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Introduction

Instruction tuning teaches a model to follow instructions, allowing

it to perform new, unseen tasks.

What is the capital of France?

The answer to this question has _— The capital of France is Paris.
varied through history. Before
the fifth century AD

(@) London

(b) Paris

(c) Berlin

What is the capital of Japan?

(@ Seoul
(b)

Firgure from @https://www.youtube.com/watch?v=YoVek79LFe0

Many real-world applications call for cultivating a specific
suite of capabilities in LLLMs (e.g., reasoning skills). How-
ever, training LLMs with mixed instruction tuning datasets
can hinder the development of these specific capabilities.
For example, Wang et al. (2023b) demonstrates that LLMs
trained on a mix of instruction tuning datasets exhibit worse
performance than those trained on a subset of the data. Ad-
ditionally, considering the broad spectrum of user queries
and the multitude of skills required to respond to them,
there may not always be enough in-domain data available.
Therefore, we hope to be able to effectively use the general
instruction tuning data to improve specific capabilities. We
frame this setting as targeted instruction tuning:

Given just a handful of examples embodying a specific
capability, how can we effectively select relevant fine-tuning
data from a large collection of instruction datasets?
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Introduction

Coreset Selection Transfer Setting
®
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Coreset selection selects data such that the selected subset represents the full dataset.

Transfer data selection selects the subset that is closest to the target data points.

Firgure from @https://www.cs.princeton.edu/~smalladi/blog/2024/04/04/dataselection/
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The first-order Taylor < Trajectory influence. The influence of z over the entire
P I . . by the formula: training run can be measured by aggregating the influence
r iIminar at every training step that uses z. Since z is used once
€ ary f(@) = f(a) + f'(a) 5 =Y TEENE B oD . ,
per epoch, it is natural to express this as a summation over
Per-step influence. Consider a model 8" at time step ¢ epochs:
trained on the loss /(-;08"). We can write the first-order

Taylor expansion of the loss on a validation datapoint 2’ as il

Infsop(z,2') £ ) 7:(VL(Z';6;),VE(2;6,)) (1)
020 ~ 0(2'; 8%) + (VI(2';0), 6! — @) =1

where 7); is the learning rate used during the ith epoch out
of NNV total training epochs and 6; is the model after the ith
epoch of training.

For ease of exposition, assume that we are training the model
with SGD with batch size 1 and learning rate 7,.> If z is the
training data at time step ¢, we can write the SGD update
as 011 — 0t = —n,V/(z; 0%). Then, the Taylor expansion
can be written as

g(z/; 0t+1) — g(z/; Ot) ~ —nt(Vf(z, et)avé(z,;et)>
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Preliminary

Data selection with influence. While Pruthi et al. (2020)
used this insight to identify mislabeled training data, we
instead apply this formula to design a data selection strategy.
(In particular, at each time step ¢, selecting z to maximize
(VU(2';0%),VI(z;6")) will drive a larger decrease in the
doss on the validation point 2. However, when comput-)
ing Infsgp across several epochs, we note that the model
checkpoints {6;} after the first epoch will depend on the
dataset selected for training. This causes the data selection

\problem to become circular, and we empirically circumvent/
this problem with a short warmup training run on a ran-

domly selected Dyarmup C D for N = 4 epochs (see §4.1).

Overall, this data selection strategy is especially useful in

the transfer learning setting, because it does not require any

specific relationship between 2z’ and z. The next two sec-

tions describe how we adapt this basic approach to operate

efficiently and effectively with instruction tuning.

Trajectory influence. The influence of z over the entire
training run can be measured by aggregating the influence
at every training step that uses z. Since z is used once
per epoch, it is natural to express this as a summation over
epochs:

N
Infsop(2,2") £ ) " 0:(VL(2';6;), V(2 6;)) (1)

=1

where 7); is the learning rate used during the ith epoch out
of NNV total training epochs and 6; is the model after the ith
epoch of training.
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Preliminary

3.1. Extension to Adam

The formulation in Equation (1) is uni
models with SGD. However, i
ally performed using the Ada
2015).* In this case, the para

to optimizing

r update at a given step is:

0t — ' = —,I'(2,0")
mit+l

Vot fe
m'* = (Bim' + (1 - B)Ve(z:6")/(1 - BY)

o (Bzvt + (1 — B2)V{(z; ot)F)/(l = ﬂé)

where all operations are performed elementwise, with 3,
and [32 as the hyperparameters for the first and second mo-
ments, respectively, and € as a small constant. Then, the
first-order expansion for the Adam dynamics suggests we
should choose z to maximize (V/{(2';6'),T'(z,6")). Note
that extending the data selection strategy to Adam exacer-
bates the aforementioned circularity of the procedure, be-
[cause computing I'(z, @) requires accessing the m and 'v]

INEA'B E

terms, which are determined by prior training gradients. As
before, we obtain these from the warmup training (§4.1).

