L_oRA: Low-Rank Adaptation of
Large Language Models

Edward Hu* Yelong Shen* Phillip Wallis Zeyuan Allen-Zhu
Yuanzhi Li Shean Wang Lu Wang Weizhu Chen

Microsoft Corporation

{edwardhu, yeshe, phwallis, zeyuana,

yuanzhil, swang, luw, wzchen}@microsoft.com

yuanzhil@andrew.cmu.edu
(Version 2)

73 ICLR

Presented by Neel Kothari and Tanish Patwa

Introduction

e The major downside of fine-tuning LLMs for downstream tasks: the new model
contains as many parameters as in the original model.

e As larger models are trained every few months, this changes from a mere
“inconvenience” to a critical deployment challenge

e General solution: Selective adaptation of task specific parameters

e Problem: Increased inference latency due to increase in model depth or reduction

of usable input sequence length

Suggested solution:
LoRA (Low Rank Adaptation Approach)

e LoRA allows us to train some dense layers in a neural
network indirectly by optimizing rank decomposition
matrices of the change in dense layers during adaptation
instead, while keeping the pre-trained weights frozen.

e Hypothesis: change in weights during model adaptation
also has a low “intrinsic rank”

Pretrained

Weights o

i A
N 4 A

| —

Figure 1: Our reparametriza-
tion. We only train A and B.

Key advantages

e Transferable: We can freeze the shared model and efficiently switch tasks by
replacing the matrices A and B, reducing the storage requirement and
task-switching overhead significantly.

e LoRA lowers the hardware barrier up to 3 times when using adaptive optimizers.

e Trainable matrices merged with the frozen weights when deployed, introducing no
inference latency compared to a fully fine-tuned model.

e LoRA s orthogonal to many prior methods and can be combined with many of

them, such as prefix-tuning.

Problem Statement

Drawback of (1) - For full

|| fine-tuning, for each

max log (P (yt|z, y<t)) (D
% (x%; Z; downstream task, we
learn a different set of
vl parameters AQ whose
max Y > 10g (Pa,rase) (¥elz, y<t)) 2) dimension |A®| equals
(z,y)eZ t=1 |CDO|

Thus a more parameter-efficient approach is used, where the task-specific parameter
increment AQ = AQ(O) is further encoded by a much smaller-sized set of parameters ©
with |©| < |PO0|. The task of finding A® thus becomes optimizing over ©

Aren't Existing Solutions Good Enough ?

Adapter layers Introduce Inference Latency -

e Processed sequentially
Each layer’s output depends on completing the adapter’s operations before passing to
the next transformer layer. While individual operations within the adapter can be
parallelized, the adapter’s output must be fully computed before the main model can
continue.

e Creates bottleneck

Optimizing Prompt - Prefix Tuning

e During training, the model processes both the prefix and the original input sequence as a
single extended input. The trainable prefix embeddings are optimized alongside the task,
which allows it to "learn” how to shift the model's attention and responses appropriately.

e performance changes non-monotonically

Batch Size 32 16 1
Sequence Length 512 256 128
(S] 0.5M 11M 11M
Fine-Tune/LoRA 1449.4+0.8 338.0+0.6 19.8:4£2.7
Adapter” 1482.0£1.0 (+2.2%) 354.8+0.5 (+5.0%) 23.91+2.1 (+20.7%)
Adapter” 1492.24+1.0 (+3.0%) 366.3+£0.5 (+8.4%) 25.84+2.2 (+30.3%)

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds,

Methodology

Given: Wy € R4><k

The weight update is represented as: AW = B A where
e Be R
e Ac Rrxk

e r << min(d, k)
The updated output can be expressed as: h — Wyx + BAx

The rank r of the matrix refers to the number of linearly independent components, establishing a
low-rank representation of the weight updates. This approach enables efficient updates while

capturing essential variations in the weight matrix.

Initialization

A — Gaussian, B — 0

Training
Scale AW by
h = Wyx + %(BA):C

Adam optimizer

lora_alpha

Scaling Factor - lora_rank

lora_alpha
\/ lora_rank

Rank-Stabilized LoRA (rsLoRA) -

Advantages

1. No Additional Inference latency

a. Since LoRA keeps the original weight matrix frozen during adaptation, the
model can easily revert back to its original state by simply ignoring the
low-rank updates.

b. Because LoRA introduces only a small number of additional parameters it
allows for rapid re-adaptation to new tasks or changes in the dataset without
the need for extensive retraining.

