CS 5522: Artificial Intelligence II

Markov Models

Instructor: Wei Xu
Ohio State University

[These slides were adapted from CS188 Intro to AI at UC Berkeley.]
Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

- We generally compute conditional probabilities
 - $P(\text{on time} \mid \text{no reported accidents}) = 0.90$
 - These represent the agent’s beliefs given the evidence

- Probabilities change with new evidence:
 - $P(\text{on time} \mid \text{no accidents, 5 a.m.}) = 0.95$
 - $P(\text{on time} \mid \text{no accidents, 5 a.m., raining}) = 0.80$
 - Observing new evidence causes beliefs to be updated
Inference by Enumeration

- **General case:**
 - Evidence variables: \(E_1 \ldots E_k = e_1 \ldots e_k \)
 - Query\(^*\) variable: \(Q \)
 - Hidden variables: \(H_1 \ldots H_r \)
 - All variables: \(X_1, X_2, \ldots X_n \)

- **We want:**
 \[
P(Q|e_1 \ldots e_k)
 \]
 \(\text{* Works fine with multiple query variables, too}\)

- **Step 1:** Select the entries consistent with the evidence

- **Step 2:** Sum out \(H \) to get joint of Query and evidence

- **Step 3:** Normalize

\[
P(Q,e_1 \ldots e_k) = \sum_{h_1 \ldots h_r} P(Q,h_1 \ldots h_r,e_1 \ldots e_k)
\]

\[
P(Q|e_1 \ldots e_k) = \frac{1}{Z} P(Q,e_1 \ldots e_k)
\]

\[
Z = \sum_q P(Q,e_1 \ldots e_k)
\]
Inference by Enumeration

- **Obvious problems:**
 - Worst-case time complexity $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution
The Product Rule

- Sometimes have conditional distributions but want the joint

\[P(y)P(x|y) = P(x, y) \quad \leftrightarrow \quad P(x|y) = \frac{P(x, y)}{P(y)} \]
The Product Rule

\[P(y) P(x|y) = P(x, y) \]

- Example:

\[
\begin{array}{c|c|c|c|c|c|c}
 & D & W & P \\
\hline
W & wet & sun & 0.1 \\
 & dry & sun & 0.9 \\
 & wet & rain & 0.7 \\
 & dry & rain & 0.3 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c}
 & D & W & P \\
\hline
wet & sun & 0.8 \\
dry & sun & 0.2 \\
\end{array}
\]
The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

\[P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \]

\[P(x_1, x_2, \ldots x_n) = \prod_i P(x_i|x_1 \ldots x_{i-1}) \]

Why is this always true?
Bayes’ Rule

- Two ways to factor a joint distribution over two variables:
 \[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

- Dividing, we get:
 \[P(x|y) = \frac{P(y|x)}{P(y)}P(x) \]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we’ll see later (e.g. ASR, MT)

- In the running for most important AI equation!
Inference with Bayes’ Rule

- Example: Diagnostic probability from causal probability:

\[P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})} \]

- Example:
 - M: meningitis, S: stiff neck

\[
\begin{align*}
P(+m) &= 0.0001 \\
P(+s|m) &= 0.8 \\
P(+s|m') &= 0.01
\end{align*}
\]

\[
P(+m|+s) = \frac{P(+s|m)P(+m)}{P(+s)} = \frac{P(+s|m)P(+m)}{P(+s|m)P(+m) + P(+s|m')P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}
\]

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?
Quiz: Bayes’ Rule

- **Given:**

 - $P(W)$

<table>
<thead>
<tr>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet sun</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>dry sun</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>wet rain</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>dry rain</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

- **What is $P(W \mid \text{dry})$?**
Independence

- Two variables are *independent* in a joint distribution if:

\[
P(X, Y) = P(X)P(Y) \quad X \perp Y
\]

\[
\forall x, y \ P(x, y) = P(x)P(y)
\]

- Says the joint distribution *factors* into a product of two simple ones
- Usually variables aren’t independent!

