More about Naïve Bayes

Instructor: Wei Xu

Some slides adapted from Dan Jurafsky and Brendan O’connor
Market Research
(due 11:59pm, Friday, Feb 3rd)

• When was the company started?
• Who were the founders?
• What kind of organization is it? (publicly traded company, privately held company, non-profit organization, other)
• What is company's main business model?
• How does the company generate revenue?
• What is the finance situation of the company? (stock price, annual report, news)
Market Research
(due 11:59pm, Friday, Feb 3rd)

• Why is the company interested in speech or NLP technologies or both?
• What are specific areas or applications of speech/NLP the company is interested in?
• What products of the company use speech or NLP technologies?
• What the main users of their speech or NLP technologies?
• Does the company hold any patent using speech or NLP technologies?
• Does the company publish any papers on speech or NLP technologies?
Market Research
(due 11:59pm, Friday, Feb 3rd)

• Is the company recently hiring in NLP? interns? PhD?
• What specific expertise within speech or NLP the company is looking to hire?
• How is the press coverage of the company?
• How many employees do the company have?
• An estimation of how many speech/NLP experts currently in the company?
• Any notable speech/NLP researcher or recent hires in the company?
• Which city is the company's speech/NLP research office located?
Text Classification

parser
language
label
translation
...

Machine Learning
learning
training
algorithm
shrinkage
network...

NLP
parser
tag
training
translation
language...

Garbage Collection
garbage
collection
memory
optimization
region...

Planning
planning
temporal
reasoning
plan
language...

GUI

...
Classification Methods: **Supervised Machine Learning**

- **Input:**
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, \ldots, c_J\}$
 - A training set of m hand-labeled documents $(d_1, c_1), \ldots, (d_m, c_m)$

- **Output:**
 - a learned classifier $\gamma: d \rightarrow c$
Naïve Bayes Classifier

\[
C_{MAP} = \underset{c \in C}{\arg \max} P(c \mid d)
\]

\[
= \underset{c \in C}{\arg \max} \frac{P(d \mid c)P(c)}{P(d)}
\]

\[
= \underset{c \in C}{\arg \max} P(d \mid c)P(c)
\]

\[
= \underset{c \in C}{\arg \max} P(x_1, x_2, \ldots, x_n \mid c)P(c)
\]

MAP is “maximum a posteriori”
= most likely class

Bayes Rule

Dropping the denominator

Document \(d\) represented as
features \(x_1, \ldots, x_n\)
Multinomial Naïve Bayes: Assumptions

\[P(x_1, x_2, \ldots, x_n \mid c) \]

• **Bag of Words assumption**: Assume position doesn’t matter

• **Conditional Independence**: Assume the feature probabilities \(P(x_i \mid c_j) \) are independent given the class \(c \).

\[
P(x_1, \ldots, x_n \mid c) = P(x_1 \mid c) \cdot P(x_2 \mid c) \cdot P(x_3 \mid c) \cdot \ldots \cdot P(x_n \mid c)
\]
Multinomial Naïve Bayes: Assumptions

\[
c_{MAP} = \arg\max_{c \in C} P(x_1, x_2, \ldots, x_n \mid c)P(c)
\]

\[
= \arg\max_{c \in C} \hat{P}(c) \prod_i \hat{P}(x_i \mid c)
\]

estimate from data
Multinomial Naïve Bayes: Learning

- maximum likelihood estimates
 - simply use the frequencies in the data

\[
\hat{P}(c_j) = \frac{\text{doccount}(C = c_j)}{N_{doc}}
\]

\[
\hat{P}(w_i | c_j) = \frac{\text{count}(w_i, c_j)}{\sum_{w \in V} \text{count}(w, c_j)}
\]

use unique word \(w_i\) as features (in place of \(x_i\))
Multinomial Naïve Bayes: Learning

- Calculate $P(c_j)$ terms
 - For each c_j in C do

 $docs_j \leftarrow$ all docs with class $= c_j$

 $P(c_j) \leftarrow \frac{|docs_j|}{|\text{total # documents}|}$
Multinomial Naïve Bayes: Learning