2. Practical Benefits

a. LoRA provides a 25% speedup during training on GPT-3 (175 billion
parameters) compared to full fine-tuning.

b. For alarge Transformer like GPT-3 (175 billion parameters), VRAM
consumption is reduced from 1.2 TB to 350 GB.

Empirical Experiments

Baselines and Abbreviations:

e Fine-Tuning (FT) : During fine-tuning, the model is initialized to the
pre-trained weights and biases, and all model parameters undergo gradient
updates

e FTTop2: adapts just the last two layers

e Bias-only or BitFit is a baseline where we only train the bias vectors while

freezing everything else.

e Prefix-embedding tuning (PreEmbed) inserts special tokens among the input
tokens. These special tokens have trainable word embeddings and are

generally not in the model’s vocabulary.

e Prefix-layer tuning (PreLayer): is an extension to prefix-embedding tuning +
learning the activations after every Transformer layer

Adapter tuning: inserts adapter layers between the self- attention module (and the
MLP module) and the subsequent residual connection.

AdapterH: There are two fully connected layers with biases in an adapter layer with
a nonlinearity in between.

AdapterL: adapter layer applied only after the MLP module and after a LayerNorm
AdapterD: AdapterDrop, which drops some adapter layers

LoRA: adds trainable pairs of rank decomposition matrices in parallel to existing

weight matrices.

Models experimented with

RoBERTA BASE/LARGE: GLUE Benchmark
DeBERTA XXL: GLUE Benchmark
GPT-2 MEDIUM/LARGE: E2G NLG Challenge, DART, WebNLG

GPT-3 175B: WikiSQL, MNLI-m, SAMSum

Dataset Details

GLUE Benchmark: includes MNLI, SST-2, MRPC, ColLA, QNLI, QQP, RTE, and
STS-B

WikiSQL: table schema+question and SQL query pairs.

SAMSum: Conversation and abstractive summary pairs

E2E NLG Challenge: Contains key-value pairs and human-written reference texts
DART: ENTITY — RELATION — ENTITY triples

WebNLG: SUBJECT — PROPERTY — OBJECT triples

Model & Method |# Trainable

Parameters | MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoBpase (FT)* 125.0M| 87.6 948 90.2 63.6 928 919 787 912 864
RoBpase (BitFit)* 0.1IM| 84.7 937 92.7 620 91.8 840 815 90.8 852
RoBpase (AdptP)* 0.3M [87.140 9424 885411 60.8+4 93.111 90240 71.5427 89.713 844
RoBpa (AdptP)* O9M 87311 94.7+3 8844, 62.649 93.0+2 90.61+0 759422 9031+, 854
RoBypase (LORA) 0.3M |87.54+3 951+, 89.7+7 634117 93.3:.3 908+, 86.6.7 91.5., 87.2
RoBiarge (FT)* 355.0M| 90.2 964 90.9 680 947 922 86.6 924 889
RoBiarge (LORA) 0.8M |[90.6+2 96.2+5 909112 68.2+19 94.9+3 91.64.1 874125 92.6+> 89.0
ROBiarge (Adpt")t 3.0M(90.24+3 96.1+3 90.21+7 6834110 94.8:, 919, 8384159 92.1+7 884
ROBiarge (Adpt®)t 0.8M[90.5+3 96.6+> 89.7+12 67.8425 94.8+3 91.71, 80.1429 91.9+4 87.9
RoBiarge (AdptH)’f 6.0M [89.9+5 96.24+3 88.74+29 66.5444 94.7+2 92.14 1 83.4411 91.0417 87.8
ROBiarge (Adpt™)t 0.8M|90.313 96315 87.74+17 663120 9474+ 91.54+1 729429 91.51+5 86.4
RoBiarge (LORA)T 0.8M[90.61> 96215 90.2119 68.2119 94.8+3 91.61, 85.24,;, 92.3.5 88.6
DeBxx. (FT)* 1500.0M| 91.8 97.2 92.0 72.0 96.0 92.7 93.9 929 91.1
DeBxxi. (LoRA) 47M (919, 9691, 92.61+¢ 72.4:11 96.0+, 929, 949, 93.0., 91.3

Table 2: RoBERTay,s., ROBERTay,r5, and DeBERTaxx;, with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. indicates runs configured in a setup
similar to Houlsby et al. (2019) for a fair comparison.