- Can use independence as a *modeling assumption*
 - Independence can be a simplifying assumption
 - *Empirical* joint distributions: at best “close” to independent
 - What could we assume for \{Weather, Traffic, Cavity\}?
Example: Independence?

\[P_1(T, W) \]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T) \]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

\[P_2(T, W) \]

\[P_2(T, W) = P(T)P(W) \]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

\[P(W) \]

<table>
<thead>
<tr>
<th></th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Example: Independence

- N fair, independent coin flips:

\[
\begin{array}{|c|c|}
\hline
X_1 & P(X_1) \\
\hline
H & 0.5 \\
T & 0.5 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|}
\hline
X_2 & P(X_2) \\
\hline
H & 0.5 \\
T & 0.5 \\
\hline
\end{array}
\quad \ldots
\begin{array}{|c|c|}
\hline
X_n & P(X_n) \\
\hline
H & 0.5 \\
T & 0.5 \\
\hline
\end{array}
\]

\[P(X_1, X_2, \ldots, X_n) = 2^n\]
Conditional Independence
Conditional Independence

- \(P(\text{Toothache, Cavity, Catch}) \)

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - \(P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity}) \)

- The same independence holds if I don’t have a cavity:
 - \(P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity}) \)

- Catch is conditionally independent of Toothache given Cavity:
 - \(P(\text{Catch} \mid \text{Toothache, Cavity}) = P(\text{Catch} \mid \text{Cavity}) \)

- Equivalent statements:
 - \(P(\text{Toothache} \mid \text{Catch, Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \)
 - \(P(\text{Toothache, Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \) \(P(\text{Catch} \mid \text{Cavity}) \)
 - One can be derived from the other easily
Conditional Independence

- Unconditional (absolute) independence very rare (why?)

- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z if and only if:

 $$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

 or, equivalently, if and only if

 $$\forall x, y, z : P(x|z, y) = P(x|z)$$
 Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- Product rule
 \[P(x, y) = P(x|y)P(y) \]

- Chain rule
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- X, Y independent if and only if \(\forall x, y : P(x, y) = P(x)P(y) \)

- X and Y are conditionally independent given Z if and only if \(X \perp Y | Z \)
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
Markov Models
Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring

- Need to introduce time (or space) into our models
Markov Models

- Value of \(X \) at a given time is called the **state**

\[
\begin{align*}
X_1 & \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \\
P(X_1) & \quad P(X_t | X_{t-1})
\end{align*}
\]

- Parameters: called **transition probabilities** or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action
Joint Distribution of a Markov Model

Joint distribution:

\[P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3) \]

More generally:

\[P(X_1, X_2, \ldots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2) \ldots P(X_T|X_{T-1}) \]

\[= P(X_1) \prod_{t=2}^{T} P(X_t|X_{t-1}) \]

Questions to be resolved:

- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?
From the chain rule, every joint distribution over X_1, X_2, X_3, X_4 can be written as:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)P(X_4|X_1, X_2, X_3)$$

Assuming that $X_3 \perp X_1 \mid X_2$ and $X_4 \perp X_1, X_2 \mid X_3$

results in the expression posited on the previous slide:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$
From the chain rule, every joint distribution over X_1, X_2, \ldots, X_T can be written as:

$$P(X_1, X_2, \ldots, X_T) = P(X_1) \prod_{t=2}^{T} P(X_t|X_1, X_2, \ldots, X_{t-1})$$

Assuming that for all t:

$$X_t \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$$

gives us the expression posited on the earlier slide:

$$P(X_1, X_2, \ldots, X_T) = P(X_1) \prod_{t=2}^{T} P(X_t|X_{t-1})$$
Implied Conditional Independencies

- We assumed: \(X_3 \perp X_1 \mid X_2 \) and \(X_4 \perp X_1, X_2 \mid X_3 \)

- Do we also have \(X_1 \perp X_3, X_4 \mid X_2 \)?
 - Yes!
 - Proof:

\[
P(X_1 \mid X_2, X_3, X_4) = \frac{P(X_1, X_2, X_3, X_4)}{P(X_2, X_3, X_4)}
\]

\[
= \frac{P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}{\sum_{x_1} P(x_1)P(X_2 \mid x_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}
\]

\[
= \frac{P(X_1, X_2)}{P(X_2)}
\]

\[
= P(X_1 \mid X_2)
\]
Markov Models Recap

- Explicit assumption for all t: $X_t \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

 $$P(X_1, X_2, \ldots, X_T) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2) \ldots P(X_T \mid X_{T-1})$$

 $$= P(X_1) \prod_{t=2}^{T} P(X_t \mid X_{t-1})$$

- Implied conditional independencies: (try to prove this!)
 - Past variables independent of future variables given the present
 i.e., if $t_1 < t_2 < t_3$ or $t_1 > t_2 > t_3$ then: $X_{t_1} \perp X_{t_3} \mid X_{t_2}$
 - Additional explicit assumption: $P(X_t \mid X_{t-1})$ is the same for all t
Example Markov Chain: Weather