• maximum likelihood estimates
 – simply use the frequencies in the data

\[\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}} \]

\[\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)} \]

use unique word \(w_i \) as features (in place of \(x_i \))
Multinomial Naïve Bayes: Learning

\[\hat{P}(w_i \mid c_j) = \frac{\text{count}(w_i, c_j)}{\sum_{w \in V} \text{count}(w, c_j)} \]

fraction of times word \(w_i \) appears among all words in documents of topic \(c_j \)

- Create mega-document for topic \(j \) by concatenating all docs in this topic
 - Use frequency of \(w \) in mega-document
Zero Probabilities Problem

• What if we have seen no training documents with the word \textit{fantastic} and classified in the topic \textit{positive}?

\[
\hat{P}(\text{"fantastic" } \mid \text{positive}) = \frac{\text{count("fantastic", positive)}}{\sum_{w \in V} \text{count}(w, \text{positive})} = 0
\]

• Zero probabilities cannot be conditioned away, no matter the other evidence!

\[
c_{MAP} = \arg\max_{c \in C} \hat{P}(c) \prod_{i} \hat{P}(x_i \mid c)
\]
Problem with Maximum Likelihood

- What if we have seen no training documents with the word *fantastic* and classified in the topic *positive*?
Laplace (add-1) smoothing for Naïve Bayes

\[
\hat{P}(w_i | c) = \frac{\text{count}(w_i, c)}{\sum_{w \in V} (\text{count}(w, c))}
\]

\[
= \frac{\text{count}(w_i, c) + 1}{\left(\sum_{w \in V} \text{count}(w, c) \right) + |V|}
\]

- For unknown words (which completely doesn’t occur in training set), we can ignore them.
Multinomial Naïve Bayes: Learning

- From training corpus, extract *Vocabulary*
- Calculate $P(w_k \mid c_j)$ terms
 - $Text_j \leftarrow$ single doc containing all $docs_j$
 - For each word w_k in *Vocabulary*
 - $n_k \leftarrow$ # of occurrences of w_k in $Text_j$

$$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary}$$

(smoothing to avoid zero probabilities (often use $\alpha = 1$))
Exercise
Naïve Bayes: Practical Issues

\[c_{MAP} = \arg\max_c P(c|x_1, \ldots, x_n) \]
\[= \arg\max_c P(x_1, \ldots, x_n|c)P(c) \]
\[= \arg\max_c P(c) \prod_{i=1}^{n} P(x_i|c) \]

- Multiplying together lots of probabilities
- Probabilities are numbers between 0 and 1

Q: What could go wrong here?
Underflow

underflow

Noun

underflow (plural underflows)

1. (computing) A condition in which the value of a computed quantity is smaller than the smallest non-zero value that can be physically stored; usually treated as an error condition

2. (computing) The error condition that results from an attempt to retrieve an item from an empty stack
Floating Point Numbers

Exponent E significand F (also called *mantissa*)

```
+/- | x x x x | y y y y y y y y y y y y
```

Sign bit

In **decimal** it means (+/-) 1. yyyyyyyyyyyyy × 10^xxxx

In **binary**, it means (+/-) 1. yyyyyyyyyyyyy × 2^xxxx

(The 1 is implied)
Floating Point Numbers

IEEE 754 double precision (64 bits)

<table>
<thead>
<tr>
<th>S</th>
<th>exponent</th>
<th>significand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11 bits</td>
<td>52 bits</td>
</tr>
</tbody>
</table>

Largest = \(1.111\ldots \times 2^{+1023}\)

Smallest = \(1.000\ldots \times 2^{-1024}\)
Working with Probabilities in Log Space

\[y = \log_2(x) \]
Log Identities (review)

\[
\log(a \times b) = \text{[? ? ? ? ?]}
\]

\[
\log\left(\frac{a}{b}\right) = \text{[? ? ? ? ?]}
\]

\[
\log(a^n) = \text{[? ? ?]}
\]
Naïve Bayes with Log Probabilities

\[c_{MAP} = \arg\max_c P(c|x_1, \ldots, x_n) \]
\[= \arg\max_c P(c) \prod_{i=1}^{n} P(x_i|c) \]
\[= \arg\max_c \log \left(P(c) \prod_{i=1}^{n} P(x_i|c) \right) \]
\[= \arg\max_c \log P(c) + \sum_{i=1}^{n} \log P(x_i|c) \]

because log is monotonic increasing
Naïve Bayes with Log Probabilities

\[c_{MAP} = \arg\max_c \log P(c) + \sum_{i=1}^{n} \log P(x_i|c) \]