Trajectory influence. The influence of z over the entire
training run can be measured by aggregating the influence
at every training step that uses z. Since z is used once

~ per epoch, it 1s naturai toergpress this as a summation over

epochs:

InfSGD(z,z’) = ZﬁZ<V€(z’,01), K(z,@z > (1)

where 7); is the learning rate used during the ith epoch out
of IV total training epochs and 6; is the model after the ith
epoch of training.

Gr Georgia
Tech.



Method Overview
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Delve into Method

Step 1

During step 1, we compute f‘(, 9)

Step 1: Warmup LoRA Training

Datasets LoRA Model for
- > Selection
LoRA
Training
—_—
Dw:lrmnp C D '/MS

Step 2: Compute Gradient Features

Adam LoRA Gradient
Gradients Datastore

Compute Random
Gradients Projection
—_— —_—

f‘ € IR|D\XP f\ € ]R|D|xd

Step 3: Select Data

Step 1: Warmup training with LoRA. We use
LoRA (Hu et al., 2021) to reduce the number of trainable pa-
rameters and accelerate the inner products in Definition 3.1.
LoRA freezes the pre-trained weights and adds a low-rank
adaptor to linear layers throughout the network. We use
LoRA to instruction tune a pre-trained base model (e.g.,
LLAMA-2-7B) on a random subset Dyarmup C D for N
epochs (we only use 5% of the training data in practice, see
§5.1), checkpointing the model after each epoch to store
{6;1Y | . The gradient when training with LoRA, denoted
V{(-;0) € RP, is much lower dimensional than the model
itself; for example, in LLAMA-2-7B, @f(g 0) is less than
2% the size of 6. We use V/(-;0) to compute the Adam
update and denote it as I'(+, 8). This initial warmup training
is motivated conceptually in §3.1, and empirical results in
§6.1 demonstrate that omitting it yields suboptimal results.

Step 4: Training

Select from
D

Validation Compute Features
Examples o o gient W Compute

Seieutec Final Model

o © $ 2 Data » -
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Step 2: Projecting the gradients. To further reduce the
feature dimensionality, we apply a random projection to the
D e IV e i n t o M et h o d LoRA gradients. The Johnson-Lindenstrauss Lemma (John-
son & Lindenstrauss, 1984) asserts that such projections
often preserve the inner products in Definition 3.1, thereby
Step 2 ensuring these low-dimensional gradient features are still

useful for dataset selection. For a given validation data-
point z’ and model checkpoint 6;, we can compute a d-

Duri ng Step 2, we Compute dimensional projection of the LoRA gradient V2 0;) =
" Vi(z'; 8; ), with each entry of IT € R”*“ drawn from
@ g r. 0 a Rademacher distribution (i.e., Il;; ~ ¢({~1,1})). For
(z s Uy ) training datapoints z, we compute I'(z,-) = I I'(2, -).
~ We use the memory-efficient online implementation of ran-
F ( A ) dom projections from Park et al. (2023) to compute and
Y apply II. In practice, we choose d = 8192.

Step 2: Compute Gradient Features

Adam LoRA Gradient
Gradients Datastore
Compute Random :
Step 1: Warmup LoRA Training Gradients Projection i Step 3: Select Data ; Step 4: Training
LoRA Model for EEY, shot palidation bl
D?las?ts Selecti =" m— e Validation o0 Features Datastore Selected ’
on S—— pute Final Model
LoRA 1 1 Examples 5 gient Emm Compute 4 % Data i
. Training L Features InfAdam ° o ° Training Georgla
Sl E —— AN —— % :. —_— T h
[ e RIDIXP I € RIDIxd FEE o' ech.
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Trajectory influence. The influence of z over the entire
training run can be measured by aggregating the influence
De Ive i nto M eth od at every trz'lir}ing step that uses z. ‘Since z 18 us§d once
per epoch, it is natural to express this as a summation over
epochs:

Step 3 N I(z,0"
Infsan(2,2') = > i(VE(='; 0;), Bbetl)) (1)