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M | 68.2 8.62 46.2 71.0 2.47
GPT-2 M (Adapter-)* 0.37M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter-)* 11.09M | 68.9 8.71 46.1 71.3 2.47
GPT-2 M (Adapter™) 11.09M | 673+ 8.504107 4601, 707+, 24440,
GPT-2 M (FT™P2)x* 25.19M | 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LORA) 0.35M 70'4:i:.l 8.85:1:_02 46.8:t 2 71.8;1:.1 2.53:1:.02
GPT-2 L (FT)* 774.03M | 68.5 8.78 46.0 69.9 2.45
GPT-2 L (Adapter") 0.88M | 69.1.; 8.68+03 4631 Tldi, 249,
GPT-2 L (Adapter") 23.00M | 689+3 870105 461+, 7131, 245.p
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 11.7 247
GPT-2 L (LoRA) 0.77M | 704+, 8.89.¢; 468., 720., 247.ip

Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable
or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates
numbers published in prior works.

Trainable | WikiSQL MNLI-m SAMSum
MadeleiMediod Parameters | Acc. (%) Acc. (%) R1/R2/RL
GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5
GPT-3 (BitFit) 14.2M 71.3 91.0 51.3/27.4/43.5
GPT-3 (PreEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 (Adapter™) 7.1M 71.9 89.8 53.0/28.9/44.8
GPT-3 (Adapter™) 40.1M 73.2 91.5 53.2/29.0/45.1
GPT-3 (LoRA) 4.7M 73.4 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37.7M 74.0 91.6 53.4/29.2/45.1

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form
validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L. on
SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results
on WikiSQL have a fluctuation around +0.5%, MNLI-m around +0.1%, and SAMSum around

+0.2/40.2/4-0.1 for the three metrics.

Method # Trainable DART
Parameters | BLEUT METT TER|
GPT-2 Medium
Fine-Tune 354M 46.2 0.39 0.46
Adapter” 0.37M 42.4 036 0.48
Adapter™ 11M 45.2 038 0.46
FT™oP? 24M 41.0 034 056
PrefLayer 0.35M 46.4 0.38 0.46
LoRA 0.35M 471., 0.39 0.46
GPT-2 Large
Fine-Tune 774M 47.0 0.39 0.46
Adapter™ 0.88M 457+, 038 046
Adapter™ 23M 4714, 039 045
PreflLayer 0.77M 46.7 0.38 0.45
LoRA 0.77M 475+, 039 0.45

Table 13: GPT-2 with different adaptation methods on DART. The variances of MET and TER are
less than 0.01 for all adaption approaches.

Method WebNLG

BLEU? MET? TER]
U S A | U S A | U S A
GPT-2 Medium

Fine-Tune (354M) | 27.7 64.2 465 | 30 .45 38 |.76 .33 .53
Adapter™ (0.37M) | 45.1 54.5 502 | .36 .39 .38 | .46 .40 .43
Adapter” (11M) 48.3 60.4 549 | .38 43 41| .45 35 .39

FT™P2 (24M) 18.9 53.6 360 |23 38 31[.99 49 .72

Prefix (0.35M) 45.6 62.9 551 | .38 .44 41| .49 35 40

LoRA (0.35M) 46714 6214, 553., | .38 44 41| 46 .33 .39
GPT-2 Large

Fine-Tune (774M) | 43.1 653 555 | 38 46 42| .53 33 .42
Adapter™ (0.88M) | 498, 61.1., 560+ | 38 43 .41 | .44 35 .39

Adapter” (23M) | 4924, 6471, 577+, |.39 .46 .43 | 46 33 .39
Prefix (0.77M) 47.7 63.4 563 | .39 45 42| 48 34 40
LoRA (0.77M) 484,53 64043 570+, |39 45 42| .45 32 .38

Table 14: GPT-2 with different adaptation methods on WebNLG. The variances of MET and TER
are less than 0.01 for all the experiments we ran. “U” indicates unseen categories, “S” indicates seen
categories, and “A” indicates all categories in the test set of WebNLG.

