Tricks + Word Embeddings

Wei Xu

(many slides from Greg Durrett)
Recall: Feedforward NNs

\[P(y|x) = \text{softmax}(Wg(V f(x))) \]

- **\(f(x) \)**: \(n \) features matrix
- **\(V \)**: \(d \times n \) matrix
- **\(g \)**: Nonlinearity (tanh, relu, ...)
- **\(z \)**: \(d \) hidden units
- **\(W \)**: \(\text{num}_\text{classes} \times d \) matrix
- **\(\text{softmax} \)**
- **\(P(y|x) \)**: \(\text{num}_\text{classes} \) probs

Diagram:

- Input: \(f(x) \)
- Process:
 - \(V \) matrix:
 - \(d \times n \) matrix
 - Nonlinearity:
 - \(g \) (tanh, relu, ...)
 - Hidden units:
 - \(d \) hidden units
- Output:
 - \(W \) matrix:
 - \(\text{num}_\text{classes} \times d \) matrix
 - Softmax
 - \(P(y|x) \) prods
Recall: Backpropagation

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]
This Lecture

- Training
- Word representations
- word2vec/GloVe
- Evaluating word embeddings
Training Tips
Training Basics

- Basic formula: compute gradients on batch, use first-order opt. method
- How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further
How does initialization affect learning?

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]

- How do we initialize \(V \) and \(W \)? What consequences does this have?
- Nonconvex problem, so initialization matters!
How does initialization affect learning?

- Nonlinear model...how does this affect things?

- If cell activations are too large in absolute value, gradients are small.

- ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative.
Initialization

1) Can’t use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change

2) Initialize too large and cells are saturated

- Can do random uniform / normal initialization with appropriate scale

- Xavier initializer: \(U \left[-\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}, +\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}} \right] \)

 - Want variance of inputs and gradients for each layer to be the same

- Batch normalization (Ioffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)
Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy
- One line in Pytorch/Tensorflow

Srivastava et al. (2014)
- Adam (Kingma and Ba, ICLR 2015) is very widely used
- Adaptive step size like Adagrad, incorporates momentum
Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)

- Check dev set periodically, decrease learning rate if not making progress
Four elements of a machine learning method:

- **Model:** feedforward, RNNs, CNNs can be defined in a uniform framework
- **Objective:** many loss functions look similar, just changes the last layer of the neural network
- **Inference:** define the network, your library of choice takes care of it (mostly...)
- **Training:** lots of choices for optimization/hyperparameters
Word Representations
Word Representations

- Neural networks work very well at continuous data, but words are discrete.
- Continuous model \rightarrow expects continuous semantics from input.
- “You shall know a word by the company it keeps” Firth (1957)

[Finch and Chater 92, Shuetze 93, many others]
Discrete Word Representations

- Brown clusters: hierarchical agglomerative *hard* clustering (each word has one cluster, not some posterior distribution like in mixture models)

- Maximize $P(w_i|w_{i-1}) = P(c_i|c_{i-1})P(w_i|c_i)$

- Useful features for tasks like NER, not suitable for NNs

Brown et al. (1992)
Word Embeddings

- Part-of-speech tagging with FFNNs

- Word embeddings for each word form input

- What properties should these vectors have?

Fed *raises* **interest** *rates* in order to ...

Botha et al. (2017)

\[f(x) \]

\[\text{emb}(\text{raises}) \]
\[\text{emb}(\text{interest}) \]
\[\text{emb}(\text{rates}) \]
\[\ldots \]

other words, feats, etc.
Word Embeddings

- Want a vector space where similar words have similar embeddings

 \[
 \text{the movie was great} \sim \text{the movie was good}
 \]

- Goal: come up with a way to produce these embeddings
word2vec/GloVe
Continuous Bag-of-Words

- Predict word from context

The dog bit the man

dimensional word embeddings

dog

dimension

the

size \(d \)

Multiply by \(W \)

size \(|V| \times d\)

softmax

\[
P(w|w_{-1}, w_{+1}) = \text{softmax} \left(W \left(c(w_{-1}) + c(w_{+1}) \right) \right)
\]

Parameters: \(d \times |V| \) (one \(d \)-length vector per voc word), \(|V| \times d\) output parameters (\(W \))

Mikolov et al. (2013)
Skip-Gram

Predict one word of context from word

\[
\text{the \ dog bit the man}
\]

\[
P(w'|w) = \text{softmax}(W e(w))
\]

Another training example: \textit{bit} -> \textit{the}

Parameters: \(d \times |V|\) vectors, \(|V| \times d\) output parameters (W) (also usable as vectors!)

Mikolov et al. (2013)
Hierarchical Softmax

\[P(w|w_{-1}, w_{+1}) = \text{softmax} (W(c(w_{-1}) + c(w_{+1}))) \]
\[P(w'|w) = \text{softmax}(W e(w)) \]

- Matmul + softmax over |V| is very slow to compute for CBOW and SG
- Standard softmax: [|V| \times d] \times d
- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- Hierarchical softmax: \log(|V|) dot products of size d, |V| \times d parameters
- \log(|V|) binary decisions

Mikolov et al. (2013)
Skip-Gram with Negative Sampling

- Take (word, context) pairs and classify them as “real” or not. Create random negative examples by sampling from unigram distribution

 \[
 P(y = 1|w, c) = \frac{e^{w \cdot c}}{e^{w \cdot c} + 1}
 \]

- \((bit, the) \Rightarrow +1\)
- \((bit, cat) \Rightarrow -1\)
- \((bit, a) \Rightarrow -1\)
- \((bit, fish) \Rightarrow -1\)

- \(d \times |V|\) vectors, \(d \times |V|\) context vectors (same # of params as before)

- Objective = \(\log P(y = 1|w, c) - \frac{1}{k} \sum_{i=1}^{n} \log P(y = 0|w_i, c)\)

Mikolov et al. (2013)
Connections with Matrix Factorization

- Skip-gram model looks at word-word co-occurrences and produces two types of vectors

- Looks almost like a matrix factorization...can we interpret it this way?