Definition 3.1 (Adam Influence). Suppose the model is
trained for NV epochs, where 7); is the average learning rate

in the ith epoch and ; is the model checkpoint after the ith where 7); is the learning rate used during the sth epoch out

epoch. We define the influence of a training datapoint z on of NN total training epochs and 6; is the model after the ith
a validation datapoint z’ when training with Adam as epoch of training.
; — _ (V4D 6:),T(z,6;
N Iandam(Zy D\(,;l)) = Z i <_ ( (\]/_a)l 1)A ~( Z)) :
Infpqum(2,2') £ ) 7icos(VL(2'; 6;),T(2,6:)) i1 V(D 6:)lIIT(z, 0:)|l
i=1 2)
We select training datapoints that can improve performance
where cos computes the cosine similarity of the two vectors. on any one of the validation subtasks. Following the logic

in §2, we compute the score for z as the maximum across
all subtasks: max; Infsgam (2, pU )). We select the highest

val

scoring examples to construct Dy’ After selection, we

Step 3: Select Data ;
Few-shot Vaidation Select from use the selected subset Dy, to train the target model M.
Validation Compute Features Datastore
Examples Gragient gy Compute o o8
Step 1: Warmup LoRA Training Step 2: Compute Gradient Features Features Iandam () ® “ Step 4: Training
Adam LoRA i =
Iia!as?tisr LRl Loi?sl\e:\:;?:r:for Gradients gar?gsllegrte ﬁ ——¢ -.. — & : { Se[l)ear;;ed Final Model
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Method Revisit

Datasets

Step 4: Training

Salected Final Model
Data

Training
_—

Dirain M

Figure 1: Illustration of LESS. In step 1, we train a selection model M g with LoRA for a warmup period with a small subset
of data Dyarmup C D. In step 2, we compute the Adam LoRA gradient features I' € RIPI*? for each candidate datapoint
and save them in a gradient datastore. In step 3, for any task with few-shot examples Dy, (comprising of m subtasks), we
compute the gradient features for each validation subtask and select the subset Diy,in with the top 5% training examples
ranked by Infyg.,. Step 4 is the final training stage with the selected data on a target model M, which can be trained with
either LoRA or full finetuning. Steps 1 and 2 are offline and only need to be computed once per candidate training set D.
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Experimental Setup

Instruction Tuning Datasets
Evaluation Datasets

Models Used
Selection and Training Procedure

Gr Georgla
Tech.



Datasets Used for Instruction Tuning

Dataset # Instance  Sourced from #Rounds Prompt Len. Completion Len.
FLAN V2 100,000 NLP datasets and human-written instructions | 31.2
CoT 100,000 NLP datasets and human-written CoTs | 53.2
DoOLLY 15.011 Human-written from scratch | 91.3
OPEN ASSISTANT 1| 55.668 Human-written from scratch 1.6 2125

« LESS used a mix of instruction datasets covering a variety of tasks and

reasoning, ~ 270k total points

 No obvious in-domain data for target queries included here
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Evaluation Datasets

Dataset  #Shot # Tasks |Dyal|l |Diest|/ Answer Type
MMLU 5 57 285 18,721 Letter options
TYDIQA 1 9 9 1,713 Span

BBH 3 23 69 020 COT and answer

» 3 different datasets used to simulate real-world instruction tuning needs
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Tech.



Models Used

* Models used
« Llama-2 (7B and 13B)
* Mistral-/B
« LESS-T
« Transfer setting
« Tests data selection efficiency by using a smaller model
(LLAMA-2-7B) to select data for larger models.
« Warmup training on 5% of full dataset
« Warmup and final training conducted w/ LoRA

Gr Georgla
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Selection and Training Procedure

Step 1: Warmup LoRA Training

Datasets LoRA Model for

. Selection
: LoRA

=0 = Training I N
, — HlE NN
— =2E

i,

E IH‘

mn

Dw.: o D .Ms

Step 2: Compute Gradient Features

Adam LoRA Gradient

Gradients Datastore
Compute } Random N
Gradients ! Projection NN
! E8E

f-eR(Dle f*ERID:xd

Step 3: Select Data
Few-shot Valldation
Validation Compute Features
Examples ¢ adient Emm Compute 4 8

