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Introduction

● Quantization is a model compression technique that converts the weights and 
activations within an LLM from a high-precision data representation to a 
lower-precision data representation i.e. from a data type that can hold more 
information to one that holds less.
○ Ex: conversion of data from a 32-bit floating-point number (FP32) to an 

8-bit or 4-bit integer (INT4 or INT8)
● Advantages:

○ Smaller Models
○ Increased Scalability
○ Faster Inference

● Disadvantage: Loss of Accuracy



Types of LLM Quantization

● Post-Training Quantization (PTQ): Techniques that quantize an LLM after it 
has already been trained. 

○ Advantage: Easier to implement than QAT as it requires less training data and is faster
○ Disadvantage: Reduced model accuracy from lost precision in the value of the weights

● Quantization-Aware Training (QAT): Integrates the weight conversion process 
such as calibration, range estimation, clipping, rounding, etc. during the 
training stage. 

○ Advantage: Improved model performance
○ Disadvantage: Computationally expensive 



Motivation

● As LLMs have increased in intelligence and complexity, the number of 
parameters or weights and activations has also grown

○ Ex: GPT-3.5 has around 175 billion parameters while the current SOTA GPT-4 has in excess 
of 1 trillion parameters 

● LLMs like LLaMA 65B require >780 GB of GPU memory for finetuning
● Feasible to run LLMs on high-specification hardware with the prerequisite 

amount of GPUs limiting deployment options and consequently how readily 
LLM-based solutions can be adopted.

● Existing quantization techniques are limited to inference, breaking down in 
training scenarios.

● Need for accessible solutions that reduce cost and resource barriers.



GPTQ: General Pre-Trained Transformer Quantization

● Layer-wise quantization  that quantizes a model a layer at a time with the aim 
of discovering the quantized weights that minimize output MSE, the squared 
error between the outputs of the original, full-precision layer and the quantized 
layer.

● GPTQ employs a mixed INT4/FP16 quantization method in which a 4-bit 
integer is used to quantize weights and activations remain in a higher 
precision float16 data type



GPTQ: General Pre-Trained Transformer Quantization



Blockwise k-bit Quantization



Blockwise k-bit Quantization

● Issue in Simple Scaling Quantization: outliers in the input tensor cause certain 
quantization bins (bit combinations) to be underutilized

● Solution: chunk the input tensor into blocks that are independently quantized 
each with their own quantization constant c.
○ chunk the input tensor X ∈ Rb×h into n contiguous blocks of size B by 

flattening the input tensor and slicing the linear segment into n = (b × h)/B 
blocks

○ quantize these blocks independently to create a quantized tensor and n 
quantization constants ci



LoRA: Low-rank Adapters

● Parameter-Efficient Fine-Tuning (PEFT) technique that reduces the memory 
requirements of further training a base LLM by freezing its weights and 
fine-tuning a small set of additional weights called adapters with a trainable 
rank parameter r that determines the size of the updates



Key Innovations in QLoRA

1. 4-bit NormalFloat (NF4): Optimized data type for normally distributed weights
2. Double Quantization (DQ): Reduces memory usage further by quantizing the 

quantization constants
3. Paged Optimizers: Manages gradient checkpointing memory spikes using 

NVIDIA unified memory
4. SOTA chatbot, Guanaco trained using QLoRA



4-bit NormalFloat (NF4) Quantization

● Neural network weights typically follow a zero-mean normal distribution with a certain 
standard deviation σ

● NF4 aligns the weight range [−σ,σ] to a fixed range [−1,1]
● Equal distribution of weights across quantization bins minimizes information loss
● Symmetric Quantization for Zeros: A symmetric adjustment ensures that the 

quantization bins include zero precisely i.e. the bins are divided into a negative range 
and a positive range ensuring the zero bin aligns exactly with zero weight values



4-bit NormalFloat Quantization

1. Estimate Quantiles
a. The input tensor X is mapped to quantization bins such that each bin contains an equal 

number of values.
b. For a k-bit quantization, the quantiles of a standard normal distribution N(0,1) are estimated 

as:

where QX is the quantile function of the normal distribution N(0,1)