Q: Why don’t we have to worry about floating point underflow anymore?
Working with Probabilities in Log Space

<table>
<thead>
<tr>
<th>x</th>
<th>log(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000000001</td>
<td>-11</td>
</tr>
<tr>
<td>0.00001</td>
<td>-5</td>
</tr>
<tr>
<td>0.0001</td>
<td>-4</td>
</tr>
<tr>
<td>0.001</td>
<td>-3</td>
</tr>
<tr>
<td>0.01</td>
<td>-2</td>
</tr>
<tr>
<td>0.1</td>
<td>-1</td>
</tr>
</tbody>
</table>
What if we want to calculate posterior log-probabilities?

\[
P(c | x_1, \ldots, x_n) = \frac{P(c) \prod_{i=1}^{n} P(x_i | c)}{\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i | c')}
\]

\[
\log P(c | x_1, \ldots, x_n) = \log \frac{P(c) \prod_{i=1}^{n} P(x_i | c)}{\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i | c')}
\]

\[
= \log P(c) + \sum_{i=1}^{n} \log P(x_i | c) - \log \left[\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i | c') \right]
\]
What if we want to calculate posterior log-probabilities?

\[P(c|x_1, \ldots) \]

\[
\log P(c|x_1) = \log P(c) + \sum_{i=1}^{n} \log P(x_i|c) - \log \left(\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i|c') \right)
\]
Log Exp Sum Trick

- We have: a bunch of log probabilities: \(\log(p_1), \log(p_2), \log(p_3), \ldots \log(p_n) \)

- We want: \(\log(p_1 + p_2 + p_3 + \ldots + p_n) \)

- We could convert back from log space, sum then take the log.

Q: Is this a good idea?
Log Exp Sum Trick

• We have: a bunch of log probabilities:
 log(p₁), log(p₂), log(p₃), ... log(pₙ)

• We want: log(p₁ + p₂ + p₃ + ... pₙ)

• We could convert back from log space, sum then take the log.

If the probabilities are very small, this will result in floating point underflow
Log Exp Sum Trick

\[\log\left[\sum_i \exp(x_i) \right] = x_{max} + \log\left[\sum_i \exp(x_i - x_{max}) \right] \]
Another issue: Smoothing

\[\hat{P}(w_i | c) = \frac{\text{count}(w, c) + 1}{\sum_{w' \in V} \text{count}(w', c) + |V|} \]
Another issue: Smoothing

Can think of alpha as a “pseudo-count”. Imaginary number of times this word has been seen.

\[
\hat{P}(w_i | c) = \frac{\text{count}(w, c) + \alpha}{\sum_{w' \in V} \text{count}(w', c) + \alpha |V|}
\]
Another issue: Smoothing

\[\hat{P}(w_i | c) = \frac{\text{count}(w, c) + \alpha}{\sum_{w' \in V} \text{count}(w', c) + \alpha |V|} \]

Hyperparameters are parameters that cannot be directly learned from the standard training process, and need to be predefined.

Alpha doesn’t necessarily need to be 1 (hyperparameter)
Another issue: Smoothing

\[
\hat{P}(w_i | c) = \frac{\text{count}(w, c) + \alpha}{\sum_{w' \in V} \text{count}(w', c) + \alpha|V|}
\]

- What if alpha = 0?
- What if alpha = 0.000001?
- What happens as alpha gets very large?
Overfitting

• Model parameters fits the training data well, but generalize poorly to test data
• How to check for overfitting?
 – Training vs. test accuracy
• Pseudo-count parameter combats overfitting
How to pick Alpha?

• Split train vs. test (dev)
• Try a bunch of different values
• Pick the value of alpha that performs best
• What values to try? Grid search
 – \((10^{-2}, 10^{-1}, \ldots, 10^2)\)

Use this one
Data Splitting

• Train vs. Test

• Better:
 – Train (used for fitting model parameters)
 – Dev (used for tuning hyperparameters)
 – Test (reserve for final evaluation)

• Cross-validation
Feature Engineering

• What is your word / feature representation
 – Tokenization rules: splitting on whitespace?
 – Uppercase is the same as lowercase?
 – Numbers?
 – Punctuation?
 – Stemming?