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State-of-the-art LLMs are aligned with human 
feedback. 
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Aligning models with human feedback can steer 
them to be more helpful, harmless, grounded, …

“How do I do make a bomb?” “How do I make a bath bomb?”
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Aligning models is tricky to get right.



πrefSupervised Finetuning

Kahneman-Tversky 
Optimization (KTO)

abundant! 

this work

≻

≻

RLHF

hard-to-get!

Roadmap

Direct Preference 
Optimization (DPO)

prior work
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Reinforcement Learning with Human Feedback
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The first stage of alignment is supervised fine-
tuning (SFT).

πrefSupervised Finetuning

Demonstrations
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Part 1: RLHF



Traditionally, the second stage is reinforcement 
learning with human feedback (RLHF).
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πrefSupervised Finetuning

≻

≻

RLHF

hard-to-get!
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The RLHF Recipe

Given preferences , a trainable reward model  
and the LM  with SFT checkpoint :


1. Assume preferences are Bradley-Terry: .


2. Train  to maximize the log-likelihood of the given preferences.


3. Maximize  using RL.

D = {(x, yw, yl) |yw ≻ yl} rϕ : (x, y) → ℝ
πθ πref

p(yw ≻ yl) = σ(rϕ(x, yw) − rϕ(x, yl))

rϕ

𝔼x∈D,y∈πθ
[rϕ(x, y)] − βDKL(πθ(y |x)∥πref(y |x))

PPO Tutorial (Simonini, 2022)

Part 1: RLHF



RLHF works! But in practice, it can be slow, 
unstable, and require some hacking to get right.

πrefSupervised Finetuning
πaligned

≻

≻

RLHF

slow!

Unstable!

Can we get all the benefits of RLHF without the 
hassle of RL?
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Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO) directly 
maximizes the likelihood of preferences.

ℒDPO(πθ, πref) = 𝔼x,yw,yl∼D −log σ (β log
πθ(yw |x)

πref(yw |x)
− β log

πθ(yl |x)
πref(yl |x) )

reward of preferred reward of dispreferred

Theoretically 
Optimal Reward r*

Bradley-Terry 
Preference Model

DPO Loss 
(  RLHF)≡+

−log

r* → rθ

Part 2: DPO

RLHF Objective: maximize rewards while not drifting too far from the starting point.

𝔼x∈D,y∈πθ

[r(x, y)] − βDKL(πθ(y |x)∥πref(y |x))



DPO is an offline approach, in contrast to online 
RLHF.

πalignedπrefSupervised Finetuning

≻

≻

RLHF

Direct Preference 
Optimization (DPO)

prior work
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Part 2: DPO



DPO works as well as RLHF (sometimes better, 
due to the latter’s stability issues). 

(Rafailov et al., 2023)
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Counterpoint: Recent work argues that RLHF has a higher 
(but harder-to-reach) ceiling than DPO.

Part 2: DPO



Human-Aware Losses (HALOs)
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The conventional view is that reward learning is 
essential for model alignment to work.

• In RLHF, reward learning is explicit: learn a reward model , then update  to 
maximize these rewards. 

rϕ πθ
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• In DPO, reward learning is implicit: in minimizing the loss, the reward implied by 
 becomes optimal (assuming preferences are Bradley-Terry).πθ

Part 3: HALOs



What if we did RLHF without reward learning, 
using just dummy +1/-1 rewards on offline data?

πalignedπrefSupervised Finetuning

≻

≻

RLHF

Direct Preference 
Optimization (DPO)

prior work

-1 +1

-1 +1

Use PPO-Clip but at  
all steps, πold ← πref

Dummy RLHF
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Part 3: HALOs



Surprisingly, dummy RLHF works as well as DPO 
from 1B up to 13B parameters.

unaligned DPOSFT token-conditioned 
baseline

max-margin 
baseline

dummy 
RLHF

dotted line = parity of generated text 
with text we would use for finetuning

Why does our dummy RLHF work so well 
despite not having learned rewards?
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Part 3: HALOs



The best-performing alignment losses capture key 
cognitive biases in human decision-making.
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gain

(Implied) Human Value

loss

Kahneman-Tversky

reference point
loss aversion 

concave in gains 

DPO
PPO-Clip

Part 3: HALOs



20

Part 3: HALOs

Human-Aware Losses
Given our policy LM , reference LM , and a normalizing factor , the 
implied reward is:





Where  is a reference point distribution and  is non-decreasing and 
concave in , the human value of  is 





 is a corresponding human-aware loss if 


 


where  and  is a data-specific constant. 

πθ πref l : 𝒴 → ℝ+

rθ(x, y) = l(y)log[πθ(y |x)/πref(y |x)]

Q(Y′￼|X) v : ℝ → ℝ
(0,∞) (x, y)

v(rθ(x, y) − 𝔼Q[rθ(x, y′￼)])

f

f(πθ, πref) = 𝔼x,y∼D[ax,yv(rθ(x, y) − 𝔼Q[rθ(x, y′￼)])] + C𝒟

a ∈ {−1, + 1} C𝒟

Among existing methods, HALOs (e.g., DPO, 
PPO) work better than non-HALOs.



This also implies that there is no one ideal loss; 
different settings merit different HALOs.