Prefix tuning+*LoRA

e LoRA+PrefixEmbed (LORA+PE) combines LoRA with prefix-embedding tuning,
where we tokens are inserted whose embeddings are treated as trainable

parameters.

e LoRA+PrefixLayer (LoORA+PL) combines LoRA with prefix-layer tuning. Here,
instead of letting the hidden representations of the inserted tokens evolve naturally,
they are replaced after every Transformer block with an input agnostic vector. Thus,
both the embeddings and subsequent Transformer block activations are treated as

trainable parameters.

Method | Hyperparameters | # Trainable Parameters | WikiSQL | MNLI-m

Fine-Tune | = | 175B | 73.8 | 89.5
l, =32,1; =8 04 M 559 84.9

l, =64,l; =8 09 M 58.7 88.1

PrefixEmbed l, =128,1; = 8 1.7M 60.6 88.0
l, = 256,l; =8 32M 63.1 88.6

l, =512,1; =8 6.4 M 559 85.8

U =2l =2 5.1 M 68.5 89.2

I, =8,1; =0 10.1 M 69.8 88.2

PrefixIayer l, =8,1;,=8 202 M 70.1 89.5
I, =32,l; =4 4.1 M 66.4 89.6

l, =64,1; =0 76.1 M 64.9 87.9

r=1 7.1 M 71.9 89.8

r=4 21.2 M 73.2 91.0

AdapterH r=2=8 40.1 M 73.2 91.5
r =16 779 M 73.2 91.5

r =64 304.4 M 72.6 91.5

T = 2 4.7 M 73.4 91.7

Tq =Ty =1 4.7 M 73.4 91.3

LoRA Tg = Tyi= 2 94 M 73.3 91.4
Tq =Tk =Ty =To =1 9.4 M 74.1 91.2

Tg = Tyi=~4 18.8 M 73.7 91.3

Tq =Tk =Ty =To =2 18.8 M 73.7 91.7

Tq =Ty =28 37.7 M 73.8 91.6

Tq =Tk =Ty =To =4 377 M 74.0 91.7

Tq =T, = 64 301.9M 73.6 914

Tq =Tk =Ty =T, = 64 603.8 M 73.9 91.4

Tg =17y =8,l, =8,l;, =4 37.8 M 75.0 91.4

LoRA+PE Tq =Ty =32,lp, =8,l; =4 151.1 M 75.9 91.1
Tg =T, =64,1, =8,l; =4 302.1 M 76.2 91.3

LoRA+PL | 7q =7, =8,l, =8,l;, =4 | 52.8 M | 72.9 | 90.2

Table 15: Hyperparameter analysis of different adaptation approaches on WikiSQL and MNLI. Both
prefix-embedding tuning (PrefixEmbed) and prefix-layer tuning (PrefixLayer) perform worse as we
increase the number of trainable parameters, while LoRA’s performance stabilizes. Performance is
measured in validation accuracyv.

INFERENCE LATENCY INTRODUCED BY ADAPTER LAYERS

|
Seq Len = 128 Seq Len = 256 Seq Len = 512
o
J:L =
L
g
% -35
g8
2 -30
2 - 25
o~
- 20
o 15
:— & 10
E —~
2 5
I o
< 9 0
o
wn
o~
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

Batch Size Batch Size Batch Size

Figure 5: Percentage slow-down of inference latency compared to the no-adapter (» = 0) baseline.
The top row shows the result for AdapterH and the bottom row AdapterL. Larger batch size and
sequence length help to mitigate the latency, but the slow-down can be as high as over 30% in an
online, short-sequence-length scenario. We tweak the colormap for better visibility.

Transformers

SELF—ATTENTION

~88

8

-8

@ github.com/tensorops/TransformerX

soran-ghaderi.github.Hio
github.com/soran-ghaderi

Understanding Low- Rank Updates

Given a parameter budget constraint, which subset of weight matrices in a pre-trained
Transformer should we adapt to maximize downstream performance?

| # of Trainable Parameters = 18M

Weight Type Wy Wi W, W, W W, W W, Wy Wi, W, W,
Rank r 8 8 8 8 4 4 2
WikiSQL (+£0.5%) | 70.4 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting both W, and
W, gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.

Is the “optimal” adaptation matrix AW really rank- deficient? If so, what is a good rank to
use in practice?