Select from
Datastore

Features Infpdum e o *
B = pmm 2, 500

BEE oL,
Dal Vé(Dyar.6) € R™*¢ Dirain

«  Warmup LoRA Training of randomly selected 5% of data

« Compute Gradient Features (Construct gradient datastore)
« Score Datapoints

* Final Training on Top 5% Scored Data

Step 4: Trainin
Selected Final Model
Data

Training
_
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Results

Performance Metrics
Comparison w/ Baselines
Transferability

Efficiency and Interpretability
Qualitative Analysis
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Results- Performance Metrics

MMLU TYDIQA BBH
Full Rand. LESS-T LESS | Full Rand. LESS-T LESS | Full Rand. LESS-T LESS
Data percentage (100%) (5%) (5%) (5%) |[(100%) (5%) (5%) (5%) |(100%) (5%) (5%) (5%)
LLAMA-2-7B 51.6 46.505) - 50.2 05| 54.0 52.7 04 - 56.2 07| 43.2 38.9 0.5) - 41.5 (0.6)
LLAMA-2-13B 545 53401 54.6 03) 54.00.7)| 54.3 53.003 57.50s8 54.6 03| 50.8 47.006 49.9 05 50.6 0.6
MISTRAL-7B 60.4 60.0 0.1y 60.6 03 61804 57.7 56.9 02 61.7 17 60.3 24| 53.0 54.50.1) 56.0 08 56.0 (1.0

« LESS beats random selection for all models and tasks, does well on challenging

tasks like TYDIQA and BBH

* Underlined numbers show when LESS beats using the full dataset

* Filters out irrelevant data

Georgia
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Results- Comparison w/ Baselines

Rand. BM25 DSIR RDS LESS A

MMLU 46.5 w05 47.6 46.10.3) 45.0 1.0) 50.2 (05 12.6
TYDIQA 52.7 04y 52.7 44.5 (1.7 46.8 (1.3) 56.2 (0.7) 3.5
BBH 389 s 39.8 36.8 0.1 36.7 (1.3) 41.5 (0.6) 11.7

* Baselines Used (5% used for each)
« Random selection
« Best Matching 25 (word frequency stats for data ranking)
« DSIR (n-gram feature weighting)
« RDS (model-based representation features)

e LESS beats all baselines
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Results- Transferability

MMLU TYDIQA

BBH

Full Rand. LESS-T LESS | Full Rand. LESS-T LESS
Data percentage (100%) (5%) (5%) (5%) |(100%) (5%) (5%) (5%)

Full Rand. LESS-T LESS
(100%)  (5%) (5%) (5%)

LLAMA-2-7B 51.6 46.5 05 - 50.2 05)| 54.0 52.7 04 - 56.2 0.7
LLAMA-2-13B 545 534 0.1) 54.6 03 54.00.7)| 54.3 53.003) 57.5038 54.603)
MISTRAL-7B 60.4 60.0 01 60.6 03 61.8 04| 57.7 569 02 61.7 1.7 60.3 24)

43.2 38.9 (05) - 41.5 0.6
50.8 47.00.6 49.9 05 50.6 0.6
53.0 545 01 56.0 08 56.0 1.0

 Works well across three models tested
e LESS-T

Uses smaller model gradients for selection

« Does comparable to, and sometimes beats, full-model selection (LESS)
« Saves computational resources- gradient features calculated on smaller scale but

generalizes well

» Takeaway- small models can effectively select data for other models in pre-training
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Results- Efficiency

Warmup LoRA Training  Gradient Features Computation Data Selection
Complexity Actual | Complexity Actual | Complexity Actual
Compute O(|Dyarmup|-N) 6Hours | O(|D|-N) 48 Hours O(|D| - |Dyal| -d) < 1Min
Storage - - O(|D|- N -d) 17.7 GB - -

 N: Number of epochs, |D|: Dataset size, d: Projected Gradient Dimension

« Gradient store (bottleneck) is reusable across tasks without recomputation
« Only needs to be done once per dataset
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Qualitative Results- Interpretability

A TydiQA Validation Example: Question Answering in Bengali (Translated)

User: Answer the following question based on the content of the given chapter.

Chapter: The Bengali Renaissance and the Brahmo Samaj - in a nutshell, the social reformers and the reforms they introduced had a
profound impact on the social and economic life of Bengal. The beginning of the great rebellion took place in Calcutta in 1857. After the
failure of this rebellion, the British Empire accepted the rule of the East India Company’s hands as a friendly power. For the governance
of India, the position of a Viceroy was created. In 1905, the religious and political motivations led to the division of Bengal [...]
Question: When was Bengal divided?

