;; (Orthogonal Matrix Factorization)

[1] Xu et al., 2014
2] Guo et al., 2014



Automatic Paraphrase Identification

o LEX-OrMF; (Orthogonal Matrix Factorization
 DeepPairwiseWord;:; (Deep Neural Networks

XU et al., 2014
Guo et al., 2014

He et al., 2016

N

QT

Cats Sit On the Mat

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusCube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

On the Mat There Sit Cats



Automatic Paraphrase Identification

X QT

3. Similarity Focus Layer

focusCube

o LEX-OrMF;; (Orthogonal Matrix Factorization)
* DeepPairwiseWord: (Deep Neural Networks)
o MultiP (Multiple Instance Learning)

2. Pairwise Word

Interaction Modeling

Y paraphrase Y non-paraphrase

simC'ube

| Xu et al., 2014
| Guo et al., 2014

| He et al., 2016
| Xu et al., 2014

A

W N =

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

1. Context Modeling

[ GlOVe }> Cats Sit On the Mat On the Mat There Sit Cats




Deep Pairwise Word Model

1. Context Modeling

[ Bi-LSTM

[ GlOVe ]> Cats Sit On the Mat On the Mat There Sit Cats




Deep Pairwise Word Model

1. Context Modeling

[ Bi-LSTM

[ GlOVe ]> Cats Sit On the Mat On the Mat There Sit Cats

Decompose sentence input into word context to reduce modeling difficulty



Deep Pairwise Word Model

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

2. Pairwise Word
Interaction Modeling

simC'ube

A




Deep Pairwise Word Model

2. Pairwise Word
Interaction Modeling

simC'ube

A




Deep Pairwise Word Model

2. Pairwise Word

Interaction Modeling

simC'ube

A




Deep Pairwise Word Model

2. Pairwise Word
Interaction Modeling

simC'ube

A

coU (h1, ha) = {cos(h, ha), Lo Buclid(hy, ha), DotProduct(hy, hs)}



Deep Pairwise Word Model

N7z A\
v/ N
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2. Pairwise Word
Interaction Modeling

simC'ube

A

coU(h;, hz) = {cos(h;, h;),LgEuclz'd(h;, h2>), DotProduct(h;, h2)}

Multiple vector similarity measurement used to capture word pair relationship



Deep Pairwise Word Model

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

3. Similarity Focus Layer

focusCube




Deep Pairwise Word Model

3. Similarity Focus Layer

focusCube




Deep Pairwise Word Model

3. Similarity Focus Layer

focusCube




Deep Pairwise Word Model

3. Similarity Focus Layer

focusCube

More attention added to top ranked word pairs.



Deep Pairwise Word Model

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats
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Deep Pairwise Word Model

Deep ConvNet Configurations

Input Size: 32 by 32

Input Size: 48 by 48

Spatial Conv 128: size 3 x 3, stride 1. pad 1

RelLU

Max Pooling: size 2 x 2, stride 2

Spatial Conv 164: size 3 x 3, stride 1, pad 1

RelLU

Max Pooling: size 2 x 2, stride 2

Spatial Conv 192: size 3 x 3, stride 1, pad 1

RelLU

Max Pooling: size 2 x 2, stride 2

Spatial Conv 192: size 3 x 3, stride 1, pad 1

RelLU

Max Pooling: size 2 x 2, stride 2

Spatial Conv 128: size 3 x 3, stride 1, pad 1

RelLU

Max Pooling: 2 x 2, s2

Max Pooling: 3 x 3, sl

Fully-Connected Layer

RelLU

Fully-Connected Layer

LogSoftMax

Table 1:

Deep ConvNet architecture given two
padding size configurations for final classification.

4. 19-Layer
Deep ConvNet



Deep Pairwise Word Model

Deep ConvNet Configurations
Input Size: 32 by 32 Input Size: 48 by 48

Spatial Conv 128: size 3 x 3. stride 1, pad 1
RelLU
Max Pooling: size 2 x 2, stride 2
Spatial Conv 164: size 3 x 3, stride 1, pad 1

RelLU
Max Pooling: size 2 x 2, stride 2 4. 19-Laver
Spatial Conv 192: size 3 x 3, stride 1, pad 1 Dccpﬂ ConvNet
Rel.U

Max Pooling: size 2 x 2, stride 2
Spatial Conv 192: size 3 x 3, stride 1, pad 1
RelLU
Max Pooling: size 2 x 2, stride 2
Spatial Conv 128: size 3 x 3, stride 1, pad 1
RelLU
Max Pooling: 2 x 2, s2 | Max Pooling: 3 x 3, sl
Fully-Connected Layer
RelLU
Fully-Connected Layer
LogSoftMax

Table 1: Deep ConvNet architecture given two
padding size configurations for final classification.

