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We created the 3rd paraphrase corpora 
(which also dynamically updates!)

Key for success:
• narrow the search space  
• ensure diversity among sentences 
• the simpler the better! more effective automatic paraphrase identification 

URL-linked  
Tweets

30,000 new sentential paraphrases 
every month

[Twitter URL Corpus][MSRP[1]]

clustered  
news articles 

[1] Dolan et al., 2004 
[2] Xu et al., 2014

[PIT-2015[2]]

Twitter 
trending topics
14,035 annotated pairs5,801 annotated pairs 51,524 annotated pairs
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Donald Trump, DJT, Drumpf, Mr Trump, Idiot Trump, Chump, 
Evil Donald, #OrangeHitler, Donald @realTrump, D*nald 
Tr*mp, Comrade #Trump, Crooked #Trump, CryBaby Trump, 
Daffy Trump, Donald KKKrump, Dumb Trump, GOPTrump, 
Incompetent Trump, He-Who-Must-Not-Be-Named, Pres-
elect Trump, President-Elect Trump, President-elect Donald 
J . Trump, PEOTUS Trump, Emperor Trump

Once we have a lot of up-to-date sentential paraphrases
(we can, for example, learn name variations fully automatically)



FBI Director backs CIA finding 
FBI agrees with CIA 
FBI backs CIA view 
FBI finally backs CIA view 
FBI now backs CIA view 
FBI supports CIA assertion 
FBI Clapper back CIA’s view 
The FBI backs the CIA’s assessment 
FBI Backs CIA …

Once we have a lot of up-to-date sentential paraphrases
(we can, of course, learn other synonyms in large quantity via word alignment)



How different from existing paraphrase corpora?

Model Performance Dataset Difference
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Automatic Paraphrase Identification

• LEX-OrMF[1] (Orthogonal Matrix Factorization[2])
• DeepPairwiseWord[3] (Deep Neural Networks)
• MultiP[4] (Multiple Instance Learning)

[1] Xu et al., 2014 
[2] Guo et al., 2014
[3] He et al., 2016
[4] Xu et al., 2014
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Deep Pairwise Word Model

Bi-LSTM

Glove

Decompose sentence input into word context to reduce modeling difficulty



Deep Pairwise Word Model



Deep Pairwise Word Model



Deep Pairwise Word Model



Deep Pairwise Word Model



Deep Pairwise Word Model



Deep Pairwise Word Model

Multiple vector similarity measurement used to capture word pair relationship



Deep Pairwise Word Model



Deep Pairwise Word Model



Deep Pairwise Word Model



Deep Pairwise Word Model



Deep Pairwise Word Model

More attention added to top ranked word pairs.
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Deep Pairwise Word Model

Sentence pair relationship can be identified by pattern recognition through ConvNet.
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• From Word Representation to Word Pair Interaction

• From Interaction to Pattern Recognition
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Out-of-Vocabulary Word Problem

Randomly initialized word embeddings fail to capture  
word syntax and semantics 
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CNN Based Character Embedding[1] 

Embedding Concatenation

Convolution with multiple filters

max pooling

highway network

[1] Kim et al., 2016
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Takeaways

• Simple but effective paraphrase collection method 

• Largest annotated paraphrase corpora to date 

• Continuously growing, providing up-to-date data 

• Subword embedding for paraphrase identification 

• Data and Code: https://github.com/lanwuwei/paraphrase-dataset
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