We turn our attention to the effect of rank r on model performance. We adapt {W,, W,},
{Wy, Wi, W,,, W}, and just W, for a comparison.

| WeightType |r=1 r=2 r=4 r=8 r=64

- W, 688 69.6 705 704 700
Wil SQLG=0.0%) W, W, 734 733 737 738 735
W, Wi W, W, | 741 737 740 740 73.9

W, 90.7 909 91.1 907 907

MultiNLI (4-0.1%) w,, W, 913 914 913 916 914
W, Wi W, W, | 912 917 917 915 91.4

Table 6: Validation accuracy on WikiSQL and MultiNLI with different rank . To our surprise, a
rank as small as one suffices for adapting both W, and W,, on these datasets while training W, alone
needs a larger . We conduct a similar experiment on GPT-2 in Section H.2‘L

Rank r | valloss BLEU NIST METEOR ROUGEL CIDEr
1 1.23 68.72 8.7215 0.4565 0.7052 2.4329

2 1.21 69.17 8.7413 0.4590 0.7052 2.4639
4 1.18 70.38 8.8439 0.4689 0.7186 2.5349

8 1.17 69.57 8.7457 0.4636 0.7196 2.5196
16 1.16 69.61 8.7483 0.4629 0.7177 2.4985
32 1.16 69.33 8.7736 0.4642 0.7105 25233
64 1.16 69.24 8.7174 0.4651 0.7180 2.5070
128 1.16 68.73 8.6718 0.4628 0.7127 2.5030
256 1.16 68.92 8.6982 0.4629 0.7128 2.5012
512 1.16 68.78 8.6857 0.4637 0.7128 2.5025
1024 | 1.17 69.37 8.7495 0.4659 0.7149 2.5090

Table 18: Validation loss and test set metrics on E2E NLG Challenge achieved by LoRA with
different rank r using GPT-2 Medium. Unlike on GPT-3 where » = 1 suffices for many tasks, here
the performance peaks at r = 16 for validation loss and » = 4 for BLEU, suggesting the GPT-2
Medium has a similar intrinsic rank for adaptation compared to GPT-3 175B. Note that some of our
hyperparameters are tuned on r = 4, which matches the parameter count of another baseline, and
thus might not be optimal for other choices of r.

Subspace Similarity between different r

oy Ui 1%
il e g ', Q r= 8 r 64 ,1
¢(Ar=s, Ar=64,1,7) = i, 7) € [0,1] 4)

where U ilrzs represents the columns of U4, _, corresponding to the top-z singular vectors.

e Right singular matrices of both the matrices.
e We calculate Forbius Norm - to quantify sub space similarity
e Higher value means higher similarity

¢(Ar=64rAr=8r i,j)

AW, AWq

— 1.0

— 0.8
0.6
0.4
0.2
0.0

Figure 3: Subspace similarity between column vectors of A,_g and A,_g4 for both AW, and AW,,.
The third and the fourth figures zoom in on the lower-left triangle in the first two figures. The top
directions in r» = 8 are included in » = 64, and vice versa.

8 7654321

B

NN 00O M
— —~ N

1
6
12
18
23
58

12345678 12345678

-.29
35
40
46
52
58
-.29
35
40
46
52

We make an important observation from Figure 3|

Directions corresponding to the top singular vector overlap significantly between
A,—g and A,_g4, while others do not. Specifically, AW,, (resp. AW,) of A,_g
and AW,, (resp. AW,) of A,_e4 share a subspace of dimension 1 with normalized
similarity > 0.5, providing an explanation of why » = 1 performs quite well in our
downstream tasks for GPT-3.

P(Ar=8,Ar=64,1,))

—
o
(2]
—
) <
g
© umn
il
o
~
[ee]
—
oy
-
o <t
S
> [Ta)
©
- ©o
—
(o]
i
o
s 7
— A
=
> wn
©
P | ©o
e
oo
—l
oy
o °
. <
£
> [Tg)
©
| ©o
-
(o]

1 2 3 4 5 6 7 8 12 3 4 5 6 7 8
J J

Figure 6: Normalized subspace similarity between the column vectors of A, _g and A, _g4 for both
AW, and AW, from the 1st, 32nd, 64th, and 96th layers in a 96-layer Transformer.

