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Introduction

● The major downside of fine-tuning LLMs for downstream tasks: the new model 

contains as many parameters as in the original model. 

● As larger models are trained every few months, this changes from a mere 

“inconvenience” to a critical deployment challenge

● General solution: Selective adaptation of task specific parameters

● Problem: Increased inference latency due to increase in model depth or reduction 

of usable input sequence length



Suggested solution:

LoRA (Low Rank Adaptation Approach)

● LoRA allows us to train some dense layers in a neural 
network indirectly by optimizing rank decomposition 
matrices of the change in dense layers during adaptation 
instead, while keeping the pre-trained weights frozen.

● Hypothesis: change in weights during model adaptation 
also has a low “intrinsic rank”



Key advantages

● Transferable: We can freeze the shared model and efficiently switch tasks by 

replacing the matrices A and B, reducing the storage requirement and 

task-switching overhead significantly. 

● LoRA lowers the hardware barrier up to 3 times when using adaptive optimizers. 

● Trainable matrices merged with the frozen weights when deployed, introducing no 

inference latency compared to a fully fine-tuned model. 

● LoRA is orthogonal to many prior methods and can be combined with many of 

them, such as prefix-tuning. 



Problem Statement
Drawback of (1) - For full 
fine-tuning, for each 
downstream task, we 
learn a different set of 
parameters ∆Φ whose 
dimension |∆Φ| equals 
|Φ0| 

Thus a more parameter-efficient approach is used, where the task-specific parameter 
increment ∆Φ = ∆Φ(Θ) is further encoded by a much smaller-sized set of parameters Θ 
with |Θ| ≪ |Φ0|. The task of finding ∆Φ thus becomes optimizing over Θ 



Aren’t Existing Solutions Good Enough ? 

Adapter layers Introduce Inference Latency - 

● Processed sequentially  
● Each layer’s output depends on completing the adapter’s operations before passing to 

the next transformer layer. While individual operations within the adapter can be 
parallelized, the adapter’s output must be fully computed before the main model can 
continue.

● Creates bottleneck 

Optimizing Prompt  - Prefix Tuning 

● During training, the model processes both the prefix and the original input sequence as a 
single extended input. The trainable prefix embeddings are optimized alongside the task, 
which allows it to "learn" how to shift the model's attention and responses appropriately.

● performance changes non-monotonically





Methodology 

● Update weights - low intrinsic rank reference to Aghanjanyan 2020 
● w

○ W0 ∈Rd×k:  
● ΔW=BA 

○ B∈Rd×r , A∈Rr×k 
○ r≪min (d,k)

● h=W0 x+BAx
● The rank of the matrix refers to the number of linearly independent components used to form the 

low-rank representation of the weight updates.



1. Initialization 
a. A-> Gaussian B-> 0 

2. Training
a. Scale ΔW by 
b. h=W0 x+α/r  (BA)x

3. Adam optimizer 
4.  Scaling Factor -[𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 / 𝑙𝑜𝑟𝑎_𝑟𝑎𝑛𝑘 ]   
5. Rank-Stabilized LoRA (rsLoRA) - [𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 /sqrt( 𝑙𝑜𝑟𝑎_𝑟𝑎𝑛𝑘 )] 



Advantages 

1. No Additional Inference latency 
a. Since LoRA keeps the original weight matrix frozen during adaptation, the 

model can easily revert back to its original state by simply ignoring the 
low-rank updates.

b. Because LoRA introduces only a small number of additional parameters it 
allows for rapid re-adaptation to new tasks or changes in the dataset without 
the need for extensive retraining.

2. Practical Benefits 
a. LoRA provides a 25% speedup during training on GPT-3 (175 billion 

parameters) compared to full fine-tuning. 
b. For a large Transformer like GPT-3 (175 billion parameters), VRAM 

consumption is reduced from 1.2 TB to 350 GB.



Empirical Experiments

Baselines and Abbreviations:

● Fine-Tuning (FT) : During fine-tuning, the model is initialized to the 

pre-trained weights and biases, and all model parameters undergo gradient 

updates

● FTTop2: adapts just the last two layers

● Bias-only or BitFit is a baseline where we only train the bias vectors while 

freezing everything else.



● Prefix-embedding tuning (PreEmbed) inserts special tokens among the input 

tokens. These special tokens have trainable word embeddings and are 

generally not in the model’s vocabulary.

