This Lecture

- Multiclass fundamentals
- Feature extraction
- Multiclass logistic regression
- Multiclass SVM
- Optimization
Multiclass Fundamentals
Text Classification

A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

Yankees and Mets Are on Opposite Tracks This Subway Series

As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

By FILIP BONDY

→ Health

→ Sports

~20 classes
Image Classification

- Dog
- Car

- Thousands of classes (ImageNet)
Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified **Armstrong** from his seven consecutive Tour de France wins from 1999–2005.

Lance Edward Armstrong is an American former professional **road cyclist**

Armstrong County is a **county** in Pennsylvania...

- 4,500,000 classes (all articles in Wikipedia)
One day, James thought he would go into town and see what kind of trouble he could get into. He went to the grocery store and pulled all the pudding off the shelves and ate two jars. Then he walked to the fast food restaurant and ordered 15 bags of fries. He didn't pay, and instead headed home.

3) Where did James go after he went to the grocery store?
A) his deck
B) his freezer
C) a fast food restaurant
D) his room

- Multiple choice questions, 4 classes (but classes change per example)
Binary classification: one weight vector defines positive and negative classes
Can we just use binary classifiers here?
Multiclass Classification

- One-vs-all: train k classifiers, one to distinguish each class from all the rest
- How do we reconcile multiple positive predictions? Highest score?
Not all classes may even be separable using this approach.

Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others (with these features)
Multiclass Classification

- All-vs-all: train $n(n-1)/2$ classifiers to differentiate each pair of classes
- Again, how to reconcile?
Multiclass Classification

- Binary classification: one weight vector defines both classes
- Multiclass classification: different weights and/or features per class
Multiclass Classification

- Formally: instead of two labels, we have an output space \mathcal{Y} containing a number of possible classes.
- Same machinery that we’ll use later for exponentially large output spaces, including sequences and trees.

Decision rule: $\arg\max_{y \in \mathcal{Y}} w^\top f(x, y)$

- Multiple feature vectors, one weight vector.
- Can also have one weight vector per class: $\arg\max_{y \in \mathcal{Y}} w_y^\top f(x)$

The single weight vector approach will generalize to structured output spaces, whereas per-class weight vectors won’t.

Features depend on choice of label now! Note: this isn’t the gold label.
Feature Extraction
Decision rule: $\arg\max_{y \in Y} w^\top f(x, y)$

too many drug trials, too few patients

Base feature function:

$$f(x) = \mathbb{I}[\text{contains drug}], \mathbb{I}[\text{contains patients}], \mathbb{I}[\text{contains baseball}] = [1, 1, 0]\]$$

Feature vector blocks for each label:

$$f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0]$$

$$f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0]$$

Equivalent to having three weight vectors in this case.
Making Decisions

too many drug trials, too few patients

\[f(x) = \begin{cases} 1 & \text{contains } \text{drug} \text{, } \text{contains } \text{patients} \text{, } \text{contains } \text{baseball} \\ 0 & \text{otherwise} \end{cases} \]

\[
\begin{align*}
 f(x, y = \text{Health}) &= [1, 1, 0; 0, 0, 0; 0, 0, 0] \\
 f(x, y = \text{Sports}) &= [0, 0, 0; 1, 1, 0; 0, 0, 0] \\
 \text{“word drug in Science article”} &= +1.1
\end{align*}
\]

\[w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3] \]

\[w^T f(x, y) = \begin{cases} \text{Health: } +4.4 & \text{Sports: } -5.9 \text{ Science: } -0.6 \end{cases} \]

argmax
Another example: POS tagging

- Classify *blocks* as one of 36 POS tags
- Example x: sentence with a word (in this case, *blocks*) highlighted
- Extract features with respect to this word:
 \[f(x, y=\text{VBZ}) = I[\text{curr}_\text{word}=\text{blocks} \land \text{tag} = \text{VBZ}], \]
 \[I[\text{prev}_\text{word}=\text{router} \land \text{tag} = \text{VBZ}] \]
 \[I[\text{next}_\text{word}=\text{the} \land \text{tag} = \text{VBZ}] \]
 \[I[\text{curr}_\text{suffix}=\text{s} \land \text{tag} = \text{VBZ}] \]
- Next two lectures: sequence labeling!

the router **blocks** **the packets**

- **NNS**
- **VBZ**
- **NN**
- **DT**
 ...