2. Normalize the tensor X to fit into the range [−1,1]]: 



4-bit NormalFloat Quantization

3. Quantize: Assign each normalized value in Xnormalized  to the closest quantization bin defined by qi

4. Dequantize: Recover the original values by mapping Xquantized back to floating-point values



Double Quantization (DQ)

● Two-step quantization process where the quantization constants from the first 
quantization step are further quantized as the constants themselves consume memory

● In the first quantization step, a tensor 𝑋 is converted into lower precision using 
quantization constants 𝑐1

● Introduce a second quantization step where 𝑐1 is further quantized into lower-precision 
constants 𝑐2 with new quantization constants 𝑐3



Paged Optimizers

● In large-scale models, gradient checkpointing or backpropagation during 
mini-batch processing often causes memory usage to exceed available GPU 
capacity resulting in an OOM error halting training

● Traditional sub-optimal methods to avoid memory overflow but increase 
training time: Reducing batch sizes and Gradient accumulation

● Memory management technique that leverages NVIDIA’s unified memory to 
handle large-scale memory spikes during training by automatically transfering 
data between GPU and CPU memory, effectively acting as a paging system 
similar to virtual memory



QLoRA

For a single linear layer in the quantized base model with a single LoRA adapter:

W → NF4 → Block Size = 64 → Higher Quantization Precision

C2 → FP8 → Block Size = 256 → Conserve Memory

Storage Data Type → NF4

Computation Data Type → 16-bit BrainFloat



Full Finetuning VS LoRA VS QLoRA



QLoRA VS Standard Finetuning

● Compared based on performance, memory efficiency and scalability
● Experimental Setup:

● Data Types: QLoRA NF4 with and without DQ compared with Int8 and FP4

Model Architecture Model Dataset/Benchmark

Encoder Only RoBERTa-large GLUE Benchmark

Encoder-Decoder T5 Super-Natural Instructions

Decoder Only LLaMa after finetuning on 
Alpace and Flan v2

5-shot MMLU



Results on LoRA Adapters

● LoRA dropout: 0.0, 0.05, 0.1
● LoRA r: 8, 16, 32, 64, 128, 256
● LoRA layers: key+query, all attention 

layers, all FFN layers, all layers, attention 
+ FFN output layers



Results on NF4



Results on k-bit QLoRA VS 16-bit Full Finetuning and LoRA



Results on 4-bit QLoRA VS 16-bit LoRA



Training SOTA Chatbot: Dataset

Dataset Name Type Source Description

OASST1 Crowd Sourced Open 
Assistant

Multilingual dataset consisting of conversations between 
users and assistants

HH-RLHF Human-Labeled Anthropic Dataset of human-labeled conversations with assistants, 
focusing on helpful and harmless responses

Alpaca Model-Distilled Stanford 
Alpaca

Instruction-response pairs generated by distilling 
responses from OpenAI models

FLAN v2 Aggregated Google Large-scale dataset aggregating many existing 
instruction datasets with diverse tasks and formats

Chip2 Hybrid MosiacML Combines human-labeled and model-generated 
instruction-response pairs



Training SOTA Chatbot: Dataset

Longform Hybrid OpenAI Dataset for generating long-form, open-ended responses 
to prompts

Self-Instruct Self Distilled OpenAI Instruction-response pairs generated by GPT models 
with self-guided finetuning

Unnatural 
Instructions

Distilled from 
open source 
models

OpenAI Instruction-response pairs created by distilling data from 
OpenAI instruction-tuned models



Training SOTA Chatbot: Training Setup

● Finetune with Cross-Entropy Loss without RL
● Datasets with instruction and response → Finetune on only response
● Datasets with multiple responses → Select top response → Finetune on full 

conversation
● NF4 QLoRA with DQ and Page Optimizers



Training SOTA Chatbot: Hyperparameters

● LoRA r = 64
● LoRA α = 16
● LoRA adapters on all 

linear layers of the base 
model



Guanaco Models

● LLaMa derived models finetuned using QLoRA
● 7B, 13B, 33B, 65B
● OASST1 Dataset
● Strengths: Instruction Following, Efficient, Fine-grained Adaptation
● Weakness: Creative Writing, Specialized Knowledge Tasks