Levy et al. (2014)
Skip-Gram as Matrix Factorization

PMI$(w_i, c_j) = \frac{P(w_i, c_j)}{P(w_i)P(c_j)} = \frac{\text{count}(w_i, c_j)}{D} \frac{D}{\text{count}(w_i) \text{count}(c_j)}$

Skip-gram objective exactly corresponds to factoring this matrix:

- If we sample negative examples from the uniform distribution over words
- ...and it’s a weighted factorization problem (weighted by word freq)

Levy et al. (2014)
GloVe (Global Vectors)

Also operates on counts matrix, weighted regression on the log co-occurrence matrix

Loss = \sum_{i,j} f(\text{count}(w_i, c_j)) \left(w_i^\top c_j + a_i + b_j - \log \text{count}(w_i, c_j) \right)^2

Constant in the dataset size (just need counts), quadratic in voc size

By far the most common word vectors used today (5000+ citations)

Pennington et al. (2014)
Context-dependent Embeddings

- How to handle different word senses? One vector for *balls*

- Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

- *Context-sensitive* word embeddings: depend on rest of the sentence

- *Huge* improvements across nearly all NLP tasks over GloVe

Peters et al. (2018)
Evaluation
Evaluating Word Embeddings

- What properties of language should word embeddings capture?
 - Similarity: similar words are close to each other
 - Analogy:

 good is to best as smart is to ???
 Paris is to France as Tokyo is to ???
Similarity

<table>
<thead>
<tr>
<th>Method</th>
<th>WordSim Similarity</th>
<th>WordSim Relatedness</th>
<th>Bruni et al. MEN</th>
<th>Radinsky et al. M. Turk</th>
<th>Luong et al. Rare Words</th>
<th>Hill et al. SimLex</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPMI</td>
<td>.755</td>
<td>.697</td>
<td>.745</td>
<td>.686</td>
<td>.462</td>
<td>.393</td>
</tr>
<tr>
<td>SVD</td>
<td>.793</td>
<td>.691</td>
<td>.778</td>
<td>.666</td>
<td>.514</td>
<td>.432</td>
</tr>
<tr>
<td>SGNS</td>
<td>.793</td>
<td>.685</td>
<td>.774</td>
<td>.693</td>
<td>.470</td>
<td>.438</td>
</tr>
<tr>
<td>GloVe</td>
<td>.725</td>
<td>.604</td>
<td>.729</td>
<td>.632</td>
<td>.403</td>
<td>.398</td>
</tr>
</tbody>
</table>

- **SVD** = singular value decomposition on PMI matrix
- **GloVe** does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don’t matter in practice

Levy et al. (2015)
Hypernymy Detection

- Hypernyms: detective *is a* person, dog *is a* animal

- Do word vectors encode these relationships?

<table>
<thead>
<tr>
<th>Dataset</th>
<th>TM14</th>
<th>Kotlerman 2010</th>
<th>HypeNet</th>
<th>WordNet</th>
<th>Avg (10 datasets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>52.0</td>
<td>30.8</td>
<td>24.5</td>
<td>55.2</td>
<td>23.2</td>
</tr>
<tr>
<td>Word2Vec + C</td>
<td>52.1</td>
<td>39.5</td>
<td>20.7</td>
<td>63.0</td>
<td>25.3</td>
</tr>
<tr>
<td>GE + C</td>
<td>53.9</td>
<td>36.0</td>
<td>21.6</td>
<td>58.2</td>
<td>26.1</td>
</tr>
<tr>
<td>GE + KL</td>
<td>52.0</td>
<td>39.4</td>
<td>23.7</td>
<td>54.4</td>
<td>25.9</td>
</tr>
<tr>
<td>DIVE + C·ΔS</td>
<td>57.2</td>
<td>36.6</td>
<td>32.0</td>
<td>60.9</td>
<td>32.7</td>
</tr>
</tbody>
</table>

- word2vec (SGNS) works barely better than random guessing here

Chang et al. (2017)
Analogies

(king - man) + woman = queen

king + (woman - man) = queen

Why would this be?

woman - man captures the difference in the contexts that these occur in

Dominant change: more “he” with man and “she” with woman — similar to difference between king and queen
These methods can perform well on analogies on two different datasets using two different methods.

Maximizing for b: Add $= \cos(b, a_2 - a_1 + b_1)$ \hspace{1cm} Mul $= \frac{\cos(b_2, a_2) \cos(b_2, b_1)}{\cos(b_2, a_1) + \epsilon}$

Levy et al. (2015)
Using Semantic Knowledge

- Structure derived from a resource like WordNet
- Doesn’t help most problems

Faruqui et al. (2015)
Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well
- Approach 2: initialize using GloVe/ELMo, keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using GloVe, fine-tune
 - Works best for some tasks, not used for ELMo, often used for BERT
Takeaways

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties
- Even better: context-sensitive word embeddings (ELMo)
- Next time: RNNs and CNNs