¢(Af= 64 A/f= 64, lrj)
AW, Random Gaussian

= 0.5

16
24
=~ 32
40
48
56

< O —NOoNnoLwn tTOTOoO T O
[TolTe] ~ = NN mmMm< < 1nwn

o
m
J

Figure 4: Left and Middle: Normalized subspace similarity between the column vectors of A, _g4
from two random seeds, for both AW, and AW, in the 48-th layer. Right: the same heat-map
between the column vectors of two random Gaussian matrices. See Section H.1 for other layers.

P(Ar=64,A"r=64,1,])

AW,

Layer 1
Layer 32

Layer 64
i

Layer 96

Figure 7: Normalized subspace similarity between the column vectors of A,_g4 from two randomly
seeded runs, for both AW, and AW, from the 1st, 32nd, 64th, and 96th layers in a 96-layer Trans-
former.

What is the connection between AW and W ? Does AW highly correlate with W ? How large is AW comparing
to W ?

AW, Random
¢(WQIAF=4iin) ¢(Wq,Ar=8: II.I) ¢(quAr=64l II.I) ¢(Wq:Arand: II.I)

451

658 - 0.175
762

- 0.150
865

969 0.125

1072 0.100
1176

J J J J

Figure 8: Normalized subspace similarity between the singular directions of W, and those of AW,
with varying r and a random baseline. AW, amplifies directions that are important but not empha-

sized in W. AW with a larger r tends to pick up more directions that are already emphasized in
wW.

276

|AW]|F
|[UTWV T |p

where:

e ||AW||p is the Frobenius norm of AW, which represents the overall magnitude or "energy"
of AW.
e U and V are the left and right singular matrices from the Singular Value Decomposition (SVD)

of AW, so we can write AW =UXV .

o ||[UTWV T||F represents the Frobenius norm of the projection of W onto the subspace
spanned by the singular vectors of AW. This projection aligns W with the directions
emphasized by AW .

To answer these questions, we project W onto the r-dimensional subspace of AW by comput-
ing U'WV', with U/V being the left/right singular-vector matrix of AW. Then, we com-
pare the Frobenius norm between |[UT WV T||r and |[W||r. As a comparison, we also compute
|UTWV || by replacing U, V' with the top r singular vectors of W or a random matrix.

r=4
AW, W, Random

r = 64
AW, W, Random

|UTWV T |r =

0.32 21.67 0.02

1.90 37.71 0.33

|W,|| = 61.95

AW, ||7 = 6.91

|AW,||7 = 3.57

Table 7: The Frobenius norm of U W,V " where U and V are the left/right top r singular vector
directions of either (1) AW, (2) W, or (3) a random matrix. The weight matrices are taken from

the 48th layer of GPT-3.

Amplification Factor

e For r=4, the amplification factor can be as large as 20.
This means that four feature directions in each layer (from the pre-trained model

O
WW) need to be amplified significantly to achieve the desired performance on the

task.
o Amplification Factor=6.91/0.32 = 21.59

e The amplification factor is only around 2 for r=64r=64.

o Indicates that most directions learned in AWAW with r=64r=64 are not heavily

amplified.
o Amplification Factor=3.57 / 1.90 = 1.88

Different types of LORA

e QLoRA
o Uses quantization-aware low-rank adaptation, combining quantization with LoORA
for memory efficiency without sacrificing accuracy.
e AdalLoRA
o Introduces adaptive rank selection, adjusting ranks dynamically during training for
different layers or tasks.
e LORA++
o An enhanced version of LORA that introduces regularization techniques for better
generalization and stability.
e DoRA
o DoRA identifies and amplifies specific directions in the model’s feature space that
are most relevant to the target domain.

In a Nutshell

Training on just 1% of parameters imposes a ceiling on what can be learned, no matter
the quality or size of the dataset.

This restricted capacity means the fine-tuned portion has limited "intelligence" or
adaptability, essentially acting like a small model .

When attempting to add genuinely new knowledge (e.g., a new language), the limited
parameter capacity in LoRA leads to poor generalization and increased hallucination.
Essentially, the model uses the limited, fine-tuned knowledge, resulting in inaccuracies or
shallow understanding.

LoRA is best for "steering" the model's existing knowledge in new directions rather than
teaching it entirely new, complex information.

Thank You