Sentence pair relationship can be identitied by pattern recognition through ConvNet.



Deep Pairwise Word Model

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats



Deep Pairwise Word Model

e From Sentence

Representation to Word

Representation

Cats Sit On the Mat

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

On the Mat There Sit Cats



Deep Pairwise Word Model

e From Sentence

* From Word Representation to Word

Representation to Word

Representation

Palr Interaction

Cats Sit On the Mat

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

On the Mat There Sit Cats



Deep Pairwise Word Model

-rom Worad

-rom Sentence

Representation to Word

Representation to Word Representation

Palr Interaction

From Normal Interaction to Attentive Interaction

Cats Sit On the Mat

4. 19-Layer
Deep ConvNet

A

3. Similarity Focus Layer

focusC'ube

2. Pairwise Word
Interaction Modeling

simC'ube

A

1. Context Modeling

On the Mat There Sit Cats



Deep Pairwise Word Model

4. 19-Layer
Deep ConvNet

A

 From Sentence Representation to Word Representation

3. Similarity Focus Layer

focusC'ube

 From Word Representation to Word Pair Interaction

e From Normal Interaction to Attentive Interaction

2. Pairwise Word
Interaction Modeling

simC'ube

* From Interaction to Pattern Recognition !

1. Context Modeling

Cats Sit On the Mat On the Mat There Sit Cats
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Automatic Paraphrase Identification
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Automatic Paraphrase ldentification

MSRP used a SVM classifier
before data annotation
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Automatic Paraphrase ldentification

MSRP used a SVM classifier
before data annotation
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Automatic Paraphrase ldentification

MSRP used a SVM classifier
before data annotation

Performance F1
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Automatic Paraphrase ldentification

MSRP used a SVM classifier
before data annotation

Performance F1
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v PI1-2015
Random LR Deep

Baseline N-gram LEX-OrMF WuftiP PairwiseWord



System Performance v.s. Human Upper-bound



System Performance v.s. Human Upper-bound
Twitter URL Dataset

Performance F1

Amazon Deep
Mechanical Turk PairWiseWord



Error Analysis: Falsely Negative

This newly discovered species of moth has been named after Donald Trump.

New #moth named in honor of Donald Trump @realDonaldTrump



Error Analysis: Falsely Negative

This newly discovered species of- has been named after Donald Trump.

Nevv- named in honor of Donald Trump @realDonald Trump



Error Analysis: Falsely Negative

This newly discovered species of- has been named after_.

New- named in honor of Donald Trump _




Out-of-Vocabulary Word Problem



Out-of-Vocabulary Word Problem

Dataset Training Size  Test Size INV OOV OOV Ratio Source
PIT-2015 11530 838 7771 1238 13.7% Twitter trends
Twitter-URL 42200 9324 24905 11440 31.5% Twitter/news

MSRP 4076 1725 16226 1614 9.0% News




Out-of-Vocabulary Word Problem

Dataset Training Size  Test Size INV OOV /OQOV Ratio Source
PIT-2015 11530 838 7771 1238 Twitter trends
Twitter-URL 42200 9324 24905 11440 Twitter/news

MSRP 4076 1725 16226 1614 NEws




Out-of-Vocabulary Word Problem

Dataset Training Size  Test Size INV OOV /OQOV Ratio Source
PIT-2015 11530 838 7771 1238 Twitter trends
Twitter-URL 42200 9324 24905 11440 Twitter/news
MSRP 4076 1725 16226 1614 news

Randomly initialized word embeddings tail to capture
word syntax and semantics



Representing Word with Smaller Units



Representing Word with Smaller Units

Unit Output of o(brexit)
unigram b,r,e, x,1,t
bigram w overlap br, re, ex, xi, 1t
bigram w/o overlap br, ex, it
trigram w overlap bre, rex, exi, xit
trigram w/o overlap bre, xit
whole word brexit

Table 1: Ngram examples for word brexit.



