CS 5522: Artificial Intelligence II

Bayes’ Nets: Independence

Instructor: Wei Xu
Ohio State University

[These slides were adapted from CS188 Intro to AI at UC Berkeley.]
Probability Recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(X_1, X_2, \ldots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- **X, Y independent if and only if**: \(\forall x, y : P(x, y) = P(x)P(y) \)

- **X and Y are conditionally independent given Z if and only if**: \(X \independent Y|Z \)
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
Bayes’ Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?
Bayes’ Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values $P(X|a_1 \ldots a_n)$
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))$$
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) =
\]

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|----|-----|------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

| A | M | P(M|A) |
|----|-----|-------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

| B | E | A | P(A|B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |
Example: Alarm Network

\[P(+b, -e, +a, -j, +m) = \]
\[P(+b)P(-e)P(+a| b, -e)P(-j| +a)P(+m| +a) = \]
\[0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7 = \]
Example: Traffic

- **Causal direction**

<table>
<thead>
<tr>
<th>$P(R)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$+r$</td>
<td>$1/4$</td>
</tr>
<tr>
<td>$-r$</td>
<td>$3/4$</td>
</tr>
</tbody>
</table>

| $P(T | R)$ | |
|---|---|
| $+r$ | $+t$ | $3/4$ |
| $+r$ | $-t$ | $1/4$ |
| $-r$ | $+t$ | $1/2$ |
| $-r$ | $-t$ | $1/2$ |

<table>
<thead>
<tr>
<th>$P(T, R)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$+r$</td>
<td>$+t$</td>
</tr>
<tr>
<td>$+r$</td>
<td>$-t$</td>
</tr>
<tr>
<td>$-r$</td>
<td>$+t$</td>
</tr>
<tr>
<td>$-r$</td>
<td>$-t$</td>
</tr>
</tbody>
</table>
Example: Reverse Traffic

- Reverse causality?

\[
\begin{array}{c|c}
T & +t & 9/16 \\
 & -t & 7/16 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
R & +t & 1/3 \\
 & -r & 2/3 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
T & +t & 3/16 \\
 & -t & 1/16 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
R & +t & 6/16 \\
 & -t & 6/16 \\
\end{array}
\]
Causality?

- **When Bayes’ nets reflect the true causal patterns:**
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- **BNs need not actually be causal**
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- **What do the arrows really mean?**
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

\[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]
Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?
 2^N

- How big is an N-node net if nodes have up to k parents?
 $O(N \times 2^{k+1})$

- Both give you the power to calculate $P(X_1, X_2, \ldots, X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)
Bayes’ Nets

- Representation
 - Conditional Independences
 - Probabilistic Inference
 - Learning Bayes’ Nets from Data
Conditional Independence

- X and Y are independent if

\[\forall x, y \quad P(x, y) = P(x)P(y) \quad \Rightarrow \quad X \perp Y \]

- X and Y are conditionally independent given Z

\[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \quad \Rightarrow \quad X \perp Y|Z \]

- (Conditional) independence is a property of a distribution

- Example: \[Alarm \perp Fire|Smoke \]
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

 \[P(x_i|x_1 \cdots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

- Beyond above “chain rule \rightarrow Bayes net” conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph

- Important for modeling: understand assumptions made when choosing a Bayes net graph
Example

- Conditional independence assumptions directly from simplifications in chain rule:

- Additional implied conditional independence assumptions?
Important question about a BN:

- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

 ![Diagram of nodes X, Y, and Z connected with arrows]

Question: are X and Z necessarily independent?

- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they *could* be independent: how?
D-separation: Outline
D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries
Causal Chains

- This configuration is a “causal chain”

- Guaranteed X independent of Z? **No!**

 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

 - Example:

 Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

 - In numbers:

 \[
 P(x, y, z) = P(x)P(y|x)P(z|y)
 \]

 \[
 P(+y | +x) = 1, P(-y | - x) = 1,
 \]

 \[
 P(+z | +y) = 1, P(-z | -y) = 1
 \]
Causal Chains

- This configuration is a “causal chain”

- Guaranteed X independent of Z given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y)
\]

Yes!

- Evidence along the chain “blocks” the influence

X: Low pressure Y: Rain Z: Traffic

\[
P(x, y, z) = P(x)P(y|x)P(z|y)
\]
Common Cause

- This configuration is a “common cause”

\[P(x, y, z) = P(y)P(x|y)P(z|y) \]

- Guaranteed X independent of Z? \textit{No}!

 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

 - Example:
 - Project due causes both forums busy and lab full

 In numbers:
 \[
 P(+x \mid +y) = 1, \ P(-x \mid -y) = 1, \\
 P(+z \mid +y) = 1, \ P(-z \mid -y) = 1
 \]
This configuration is a “common cause”

Y: Project due
X: Forums busy
Z: Lab full

Guaranteed X and Z independent given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} = P(z|y) \]

Yes!

Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.
The General Case

CONDITIONAL INDEPENDENCE
IN 3 EASY STEPS!
The General Case

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: analyze the graph

- Any complex example can be broken into repetitions of the three canonical cases
Recipe: shade evidence nodes, look for paths in the resulting graph

Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Active / Inactive Paths

- **Question:** Are X and Y conditionally independent given evidence variables \{Z\}?
 - Yes, if X and Y “d-separated” by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!

- **A path is active if each triple is active:**
 - Causal chain \(A \rightarrow B \rightarrow C\) where B is unobserved (either direction)
 - Common cause \(A \leftarrow B \rightarrow C\) where B is unobserved
 - Common effect (aka v-structure)
 \(A \rightarrow B \leftarrow C\) where B or one of its descendents is observed

- All it takes to block a path is a single inactive segment
D-Separation

- Query: \(X_i \perp\!\!\!\!\perp X_j | \{X_{k_1}, \ldots, X_{k_n}\} \) ?

- Check all (undirected!) paths between \(X_i \) and \(X_j \):
 - If one or more active, then independence not guaranteed
 \(X_i \not\perp\!\!\!\!\perp X_j | \{X_{k_1}, \ldots, X_{k_n}\} \)
 - Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed
 \(X_i \perp\!\!\!\!\perp X_j | \{X_{k_1}, \ldots, X_{k_n}\} \)
Example

\[R \perp B \quad \text{Yes} \]
\[R \perp B | T \]
\[R \perp B | T' \]
Example

\[L \perp T' | T \quad \text{Yes} \]
\[L \perp B \quad \text{Yes} \]
\[L \perp B | T \]
\[L \perp B | T' \]
\[L \perp B | T, R \quad \text{Yes} \]
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**

 \[
 T \perp D \\
 T \perp D | R \quad \text{Yes} \\
 T \perp D | R, S
 \]
Structure Implications

- Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp \!
\!
\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

- This list determines the set of probability distributions that can be represented
Computing All Independences

Compute **ALL THE INDEPENDENCES!**
Given some graph topology G, only certain joint distributions can be encoded.

The graph structure guarantees certain (conditional) independences.

(There might be more independence)

Adding arcs increases the set of distributions, but has several costs.

Full conditioning can encode any distribution.
Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes’ net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution
Bayes’ Nets

- Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes’ Nets from Data