Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards
Recap: MDPs

- **Markov decision processes:**
 - States S
 - Actions A
 - Transitions $P(s' \mid s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$ (and discount γ)
 - Start state s_0

- **Quantities:**
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)
Gridworld Values V^*

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Gridworld: Q^*

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Solving MDPs
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal
Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[
V^*(s) = \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

\[
V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Racing Search Tree
Racing Search Tree
We’re doing way too much work with expectimax!

- Problem: States are repeated
 - Idea: Only compute needed quantities once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Key idea: time-limited values

Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

- Equivalently, it’s what a depth-k expectimax would give from s
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 5

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.53</td>
<td></td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.42</td>
<td>0.39</td>
<td>0.46</td>
<td>0.26</td>
</tr>
</tbody>
</table>

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 12$

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

\[V_4(\) \ V_4(\) \ V_4(\) \]

\[V_3(\) \ V_3(\) \ V_3(\) \]

\[V_2(\) \ V_2(\) \ V_2(\) \]

\[V_1(\) \ V_1(\) \ V_1(\) \]

\[V_0(\) \ V_0(\) \ V_0(\) \]
Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \]

Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right] \]

Value iteration is just a fixed point solution method

- ... though the \(V_k \) vectors are also interpretable as time-limited values
Example: Value Iteration

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Convergence

- How do we know the V_k vectors are going to converge?

- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge
Policy Methods
Policy Evaluation
Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy $\pi(s)$, then the tree would be simpler - only one action per state
 • ... though the tree’s value would depend on which policy we fixed
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy.

- Define the utility of a state s, under a fixed policy π:
 \[V_{\pi}(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V’s for a fixed policy \(\pi \)?

- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

\[
V_0^\pi(s) = 0
\]

\[
V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\]

- Efficiency: \(O(S^2) \) per iteration

- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Policy Extraction
Let’s imagine we have the optimal values $V^*(s)$.

How should we act?
- It’s not obvious!

We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^*(s')]
$$

This is called policy extraction, since it gets the policy implied by the values.
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow - \(O(S^2A)\) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\[k=5 \]

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=6$

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 9 ITERATIONS

- Top-left cell: 0.64
- Top-middle cell: 0.74
- Top-right cell: 0.85
- Right cell: 1.00
- Middle cell: 0.55
- Middle-right cell: 0.57
- Bottom-right cell: -1.00
- Bottom-left cell: 0.46
- Bottom-middle cell: 0.40
- Bottom-middle-right cell: 0.47
- Left bottom cell: 0.27

Parameters:
- Noise = 0.2
- Discount = 0.9
- Living reward = 0
Values after 10 iterations

- Upper left cell: 0.64
- Upper middle cell: 0.74
- Upper right cell: 0.85
- Right cell: 1.00
- Middle left cell: 0.56
- Middle right cell: 0.57
- Middle cell: -1.00
- Lower left cell: 0.48
- Lower middle cell: 0.41
- Lower right cell: 0.47
- Bottom cell: 0.27

Parameters:
- $k=10$
- Noise = 0.2
- Discount = 0.9
- Living reward = 0
\[k = 11 \]

VALUES AFTER 11 ITERATIONS

\[
\begin{array}{cccc}
0.64 & 0.74 & 0.85 & 1.00 \\
0.56 & \text{gray} & 0.57 & -1.00 \\
0.48 & 0.42 & 0.47 & 0.27 \\
\end{array}
\]

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Alternative approach for optimal values:

- **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
- **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges

This is policy iteration

- It’s still optimal!
- Can converge (much) faster under some conditions
Policy Iteration

- **Evaluation**: For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 \[
 V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
 \]

- **Improvement**: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg\max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
So you want to:
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
- They basically are - they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions
Double Bandits
Double-Bandit MDP

- **Actions:** Blue, Red
- **States:** Win, Lose

No discount
100 time steps
Both states have the same value
Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>150</td>
</tr>
<tr>
<td>Play Blue</td>
<td>100</td>
</tr>
</tbody>
</table>
Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0
Online Planning

- Rules changed! Red’s win chance is different.
Let’s Play!
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Next Time: Reinforcement Learning!