LSTM Based Character Embedding (C2W),



LSTM Based Character Embedding (C2W),

[1] Ling et al., 2015



LSTM Based Character Embedding (C2W),

b r e X | t

Bi-LSTM

[1] Ling et al., 2015



CNN Based Character Embedding



CNN Based Character Embedding

[1] Kim et al., 2016



CNN Based Character Embedding
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CNN Based Character Embedding
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Embedding Concatenation



CNN Based Character Embedding

*
*
*
*
*
*
*
*
*
*
‘O
*

*
*
“
‘‘‘‘
. [
-
‘‘‘‘‘

o* .

Pl

b

| t

.
o*
Y
we®
--"“ :
S e
we®

-
-----
-

................

[1] Kim et al., 2016

Embedding Concatenation

Convolution with multiple filters

f*[;] = tanh((C*[*, : i +w — 1], H) + b)



CNN Based Character Embedding
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[1] Kim et al., 2016

Embedding Concatenation

Convolution with multiple filters

f*[;] = tanh((C*[*, : i +w — 1], H) + b)

max pooling

y* = max £*[j



CNN Based Character Embedding
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Embedding Concatenation

Convolution with multiple filters

f*[;] = tanh((C*[*, : i +w — 1], H) + b)

max pooling

y* = max £*[j

highway network
t = o(Wry + br)
z=tO0OgWgy+byg)+(1—-t)Oy



Subword Based Pairwise Word Interaction Model



Subword Based Pairwise Word Interaction Model

4. 19-Layer
Deep ConvNet

3. Similarity Focus Layer
JocusCube

2. Pairwise Word
Interaction Modeling
simCube

A

! !

C2W or CNN based subword embedding

_— T~

Cats sit on the mat On the mat there sit cats




Word Embedding v.s. Subword Embedding



Word Embedding v.s. Subword Embedding

Model Variations pre-train  #parameters Twitter URL  PIT-2015 MSRP

Logistic Regression - - 0.683 0.645 0.829

(Lan et al., 2017) Yes 9.5M 0.749 0.667 0.834

Word Models pretrained, fixed Yes 2.2M 0.753 0.632 0.834
pretrained, updated Yes 9.5M 0.756 0.656 0.832

randomized, fixed — 2.2M 0.728 0.456 0.821

randomized, updated — 9.5M 0.735 0.625 0.834

C2W, unigram — 2.6M 0.742 0.534 0.816

C2W, bigram — 2. TM 0.742 0.563 0.825

C2W, trigram = 3.1M 0.729 0.576 0.824

Subword Models  ~\N yipigram _ 6.5M 0.756 0589  0.820
CNN, bigram = 6.5M 0.760 0.646 0.814

CNN, trigram — 6.7M 0.753 0.667 0.818
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Multi-task Language Model
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New State-of-the-art with Multi-task Language Model



New State-of-the-art with Multi-task Language Model

Model Variations Pre-train  #Parameters Twitter URL  PIT-2015 MSRP

Logistic Regression - - 0.683 0.645 0.829

(Lan et al., 2017) Yes 9.5M 0.749 0.667 0.834

Word Models pretrained, fixed Yes 2.2M 0.753 0.632 0.834
pretrained, updated Yes 9.5M 0.756 0.656 0.832

randomized, fixed — 2.2M 0.728 0.456 0.821

randomized, updated = 9.5M 0.735 0.625 0.834

C2W, unigram . 2.6M 0.742 0.534 0.816

C2W, bigram - 2. M 0.742 0.563 0.825

C2W, trigram . 3.1M 0.729 0.576 0.824

Subword Models N " ynigram _ 6.5M 0.756 0.589  0.820
CNN, bigram = 6.5M 0.760 0.646 0.814

CNN, trigram - 6.7”M 0.753 0.667 0.818

LM, C2W, unigram . 3.5M 0.760 0.691 0.831

LM, C2W, bigram - 3.6M 0.768 0.651 0.830

Subword+l M LM, C2W, trigram - 4.0M 0.765 0.659 0.831
LM, CNN, unigram - 7.4M 0.754 0.665 0.840

LM, CNN, bigram — 7.4M 0.761 0.667 0.835

LM, CNN, trigram . 7.6M 0.759 0.667 0.831




Simple but effective paraphrase collection method
| argest annotated paraphrase corpora to date
Continuously growing, providing up-to-date data

Subword embedding for paraphrase identification

Data and Code: https://github.com/lanwuwei/paraphrase-dataset
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