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Demix

e Goal: make LLM modular
e Benefits of modular LLM?
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e Goal: make LLM modular

e Benefits of modular LLM?
o Easy to adapt to new domain without
forgetting the old knowledge
o Easy to remove or restrict access to
domains that LLM has learned
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Demix at training
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Demix at inference
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Key idea: Train an ensemble of LLMs in parallel then merge to
eliminate the GPU communication in training

Distributed data parallelism
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Key idea: Train an ensemble of LLMs in parallel then merge to
eliminate the GPU communication in training
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Key idea: Train an ensemble of LLMs in parallel then merge to
eliminate the GPU communication in training
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Ensembling the ELMFOREST
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The Branch-Train-Merge lIteration
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Experiments

e Baselines:
o DEMix
o TRANSFORMER-LM: using distributed data parallelism to train one model on the whole
dataset
e Dataset:
o 16 domain dataset: Consists of 8 training and 8 evaluation domains
o 80 domain dataset: Consists of 64 training and 16 evaluation domains
e All models use the GPT-3 architectures:
o 125M (small), 350M (medium), 750M (large), 1.3B (xI)



Domain Corpus # Train (Eval.) Tokens

1B 30M NewsWire sentences (Chelba et al., 2014) 700M (10M)

CS 1.89M full-text CS papers from S20RC (Lo et al., 2020) 4.5B (10M)

% LEGAL 2.22M U.S. court opinions, 1658 to 2018 (Caselaw Access Project) 10.5B (10M)

Zz MED 3.2M full-text medical papers from S20RC (Lo et al., 2020) 9.5B (10M)

5 WEBTEXT! 8M Web documents (Gokaslan and Cohen, 2019) 6.5B (10M)

= REALNEws' 35M articles from REALNEWS (Zellers et al., 2019) 15B (10M)

REDDIT Reddit comments from pushshift.io (Baumgartner et al., 2020) 25B (10M)

REVIEWS' 30M Amazon product reviews (Ni et al., 2019) 2.1B (10M)

Total 73.8B (80M)
Domain Corpus # Train (Eval.) Tokens
ACL PAPERS 1.5K NLP papers from ACL (Dasigi et al., 2021) 1M (1IM)
BREAKING NEws! 20K latest articles from 400 English news sites (Baly et al., 2018) 11M (1M)
~ CONTRACTS' 500 commercial legal contracts (Hendrycks et al., 2021) 1.5M (1M)
& CORD-19 400K excerpts from COVID-19 research papers (Wang et al., 2020) 60M (10M)
2 GITHUB 230K public Github repository contents (Github Archive Project) 200M (10M)
GUTENBERG 3.2M copyright-expired books (Project Gutenberg) 3B (10M)
TWEETS' 1M English tweets from 2013-2018 8M (1M)
YELP REVIEWS' 6M Yelp restaurant reviews (Yelp Reviews) 600M (10M)

Table 1: Domains that make up our multi-domain training corpus, including the size of our training and evaluation
(i.e. validation and test) data, in whitespace-separated tokens. T indicates datasets that we (partially) anonymize
(§2). See Appendix §A.2 for more details on how these data were collected.



80-DOMAIN CORPUS: 192.3B WHITESPACE-SEPARATED TOKENS

Category

Domains

SEMANTIC SCHOLAR (26.6%)

Medicine (5.2%), Biology (4.7%), CS (3.4%), Physics (2.7%), Math (2.3%), Unlabeled (1.3%), Psychology
(1.2%), Chemistry (1.0%), Economics (0.8%), Engineering (0.7%), CORD19 (0.6%), Material Science
(0.5%), Geology (0.5%), Sociology (0.5%), Business (0.3%), Political Science (0.2%), Geography (0.2%),
Environmental Science (0.1%), History (0.1%), Philosophy (0.1%), ACL (0.1%), Art (0.05%)

GITHUB CODE (22.4%)

