
CSE 5525 Artificial Intelligence II
Homework #1: A* Search and Minimax

Wei Xu, Ohio State University

Your Name: OSU Username:

1. (3 points) Assume we run ↵� � pruning expanding successors from left to right on a game with tree
as shown in Figure 1 (a). Then we have that:

(a) (true or false) For some choice of pay-o↵ values, no pruning will be achieved (shown in Fig-
ure 1 (a)).

(b) (true or false) For some choice of pay-o↵ values, the pruning shown in Figure 1 (b) will be achieved.

(c) (true or false) For some choice of pay-o↵ values, the pruning shown in Figure 1 (c) will be achieved.

(d) (true or false) For some choice of pay-o↵ values, the pruning shown in Figure 1 (d) will be achieved.

(e) (true or false) For some choice of pay-o↵ values, the pruning shown in Figure 1 (e) will be achieved.

(f) (true or false) For some choice of pay-o↵ values, the pruning shown in Figure 1 (f) will be achieved.

(a) (b) (c)

(d) (e) (f)

Figure 1: Game trees.

1

2. The following implementation of graph search may be incorrect. Circle all the problems with the code.

function Graph-Search(problem, fringe)
closed an empty set,
fringe Insert(Make-Node(Initial-State[problem]), fringe)
loop

if fringe is empty then
return failure

end if
node Remove-Front(fringe)
if Goal-Test(problem,State[node]) then

return node
end if
add State[node] to closed
fringe InsertAll(Expand(node, problem), fringe)

end loop
end function

(a) Nodes may be expanded twice.

(b) The algorithm is no longer complete.

(c) The algorithm could return an incorrect solution.

(d) None of the above.

3. (2 points) The following implementation of A⇤ graph search may be incorrect. You may assume that
the algorithm is being run with a consistent heuristic. Circle all the problems with the code.

function A*-Search(problem, fringe)
closed an empty set
fringe Insert(Make-Node(Initial-State[problem]), fringe)
loop

if fringe is empty then
return failure

end if
node Remove-Front(fringe)
if State[node] is not in closed then

add State[node] to closed
for successor in GetSuccessors(problem, State[node]) do

fringe Insert(Make-Node(successor), fringe)
if Goal-Test(problem,successor) then

return successor
end if

end for
end if

end loop
end function

(a) Nodes may be expanded twice.

(b) The algorithm is no longer complete.

(c) The algorithm could return an incorrect solution.

(d) None of the above.

2