Assistant: Answer: 1905.

Selected by BM25

Selected by RDS

Selected by LESS

Masked Word Prediction in Bengali

User: Select the most logical word from four
options to replace the <MASK> token in the
given Bengali statement.

[Q): Statement: $3Y3-b% HWFEH BT
1o 8 <MASK> 7#3a &
BOb SR*RT FEA| OF @ER GHNE
IR BB SeWE o FGI0 [ANS
2| Option A: 2SS Option B:
[F67BA=TAIEE Option C: ©IFS

Assistant: [A]: O[99

Hate Speech Classification in Bengali

User: You are given a hateful post in Bengali
that expresses hate or encourages violence
towards a person or a group based on the pro-
tected characteristics such as race, religion,
sex, and sexual orientation. You are expected
to classify the post into two classes: personal
or non-personal depending on the topic.

Q: 3% /& 3 2T 618 A7 T 612 T &7
@7 A AIE GO ey AN A
109 12 A

Assistant: personal

Question Answering in English

User: Given the question and input, write a
reponse to answer the question. Which year
was quantum computer demonstrated to be
possible?

Input: Over the years, experimentalists have
constructed small-scale quantum computers
using trapped ions and superconductors. In
1998, a two-qubit quantum computer demon-
strated the feasibility of the technology, [...]
Response:

Assistant: 1998

£ Georgia
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Qualitative Results- Interpretability

Selected by BM25

Selected by RDS

Selected by LESS

Masked Word Prediction in Bengali

User: Select the most logical word from four
options to replace the <MASK> token in the
given Bengali statement.

[Q]: Statement: $dY3-by WIYH BT
(CIBIEA (TOW & RE@ WAL WA -
19 ofFm 8 <MASK> 7®E &
BOb SR*7T FEA| T @R GHNE
IR BT HeWE oF FGI0 [T
2| Option A: 2T Option B:
[FIB G IF=TAEE  Option C: O[S

Assistant: [A]: O[99

Hate Speech Classification in Bengali

User: You are given a hateful post in Bengali
that expresses hate or encourages violence
towards a person or a group based on the pro-
tected characteristics such as race, religion,
sex, and sexual orientation. You are expected
to classify the post into two classes: personal
or non-personal depending on the topic.

Q: O 1% 7% (S b1 7 1 1% A @7
@7 FE AIE QO A1 AN A
SRR

Assistant: personal

Question Answering in English

User: Given the question and input, write a
reponse to answer the question. Which year
was quantum computer demonstrated to be
possible?

Input: Over the years, experimentalists have
constructed small-scale quantum computers
using trapped ions and superconductors. In
1998, a two-qubit quantum computer demon-
strated the feasibility of the technology, [...]
Response:

Assistant: 1998

Interpretability

» LESS selects examples based on reasoning similarity, not superficial similarities
In TYDIQA (multi-lingual), LESS selects English examples that match the
task despite different language

Gr
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Results- Is Warmup Training Neccessary

Step 1: Warmup LoRA Training LLAMA-2-7B LoRA Models
Datasets L°Zzlg;?:;f°r Base (0% ) Chat (Unk.) 5% (default) 25% 100%
B B orA
=) & Tra(:ning ' MMLU 46.7 47.9 50.2 51.3 516
- e 'O ;
A A TYDIQA 52.1 52:2 562 57.0 57.9
Dasesy C D Ve BBH 30.8 38.6 41.5 415 4109
Avg. 46.2 46.2 49.3 499 50.5

Left: Vanilla gradients (no warmup training), Right: Gradients from LoRA models
» Performance increases with size of |[Dwarmup|

Georgia
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Performance

Results- Varying Gradient Projection Dimension

® LESS 5% = = Random 5%
51.0

Projected Gradient Dimension

Random 1024 2048 4096 8192

49.0 ./*/’//‘ MMLU 465 507 512 505  SI1.1
- TydiQA 527 553 563 568  56.6
BBH 389 393 390 404 413

ddl 2;'00 40;0 6300 soi)o Average 45.2 484 488 492 49.7

Projected dimension

Left: Average of three datasets, Right: Dataset Breakdown

On average, increasing gradient projection dimension improves performance

This comes at a larger computational cost
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Takeaways

« LESS’s targeted data selection for instruction tuning achieves competitive
performance with only 5% of training data
« Gradient similarity approach performs well across tasks and model sizes
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