● Prefix-layer tuning (PreLayer): is an extension to prefix-embedding tuning + 

learning the activations after every Transformer layer



● Adapter tuning: inserts adapter layers between the self- attention module (and the 

MLP module) and the subsequent residual connection.

● AdapterH: There are two fully connected layers with biases in an adapter layer with 

a nonlinearity in between.

● AdapterL: adapter layer applied only after the MLP module and after a LayerNorm

● AdapterD: AdapterDrop, which drops some adapter layers 

● LoRA: adds trainable pairs of rank decomposition matrices in parallel to existing 

weight matrices.



Models experimented with

RoBERTA BASE/LARGE: GLUE Benchmark

DeBERTA XXL: GLUE Benchmark 

GPT-2 MEDIUM/LARGE: E2G NLG Challenge, DART, WebNLG 

GPT-3 175B: WikiSQL, MNLI-m, SAMSum 



Dataset Details

GLUE Benchmark: includes MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, and 

STS-B

WikiSQL: table schema+question and SQL query pairs.

SAMSum: Conversation and abstractive summary pairs

E2E NLG Challenge: Contains key-value pairs and human-written reference texts

DART: ENTITY — RELATION — ENTITY triples

WebNLG: SUBJECT — PROPERTY — OBJECT triples













Prefix tuning+LoRA

● LoRA+PrefixEmbed (LoRA+PE) combines LoRA with prefix-embedding tuning, 

where we tokens are inserted whose embeddings are treated as trainable 

parameters.

● LoRA+PrefixLayer (LoRA+PL) combines LoRA with prefix-layer tuning. Here, 

instead of letting the hidden representations of the inserted tokens evolve naturally, 

they are replaced after every Transformer block with an input agnostic vector. Thus, 

both the embeddings and subsequent Transformer block activations are treated as 

trainable parameters. 





INFERENCE LATENCY INTRODUCED BY ADAPTER LAYERS



Transformers 



Understanding Low- Rank Updates 

Given a parameter budget constraint, which subset of weight matrices in a pre-trained 
Transformer should we adapt to maximize downstream performance?  



Is the “optimal” adaptation matrix ∆W really rank- deficient? If so, what is a good rank to 
use in practice?





Subspace Similarity between different r 

● Right singular matrices of both the matrices.
● We calculate Forbius Norm - to quantify sub space similarity 
● Higher value means higher similarity 











∆W does not contain the top singular directions of W , since the similarity between the top 4 directions in ∆W and the top-10% of 
those in W barely exceeds 0.2. This gives evidence that ∆W contains those “task-specific” directions that are otherwise not 
emphasized in W .

What is the connection between ∆W and W ? Does ∆W highly correlate with W ? How large is ∆W comparing 
to W ?







Amplification Factor

● For r=4, the amplification factor can be as large as 20.
○ This means that four feature directions in each layer (from the pre-trained model 

WW) need to be amplified significantly to achieve the desired performance on the 
task.

○ Amplification Factor=6.91 / 0.32  = 21.59

● The amplification factor is only around 2 for r=64r=64.
○ Indicates that most directions learned in ΔWΔW with r=64r=64 are not heavily 

amplified.
○ Amplification Factor=3.57 / 1.90  = 1.88



Different types of LoRA 

● QLoRA 
○ Uses quantization-aware low-rank adaptation, combining quantization with LoRA 

for memory efficiency without sacrificing accuracy.
● AdaLoRA 

○ Introduces adaptive rank selection, adjusting ranks dynamically during training for 
different layers or tasks.

● LoRA ++ 
○ An enhanced version of LoRA that introduces regularization techniques for better 

generalization and stability.
● DoRA

○ DoRA identifies and amplifies specific directions in the model’s feature space that 
are most relevant to the target domain.



In a Nutshell

● Training on just 1% of parameters imposes a ceiling on what can be learned, no matter 
the quality or size of the dataset.

● This restricted capacity means the fine-tuned portion has limited "intelligence" or 
adaptability, essentially acting like a small model .

● When attempting to add genuinely new knowledge (e.g., a new language), the limited 
parameter capacity in LoRA leads to poor generalization and increased hallucination. 
Essentially, the model uses the limited, fine-tuned  knowledge, resulting in inaccuracies or 
shallow understanding.

● LoRA is best for "steering" the model's existing knowledge in new directions rather than 
teaching it entirely new, complex information.



Thank You