JavaScript (3.7%), Java (3.5%), HTML (2.7%), C (2.5%), C++ (1.9%), Python (1.5%), C# (1.2%), PHP
(1.1%), Markdown (1.1%), Code Contests (1.0%), GO (1.0%), CSS (0.7%), Ruby (0.4%)

WEB FORUMS (17.5%)

Reddit Dialogues (13.0%), StackOverflow (1.7%), Twitter (0.9%), StackExchange (0.8%), HackerNews
(0.4%), Gaming Subreddits (0.1%), Sports Subreddits (0.1%)

WEB CRAWL (16.0%)

C4 (5.2%), RealNews (5.2%), OpenWebText (3.4%), Wikipedia (en) (1.3%), WMT News Crawl 2021
(0.5%), 1B Words Corpus (0.4%)

BOOKS (5.8%)

Stories (3.8%), Gutenberg Books (1.6%), BookCorpus (0.4%)

LEGAL TEXT (5.5%)

Legal Case Law (5.5%), Supreme Court Opinions (HTML) (0.1%)

REVIEWS (5.0%)

Books Reviews (2.1%), Amazon Reviews (1.1%), Electronics Reviews (0.5%), Clothing, Shoes and Jewelry
Reviews (0.5%), Home and Kitchen Reviews (0.4%), Yelp Reviews (0.3%), Sports and Outdoors Reviews
(0.3%), Movies and TV Reviews (0.3%)

OTHER (1.3%)

DM Mathematics (0.8%), OpenSubtitles (0.4%), USPTO (0.1%)

EVALUATION DOMAINS
(TEST ONLY)

Enron, #COVID-19 Tweets, IMDB, TOEFL exams, Congressional bills, Legal Contracts,
/r/cscareerquestions, /r/india, /r/hiphopheads, Irish Parliamentary Speeches, SQL, Rust, Perl , TeX,
FORTRAN, Breaking News

Table 7: Overview of the 80-domain corpus (§6.1). The 80 domains that make up the multi-domain
corpus we train and evaluate on, presented here in 8 descriptive categories for ease of inspection.
For each of the 64 training domains, we include the percentage of the total number of tokens (in the
entire corpus) comprising that domain. At the bottom, we include the 16 evaluation domains. All
domains additionally include 1M tokens for validation and test data each. We include full details of
each corpus in Appendix Table 10 and 11.



BTM Incremental Training
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Experiments - Ensemble Comparison

125M 350M
T-LM DEMiXx ELMFOREST T-LM DEMix ELMFOREST
125M 512M 1B 350M 1.8B 2.8B
Train 19.90.23 18.20.52 17.20.02 Train 16.3 15.0 14.7
Eval 252018 234054 224012 Eval 20.8 19.9 18.6
All 225014 20.80.63 19.80.05 All 18.5 17.5 16.7
750M 1.3B
T-LM DEMix ELMFOREST T-LM DEMix ELMFOREST
750M 3.8B 6B 1.3B 7B 10.4B
Train 14.7 13.5 134 Train 14.2 13.7 13.0
Eval 19.3 17.7 16.7 Eval 18.4 17.6 16.3
All 17.0 15.6 15.0 All 16.3 15.6 14.6

Table 1: ELMFORESTSs trained with BTM outperform all baselines across multiple model
scales (§4.2). Average test-set perplexity (|) for each model scale (125M, 350M, 750M, 1.3B
parameters) across the 8 training, 8 evaluation, and all 16 domains described in §4.1. Total parameters
are shown for each model type at each scale. At 125M parameter per GPU scale, we show the mean
and standard deviation of results over 8 random seeds. For BTM, we show results with 50% of
compute dedicated to the seed phase. DEMIX outperforms TRANSFORMER-LM, abbreviated as
T-LM. ELMFORESTs trained with BTM consistently achieve the lowest average test perplexity.



Parameter Averaging

e Uniform: We set w to be a uniform; i.e., % This setting disregards the relevance of each
ELM to the target domain, assuming all ELMs should contribute equally to the average.

