Multi-Class Logistic Regression and Perceptron

Instructor: Wei Xu

Some slides adapted from Dan Jurafsky, Brendan O’Connor and Marine Carpuat
MultiClass Classification

• Q: what if we have more than 2 categories?
 – Sentiment: Positive, Negative, Neutral
 – Document topics: Sports, Politics, Business, Entertainment, ...

Q: How to easily do Multi-label classification?
Two Types of MultiClass Classification

- **Multi-label Classification**
 - each instance can be assigned more than one labels

- **Multinominal Classification**
 - each instance appears in exactly one class (classes are exclusive)
Multinominal Classification

- Pretty straightforward with Naive Bayes.

\[P(\text{spam}|D) \propto P(\text{spam}) \prod_{w \in D} P(w|\text{spam}) \]
Log-Linear Models

\[P(y|x) \propto e^{w \cdot f(x,y)} \]

\[P(y|x) = \frac{1}{Z(w)} e^{w \cdot f(x,y)} \]
Multinominal Logistic Regression

\[P(y|x) \propto e^{w \cdot f(x,y)} \]

\[P(y|x) = \frac{1}{Z(w)} e^{w \cdot f(x,y)} \]

Normalization term \((Z)\) so that probabilities sum to 1
Softmax function

From Wikipedia, the free encyclopedia

In mathematics, the **softmax function**, or **normalized exponential function**,[^1]:198 is a generalization of the logistic function that "squashes" a K-dimensional vector \mathbf{z} of arbitrary real values to a K-dimensional vector $\sigma(\mathbf{z})$ of real values in the range $(0, 1)$ that add up to 1. The function is given by

$$\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for } j = 1, \ldots, K.$$
Q: what if there are only 2 categories?

\[P(y = j | x_i) = \frac{e^{w_j \cdot x_i}}{\sum_k e^{w_k \cdot x_i}} \]
Q: what if there are only 2 categories?

\[P(y = 1|x) = \frac{e^{w_1 \cdot x}}{e^{w_0 \cdot x + w_1 \cdot x - w_1 \cdot x} + e^{w_1 \cdot x}} \]
Q: what if there are only 2 categories?

\[P(y = 1|x) = \frac{e^{w_1 \cdot x}}{e^{w_0 \cdot x - w_1 \cdot x} e^{w_1 \cdot x} + e^{w_1 \cdot x}} \]
Q: what if there are only 2 categories?

\[P(y = 1|x) = \frac{e^{w_1 \cdot x}}{e^{w_1 \cdot x}(e^{w_0 \cdot x} - w_1 \cdot x + 1)} \]
Q: what if there are only 2 categories?

\[P(y = 1|x) = \frac{1}{e^{w_0 \cdot x - w_1 \cdot x} + 1} \]
Q: what if there are only 2 categories?

\[P(y = 1|x) = \frac{1}{e^{-w' \cdot x} + 1} \]

Sigmoid (logistic) function
Multinominal Logistic Regression

• Binary (two classes):
 – We have one feature vector that matches the size of the vocabulary

• Multi-class in practice:
 – one weight vector for each category

\[w_{pos} \quad w_{neg} \quad w_{neut} \]

In practice, can represent this with one giant weight vector and repeated features for each category.
Maximum Likelihood Estimation

\[w_{\text{MLE}} = \arg\max_w \log P(y_1, \ldots, y_n | x_1, \ldots, x_n; w) \]

\[= \arg\max_w \sum_i \log P(y_i | x_i; w) \]

\[= \arg\max_w \sum_i \log \frac{e^{w \cdot f(x_i, y_i)}}{\sum_{y' \in Y} e^{w \cdot f(x_i, y')}} \]
Multiclass LR Gradient

\[
\frac{\partial L}{\partial w_j} = \sum_{i=1}^{D} f_j(y_i, d_i) - \sum_{i=1}^{D} \sum_{y \in Y} f_j(y, d_i) P(y|d_i)
\]

empirical feature count

expected feature count
(a.k.a) Maximum Entropy Classifier

- or MaxEnt

- Math proof of “LR=MaxEnt”:
 - [Klein and Manning 2003]
 - [Mount 2011]

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

[Rosenblatt 1957]

Perceptron Algorithm

• Very similar to logistic regression
• Not exactly computing gradient (simpler)

\[P(y = 1 | x) = 1 \text{ if } w \cdot \varphi(x) \geq 0 \]
\[P(y = 1 | x) = 0 \text{ if } w \cdot \varphi(x) < 0 \]
Perceptron vs. LR

• The Perceptron is an online learning algorithm.
• Standard Logistic Regression is not
Online Learning

• The Perceptron is an online learning algorithm.
• Logistic Regression is not:

\[w_{\text{MLE}} = \arg \max_w \log P(y_1, \ldots, y_d | x_1, \ldots, x_d; w) \]

\[= \arg \max_w \sum_i y_i \log p_i + (1 - y_i) \log (1 - p_i) \]
(Full) Batch Learning

- update parameters after each pass of training set

Initialize weight vector \(w = 0 \)
Create features
Loop for \(K \) iterations
 - Loop for all training examples \(x_i, y_i \)
 - ...
 - update_weights(\(w \))
Online Learning

- update parameters for each training example

Initialize weight vector $w = 0$
Create features
Loop for K iterations
 - Loop for all training examples x_i, y_i
 - ...
 - `update_weights(w, x_i, y_i)`
Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

\[w \leftarrow w + y \varphi(x) \]

If \(y = 1 \), increase the weights for features in \(\varphi(x) \)

If \(y = -1 \), decrease the weights for features in \(\varphi(x) \)
Perceptron Algorithm

• Very similar to logistic regression
• Not exactly computing gradient

Initialize weight vector \(w = 0 \)
Loop for \(K \) iterations
 Loop For all training examples \(x_i \)
 if \(\text{sign}(w \cdot x_i) \neq y_i \)
 \(w += y_i \cdot x_i \)
The Intuition

• For a given example, makes a prediction, then checks to see if this prediction is correct.

• If the prediction is correct, do nothing.
• If the prediction is incorrect, change its parameters so that it would do better on this example next time around.
Perceptron (vs. LR)

• Only hyperparameter is maximum number of iterations (LR also needs learning rate)
Perceptron (vs. LR)

• Only hyperparameter is maximum number of iterations (LR also needs learning rate)

• Guaranteed to converge if the data is linearly separable (LR always converge)
Linear Separability
What does “converge” mean?

• It means that it can make an entire pass through the training data without making any more updates.

• In other words, it has correctly classified every training example.

• Geometrically, this means that it was found some hyperplane that correctly segregates the data into positive and negative examples.
What if non-linearly separable?

• In real-world problem, this is nearly always the case.
• The perceptron will not be able to converge.

Q: Then, when to stop?