CSE 5525 Artificial Intelligence II

Quiz #5: Probability Wei Xu, Ohio State University

Your	Name:	OSU	Username:	
1 Oui	T (WIIIC.	 ODO	Cocinatio.	

1 Joint and Conditional Distributions

Consider three random variables Toothache, Cavity and Catch. The joint probabilities that each random variable takes on the respective values is given below:

	+toothache		-toothache	
	+catch	-catch	+catch	-catch
+cavity	0.108	0.012	0.072	0.008
-cavity	0.016	0.064	0.144	0.576

Questions:

- 1) What is P(+toothache)?
- 2) What is P(Catch)?
- 3) What is P(+cavity|+catch)?
- 4) What is P(+cavity| + toothache or + catch)?
- 5) Is the random variable Catch *conditionally independent* of Toothache, given Cavity? (Hint: P(+catch|+toothache,+cavity) = P(+catch|+cavity)?)

2 Conditional Independence

For random variables X, Y, Z, show that the following three statements are equivalent:

 $\begin{array}{l} \text{(i)}\ P(X|Y,Z) = P(X|Z)\\ \text{(ii)}\ P(Y|X,Z) = P(Y|Z)\\ \text{(iii)}\ P(X,Y|Z) = P(X|Z)P(Y|Z) \end{array}$

Equivalence of the first two statements show that conditional independence is symmetric (X and Y are conditionally independent given Z, and the order of X and Y doesn't matter). The third statement is analogous to the definition of *unconditional* independence: P(X,Y) = P(X)P(Y).