L₂ Norm (Euclidean Norm)

\[||w||₂ = \sqrt{w_1^2 + w_2^2 + \ldots + w_n^2} \]

SUM

Hyperplane will lie exactly halfway between the nearest positive point and nearest negative point.

Margin:

\[\text{WIDTH} = (x_+ - x_-) \cdot \frac{w}{||w||} = \frac{2}{||w||} \]

\[wX_+ + b = 1 \]
\[wX_- + b = -1 \]

\[\max \frac{2}{||w||} \sim \max \frac{1}{||w||} \sim \min ||w|| \sim \min \frac{1}{||w||} \]

Maximum Likelihood

\[g(P) = 3 \log P + \log (1 - P) \]

\[\frac{\partial}{\partial P} g(P) = 3 \cdot \frac{1}{P} + \frac{1}{1-P} \cdot (-1) = 0 \iff 3(1-P) - P = 0 \]
\[3 - 4P = 0 \]
\[P = \frac{3}{4} \]

\[\frac{\partial^2}{\partial P^2} g(P) = 3 \cdot \frac{-1}{P^2} + \frac{-1}{(1-P)^2} < 0 \]

\[\frac{d}{dP} \left(\frac{d}{dP} g(P) \right) \]
\[\hat{y} = wx + b \]

If \(y \) is positive,

\[w' = w + x \]
\[b' = b + 1 \]

\[\hat{y}' = w'x + b' \]
\[= (w + x)x + (b + 1) \]
\[= \frac{wx + b + x^2 + 1}{\hat{y}} \geq 1 \]