- not saying that *the* is tagged as VBZ! saying that *the* follows the VBZ word
Multiclass Logistic Regression
Multiclass Logistic Regression

\[P_w(y|x) = \frac{\exp\left(w^\top f(x, y) \right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^\top f(x, y') \right)} \]

- sum over output space to normalize

- Compare to binary:
 \[P(y = 1|x) = \frac{\exp(w^\top f(x))}{1 + \exp(w^\top f(x))} \]

 negative class implicitly had
 \(f(x, y=0) = \) the zero vector
Multiclass Logistic Regression

\[P_w(y|x) = \frac{\exp(w^\top f(x, y))}{\sum_{y' \in Y} \exp(w^\top f(x, y'))} \]

why? Interpret raw classifier scores as \textbf{probabilities}

too many drug trials, too few patients

Health: +2.2
Sports: +3.1
Science: -0.6

\(w^\top f(x, y) \) \begin{align*}
 \text{unnormalized probabilities} \quad & \text{probabilities} \quad & \text{probabilities} \quad & \text{log(0.21)} = -1.56 \\
 \text{must be } \geq 0 \quad & \text{must sum to 1} \quad & \text{compare} \quad & \text{correct (gold) probabilities} \\
 6.05 \quad & 0.21 \quad & 1.00 \\
 22.2 \quad & 0.77 \quad & 0.00 \\
 0.55 \quad & 0.02 \quad & 0.00 \\
\end{align*}
Multiclass Logistic Regression

\[P_w(y|x) = \frac{\exp \left(w^\top f(x, y) \right)}{\sum_{y' \in \mathcal{Y}} \exp \left(w^\top f(x, y') \right)} \]

sum over output space to normalize

- Training: maximize \(\mathcal{L}(x, y) = \sum_{j=1}^{n} \log P(y_j^*|x_j) \)

\[
= \sum_{j=1}^{n} \left(w^\top f(x_j, y_j^*) - \log \sum_{y} \exp(w^\top f(x_j, y)) \right)
\]
Training

- **Multiclass logistic regression** \(P_w(y|x) = \frac{\exp (w^\top f(x, y))}{\sum_{y' \in Y} \exp (w^\top f(x, y'))} \)

- **Likelihood** \(\mathcal{L}(x_j, y_j^*) = w^\top f(x_j, y_j^*) - \log \sum_y \exp(w^\top f(x_j, y)) \)

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \frac{\sum_y f_i(x_j, y) \exp(w^\top f(x_j, y))}{\sum_y \exp(w^\top f(x_j, y))}
\]

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \sum_y f_i(x_j, y) P_w(y|x_j)
\]

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \mathbb{E}_y[f_i(x_j, y)] \text{ gold feature value}
\]

model’s expectation of feature value
Training

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y^*_j) = f_i(x_j, y^*_j) - \sum_y f_i(x_j, y) P_w(y|x_j)
\]

too many drug trials, too few patients

\[
f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0]
\]

\[
f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0]
\]

gradient: \[
[1, 1, 0, 0, 0, 0, 0, 0, 0] - 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
- 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] - 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]
= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
\]

update \(w^\top\): \[
[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]
\]

\(\text{new } P_w(y|x) = [0.89, 0.10, 0.01]\)
Logistic Regression: Summary

- **Model:**
 \[P_w(y|x) = \frac{\exp (w^\top f(x, y))}{\sum_{y' \in Y} \exp (w^\top f(x, y'))} \]

- **Inference:**
 \[\arg\max_y P_w(y|x) \]

- **Learning:** gradient ascent on the discriminative log-likelihood
 \[f(x, y^*) - \mathbb{E}_y [f(x, y)] = f(x, y^*) - \sum_y [P_w(y|x)f(x, y)] \]
 “towards gold feature value, away from expectation of feature value”
Multiclass SVM
Sox Margin SVM

Minimize $\lambda \|w\|^2_2 + \sum_{j=1}^{m} \xi_j$

s.t. $\forall j \xi_j \geq 0$

$\forall j \ (2y_j - 1)(w^\top x_j) \geq 1 - \xi_j$

slack variables > 0 iff example is support vector
Minimize \(\lambda \|w\|^2_2 + \sum_{j=1}^{m} \xi_j \)

s.t. \(\forall j \quad \xi_j \geq 0 \)

\(\forall j \quad (2y_j - 1)(w^\top x_j) \geq 1 - \xi_j \)

\(\forall j \forall y \in \mathcal{Y} \quad w^\top f(x_j, y_j^*) \geq w^\top f(x_j, y) + \ell(y, y_j^*) - \xi_j \)

Correct prediction now has to beat every other class

Score comparison is more explicit now

The 1 that was here is replaced by a loss function

slack variables > 0 iff example is support vector
Training (loss-augmented)

- Are all decisions equally costly?