(Implied) Human Value

loss

Kahneman-Tversky

financial advice bot 
video game character    

gain
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Part 3: HALOs



Kahneman-Tversky Optimization (KTO)
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πalignedπrefSupervised Finetuning

≻

≻

RLHF

hard-to-get!

In production, the biggest bottleneck to alignment is 
not implementation—it’s access to preference data.

Direct Preference 
Optimization (DPO)

prior work
23

Part 4: KTO



Binary feedback provides a sparser signal, but is 
more abundant, cheaper, and faster to collect.

e.g., sales calls e.g., live feedback

abundant, cheap, 
fast to collect! 

Binary Feedback
Can we design a HALO that takes 

binary feedback as input?
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We can design a preference-free HALO that 
directly maximizes the utility of generations.
RLHF Objective: maximize rewards while not drifting too far from the starting point.


𝔼x∈D,y∈πθ
[r(x, y)] − βDKL(πθ(y |x)∥πref(y |x))

Bradley-Terry 
Preference Model

DPO Loss 
(max-margin,  RLHF)≡+

−log

r* → rθ

Theoretically Optimal 
Reward r*

Kahneman-Tversky Value Function (ish)
KTO Loss 

(preference-free)
Expected Reward as Reference Point

HALO-defined Reward
1 − ( ⋅ )

Part 4: KTO



Kahneman-Tversky Optimization (KTO)
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loss gain

use reward 
Use reference point 

estimated value  

control loss aversion with ; 

risk aversion with 

λD, λU
β

Kahneman-Tversky Optimization (KTO) Loss

 
λDnD

λUnU
∈ [1,

4
3 ]

in practice, share 

 across all  in 
batch 

̂z0 x

Part 4: KTO



KTO matches or exceeds the performance of 
baselines, sometimes without finetuning prior.

dotted line = parity of generated text 
with text we would use for finetuning

preference-free  
baseline 

preference-based  
baseline (DPO)

KTO

w/o SFT w/o SFT w/o SFTw/ SFT w/ SFT w/ SFT
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Part 4: KTO
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Part 4: KTO



KTO can handle highly imbalanced datasets, 
making it more tolerant of production environments.

dotted line = winrate 
of DPO-aligned model 

(on all data) 
x% of desirable data for KTO

W
in

ra
te

e.g., sales calls
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Part 4: KTO



Feedback data used for KTO does not need to 
come from preference datasets.

MMLU (Language)

GSM8K (Math)

HumanEval (Code)

BigBench-Hard

0 15 30 45 60

Zephyr-SFT +DPO +KTO +KTO (one y per x, sub-50% of data)

10+ percent boost on mathematical 
reasoning by just changing the loss
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Part 4: KTO



KTO’s surprising success may come from its 
handling of noise and intransitivity in real-world data.

Proposition 4.1 (informal). KTO does not learn from data that is too 
difficult to learn from. 

Theorem 4.2 (informal). A policy that maximizes Bradley-Terry 
preference likelihood does not necessarily maximize the expected 
human value. 

Theorem 4.3 (informal). When there are contradictory preferences, the 
optimal DPO policy is—under certain conditions—more likely to 
generate the dispreferred output; not so the case with KTO.
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Part 4: KTO



Which alignment method should you use? It really 
depends on your data.

KTO

≻

≻

≻

≻

≻

≻
DPO

KTO

binary feedback  
(especially when imbalanced)

preference feedback  
(low enough noise, intransitivity)

preference feedback  
(high enough noise, intransitivity)

Depending not the circumstances, others might be better. 
Or roll your own HALO! There is no one-loss-fits-all.
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KTO enabled Microsoft to create a small model 
(Orca-Math) that is exceptionally good at math.

KTO is much more robust to the 
choice of data used for alignment!

2 trillion?

180 billion?

(Mitra et al., 2024)

Part 4: KTO
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Diffusion-KTO is much better than Diffusion-DPO 
for aligning image generation models.

Humans prefer  
Diffusion-KTO to Diffusion-DPO 

65 - 75% of the time!

KTO DPO SFT CSFT SD1.5

(Li et al., 2024)

Li et al., 2024. Aligning Diffusion Models by Optimizing Human Utility. preprint. 

Part 4: KTO



35

Subsequent surveys have found KTO to be on par 
or better than DPO (and some other alternatives).

Saeidi et al., 2024. Insights into Alignment: Evaluating DPO and its Variants Across Multiple Tasks. preprint. 

Part 4: KTO
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KTO is especially good at aligning LLMs to reason.

Yuan et al., 2024. Advancing LLM Reasoning Generalists with Preference Trees. preprint. 

Part 4: KTO



Summary & Future Work
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Summary
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Kahneman-Tversky 
Optimization (KTO)

abundant! 

this work

≻

≻

RLHF

hard-to-get! Direct Preference 
Optimization (DPO)

prior work
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Open Problems
1. The Kahneman-Tverksy value function was derived in the context of 

monetary gambles. What does a value function specifically for 
language/health/finance look like? 

2. If all you care is about increasing performance on a given task, does 
the objective really matter (as data -> )? 

3. The discourse has converged on (over-fitted to?) paired preferences 
as the canonical kind of feedback. How do we move beyond that?

∞
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Thank you!
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HALOs