- States: $X = \{\text{rain, sun}\}$
- Initial distribution: 1.0 sun
- CPT $P(X_t | X_{t-1})$:

| X_{t-1} | X_t | $P(X_t | X_{t-1})$ |
|-----------|-------|-------------------|
| sun | sun | 0.9 |
| sun | rain | 0.1 |
| rain | sun | 0.3 |
| rain | rain | 0.7 |

Two new ways of representing the same CPT
Example Markov Chain: Weather

- Initial distribution: 1.0 sun

- What is the probability distribution after one step?

\[
P(X_2 = \text{sun}) = P(X_2 = \text{sun} | X_1 = \text{sun}) P(X_1 = \text{sun}) + P(X_2 = \text{sun} | X_1 = \text{rain}) P(X_1 = \text{rain})
\]

\[
0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9
\]
Mini-Forward Algorithm

- **Question:** What’s P(X) on some day t?

\[
P(x_1) = \text{known}
\]

\[
P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)
\]

\[
= \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1})
\]

Forward simulation
Example Run of Mini-Forward Algorithm

- From initial observation of sun

\[
\begin{pmatrix}
1.0 \\
0.0
\end{pmatrix}
\begin{pmatrix}
0.9 \\
0.1
\end{pmatrix}
\begin{pmatrix}
0.84 \\
0.16
\end{pmatrix}
\begin{pmatrix}
0.804 \\
0.196
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0.75 \\
0.25
\end{pmatrix}
\]

- From initial observation of rain

\[
\begin{pmatrix}
0.0 \\
1.0
\end{pmatrix}
\begin{pmatrix}
0.3 \\
0.7
\end{pmatrix}
\begin{pmatrix}
0.48 \\
0.52
\end{pmatrix}
\begin{pmatrix}
0.588 \\
0.412
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0.75 \\
0.25
\end{pmatrix}
\]

- From yet another initial distribution \(P(X_1) \):

\[
\begin{pmatrix}
p \\
1-p
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0.75 \\
0.25
\end{pmatrix}
\]
Stationary Distributions

- For most chains:
 - Influence of the initial distribution gets less and less over time.
 - The distribution we end up in is independent of the initial distribution

- Stationary distribution:
 - The distribution we end up with is called the **stationary distribution** P_∞ of the chain.
 - It satisfies
 \[P_\infty(X) = P_{\infty+1}(X) = \sum_x P(X|x)P_\infty(x) \]
Example: Stationary Distributions

- Question: What’s $P(X)$ at time $t = \infty$?

 \[
P_{\infty}(\text{sun}) = P(\text{sun}|\text{sun})P_{\infty}(\text{sun}) + P(\text{sun}|\text{rain})P_{\infty}(\text{rain})
 \]

 \[
P_{\infty}(\text{rain}) = P(\text{rain}|\text{sun})P_{\infty}(\text{sun}) + P(\text{rain}|\text{rain})P_{\infty}(\text{rain})
 \]

 \[
P_{\infty}(\text{sun}) = 0.9P_{\infty}(\text{sun}) + 0.3P_{\infty}(\text{rain})
 \]

 \[
P_{\infty}(\text{rain}) = 0.1P_{\infty}(\text{sun}) + 0.7P_{\infty}(\text{rain})
 \]

 \[
P_{\infty}(\text{sun}) = 3P_{\infty}(\text{rain})
 \]

 \[
P_{\infty}(\text{rain}) = 1/3P_{\infty}(\text{sun})
 \]

 Also: $P_{\infty}(\text{sun}) + P_{\infty}(\text{rain}) = 1$

 \[
P_{\infty}(\text{sun}) = 3/4
 \]

 \[
P_{\infty}(\text{rain}) = 1/4
 \]
Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
 - Each web page is a state
 - Initial distribution: uniform over pages
 - Transitions:
 - With prob. c, uniform jump to a random page (dotted lines, not all shown)
 - With prob. $1-c$, follow a random outlink (solid lines)

- Stationary distribution
 - Will spend more time on highly reachable pages
 - E.g. many ways to get to the Acrobat Reader download page
 - Somewhat robust to link spam
 - Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)
Next Time: Hidden Markov Models!