 too many drug trials, too few patients

 - Predicted **Sports**: bad error
 - Predicted **Science**: not so bad

- We can define a loss function $\ell(y, y^*)$

 $$
 \ell(\text{Sports}, \text{Health}) = 3
 $$

 $$
 \ell(\text{Science}, \text{Health}) = 1
 $$
\[\forall j \forall y \in \mathcal{Y} \quad w^\top f(x_j, y^*) \geq w^\top f(x_j, y) + \ell(y, y^*) - \xi_j \]

\[w^\top f(x, y) + \ell(y, y^*) \]

- Does gold beat every label + loss? No!
- Most violated constraint is \textit{Sports}; what is \(\xi_j \)?
 - \(\xi_j = 4.3 - 2.4 = 1.9 \)
- Perceptron would make no update here
Multiclass SVM

Minimize $\lambda \|w\|^2 + \sum_{j=1}^{m} \xi_j$

s.t. $\forall j \xi_j \geq 0$

$\forall j \forall y \in \mathcal{Y} \quad w^\top f(x_j, y^*_j) \geq w^\top f(x_j, y) + \ell(y, y^*_j) - \xi_j$

- One slack variable per example, so it’s set to be whatever the most violated constraint is for that example

$$\xi_j = \max_{y \in \mathcal{Y}} w^\top f(x_j, y) + \ell(y, y^*_j) - w^\top f(x_j, y^*_j)$$

- Plug in the gold y and you get 0, so slack is always nonnegative!
Computing the Subgradient

Minimize $\lambda \|w\|^2 + \sum_{j=1}^{m} \xi_j$

s.t. $\forall j \xi_j \geq 0$

$\forall j \forall y \in Y \quad w^T f(x_j, y^*) \geq w^T f(x_j, y) + \ell(y, y^*_j) - \xi_j$

- If $\xi_j = 0$, the example is not a support vector, gradient is zero
- Otherwise, $\xi_j = \max_{y \in Y} w^T f(x_j, y) + \ell(y, y^*_j) - w^T f(x_j, y^*_j)$
 $\frac{\partial}{\partial w_i} \xi_j = f_i(x_j, y_{\text{max}}) - f_i(x_j, y^*_j)$ (update looks backwards — we’re minimizing here!)
- Perceptron-like, but we update away from *loss-augmented* prediction
Putting it Together

Minimize $\lambda \|w\|_2^2 + \sum_{j=1}^{m} \xi_j$

s.t. $\forall j \xi_j \geq 0$

$\forall j \forall y \in Y \ w^\top f(x_j, y^*_j) \geq w^\top f(x_j, y) + \ell(y, y^*_j) - \xi_j$

- (Unregularized) gradients:
 - SVM: $f(x, y^*) - f(x, y_{\text{max}})$ (loss-augmented max)
 - Log reg: $f(x, y^*) - \mathbb{E}_y[f(x, y)] = f(x, y^*) - \sum_y [P_w(y|x)f(x, y)]$

- SVM: max over Ys to compute gradient. LR: need to sum over Ys
Optimization
Recap

- Four elements of a machine learning method:
 - Model: probabilistic, max-margin, deep neural network
 - Inference: just maxes and simple expectations so far, but will get harder
 - Training: gradient descent?
 - Objective:
Optimization

- Stochastic gradient *ascent*
- Very simple to code up

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - What if loss changes quickly in one direction and slowly in another direction?

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - What if loss changes quickly in one direction and slowly in another direction?

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - What if the loss function has a local minima or saddle point?

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - “First-order” technique: only relies on having gradient

$$w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - “First-order” technique: only relies on having gradient
 - Setting step size is hard (decrease when held-out performance worsens?)

- Newton’s method
 - Second-order technique
 - Optimizes quadratic instantly

- Inverse Hessian: $n \times n$ mat, expensive!

- Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

$$w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

$$w \leftarrow w + \left(\frac{\partial^2}{\partial w^2} \mathcal{L} \right)^{-1} g$$
AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

```python
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```
AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently
- Generally more robust than SGD, requires less tuning of learning rate
- Other techniques for optimizing deep models — more later!

\[
\begin{aligned}
 w_i &\leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^{t} g_{\tau,i}^2}} g_{t,i} \\
\end{aligned}
\]

(smoothed) sum of squared gradients from all updates

References:
Duchi et al. (2011)
Summary

- Design tradeoffs need to reflect interactions:
 - Model and objective are coupled: probabilistic model <-> maximize likelihood
 - ...but not always: a linear model or neural network can be trained to minimize any differentiable loss function
 - Inference governs what learning: need to be able to compute expectations to use logistic regression