* Argmax We set w to be an indicator vector that corresponds to the maximum probability
in the domain posterior. (§2.3). This collapses the ELMFOREST into the estimated best-
performing ELLM for the target dataset.

» Posterior We set w to be the domain posterior (§2.3), computed on the validation set.



Parameter Averaging

Train Domains PPL (|)
125M  350M 760M 1.3B
TRANSFORMER-LM 199 16.3 14.7 14.2
ELMFOREST parameter average (uniform weights) 47.4 19.9 19.0 18.0
Argmax ELM (one-hot posterior) 18.0 15.3 14.1 13.8
ELMFOREST parameter average (posterior weights)  18.0 15.1 139 134
ELMFOREST ensemble 17.2 14.7 13.4 13.0

Eval Domains PPL (])
125M  350M 760M 1.3B
TRANSFORMER-LM  25.2 20.8 19.3 18.4
ELMFOREST parameter average (uniform weights)  31.0 22.4 20.8 19.5
Argmax ELM (one-hot posterior) 28.3 22.3 223 203
ELMFOREST parameter average (posterior weights)  28.5 20.3 18.0 17.0
ELMFOREST ensemble 224 18.6 16.7 16.3




Different initialised models used for next experiments

Random Ensemble (seed init) A set of LMs trained on random data splits, to assess the effect of
removing the domain specialization of ELMs. We first pool the training and development sets of
our 8 train domains and divide into 8 random data splits, then execute the BTM procedure on
those random splits, dedicating 50% of training to the seed phase

ELMFOREST (random init) An ELMFOREST trained with BTM where all ELMs are randomly
initialized, to assess the effect of seed training. This is equivalent to setting the seed training
compute budget to zero updates. We fix the random initialization across models.

ELMFOREST (seed init) The ELMFOREST setting of §4, which follows the BTM training proce-
dure on the 8 train domains, and splits the compute budget such that 50% of the updates are
dedicated to seed training and 50% to branched ELM training.



Importance of seed training in BTM and not just a collection of several random ensembles

125M 350M
Random ELM ELM Random ELM ELM
Ensemble FOREST FOREST Ensemble FOREST FOREST
(seed init)  (random init) (seed init) (seed init)  (random init)  (seed init)
Train 23.0 18.2 17.2 Train 19.9 15.3 14.7
Eval 26.0 23.4 224 Eval 23.1 21.3 18.6
All 24.7 20.8 19.8 All 21.5 18.3 16.7
750M 1.3B
Random ELM ELM Random ELM ELM
Ensemble FOREST FOREST Ensemble FOREST FOREST
(seed init) (random init) (seed init) (seed init)  (random init)  (seed init)
Train 17.4 14.4 13.4 Train 17.4 13.3 13.0
Eval 20.9 19.3 16.7 Eval 20.4 17.8 16.3
All 19.2 16.9 15.0 All 18.9 15.6 14.6




ELMForest Ensemble with different levels of seed Training
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Seed Training with varying compute for parameter averaging
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BTM is robust to seed training corpus

Average Test PPL (])
Train Evaluation Overall

TRANSFORMER-LM 19.8 25.5 22.77
4 8 train domains 17.2 22.7 20.0
g Wikipedia 17.7 23.2 20.5
o C4 17.9 23.5 20.7
E StackOverflow  18.4 24.6 21.5
7]

JavaScript 19.2 24.9 22.0




For next set of experiments

TRANSFORMER-LM - 1.3B parameter transformer LM, trained for 6144 GPU hours (with 128 GPUs) on
all 64 domains

ELMFOREST - 40% of GPU Hour training compared to Transforner LM - 75% seed training and 25%
branched training



Performance Comparison
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Sparse Activation in Training/Evaluation

Training Domains Evaluation Domains
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Figure 8: Training and evaluation domain inference both use ELMs sparsely (§6.4). Domain
posterior visualization for 22.4B parameter ELMFOREST trained on 64 domains. ELM activation is
extremely sparse for both training and evaluation domains.
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