MMLU Results



MMLU Abalation Study



Training SOTA Chatbot: Baselines for Generation Task

● Open Assistant (OA) Benchmark: 33B LLaMa Model finetuned with RLHF on 
OASST1 dataset

● Vicuna Benchmark: 13B LLaMa Model finetuned on ShareGPT
● Commercial Chatbot:

○ GPT-4
○ GPT-3.5-Turbo
○ Bard



Automated Evaluation for Generated Task

● Performance against ChatGPT
○ Query and 2 responses: model and ChatGPT
○ Score out of 10 with explanation
○ Performance of the model is calculated as the % of the score ChatGPT receives
○ Ordering Effect → Bias towards first response → Mean over both orders

● Pairwise Evaluation by GPT-4
○ Three-class labelling with explanation



Automated Evaluation against ChatGPT



Pairwise Evaluation using GPT-4 as a Judge



Human Evaluation

● 2 Human Annotators for ChatGPT 
Comparison

● 3 Human Annotators for Pairwise 
Comparison



ELO Ratings

● Pairwise competition to produce the 
best result for given prompt

● Starting Score = 1000
● 10000 Repetitions
● Controlled Ordering Effects
● Combination of GPT-4 and Human 

Ratings



ELO Ratings

● Partial Orthogonality in 
Benchmarks

● Vicuna Benchmark 
prefers open-source 
models

● OA Benchmark prefers 
ChatGPT



Bias Evaluation



Training SOTA Chatbot: Dataset Size VS Dataset Quality



Memory Footprint



Qualitative Analysis of Guanaco



Qualitative Analysis of Guanaco



Qualitative Analysis of Guanaco



Limitations

1. Despite evidence that QLORA can replicate 16-bit full finetuning performance 
with a 4-bit base model and LoRA, due to resource costs, it is not establish 
that QLORA can match full 16-bit finetuning performance at 33B and 65B 
scales

2. Chosen benchmarks focus on specific tasks, potentially overlooking other 
important model capabilities questioning its generalizability

3. Other bit-precision configurations such as 3-bit or hybrid quantization were 
not tested

4. Limited responsible AI testing of Guanaco



Impact

1. Improved Accessibility for LLM Finetuning
a. 65B model trained on a single professional GPU
b. 33B on a consumer GPU

2. Potential for Mobile and Low-resource Deployment & Finetuning



Other Types of LoRA

1. Adaptive Low-Rank Adaptation (AdaLoRA):
a. Dynamically allocates rank resources during training focusing more on layers that contribute 

the most to task performance
b. Adjusts the rank allocation of LoRA adapters based on the importance of different layers

2. Hierarchical Finetuning with LoRA (LoRA-HF):
a. Finetunes only a subset of model parameters hierarchically based on layer importance or task 

relevance

3. Prompt-Tuning with LoRA (Prompt-LoRA):
a. Add trainable low-rank adapters alongside trainable prompts that are task-specific inputs
b. Suitable for scenarios where small task-specific modifications are needed without altering the 

main model



Other Types of LoRA

4. Mixture of Experts with LoRA (LoRA-MoE):
a. Combines LoRA with a Mixture of Experts (MoE) architecture to specialize specific experts for 

different tasks or subtasks
b. LoRA adapters are applied to the expert layers instead of the entire model

5. Sparse Low-Rank Adaptation (SLoRA):
a. Introduces sparsity to LoRA further reducing memory usage by zeroing out unimportant 

elements in the low-rank matrices
b. Targets sparsity for both rank and parameter selection

6. HyperLoRA:
a. Generates low-rank adapters dynamically using a hypernetwork enabling task-specific 

adaptation on-the-fly
b. Instead of training static low-rank matrices, a hypernetwork generates the adapters based on 

task inputs.



Thank You


