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This MOE idea is introduced in 1990s.
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Soumith Chintala & X
@soumithchintala - Follow
i might have heard the same ‘& -- | guess info like this is
passed around but no one wants to say it out loud.
GPT-4: 8 x 220B experts trained with different data/task

distributions and 16-iter inference.
Glad that Geohot said it out loud.

Though, at this point, GPT-4 is... Show more

) Michaél Benesty @pommedeterre33

Unexpected description of GPT4 architecture from geohotz in a recent
interview he gave. At least it's plausible.

GPT-4: 8 * 220B

George: Yeah, yeah, we could build. So like the
biggest training clusters today, | know less about
how GPT-4 was trained. | know some rough
numbers on the weights and stuff, but Lama-
[00:43:28]

Swyx: A trillion parameters? [00:43:30]

George: Well, okay, so GPT-4 is 220 billion in each
head, and then it's an eight-way mixture model. So
mixture models are what you do when you're out of

ideas. So, you know, it's a mixture model. They just

train the same model eight times, and then they

have some little trick. They actually do 16
inferences, but no, it's not like- [00:43:45]

5:21 PM - Jun 20, 2023 ®



A plausible design of MOE

Expert is a single model

Transformer Transformer Transformer
block 32 block 32 block 32
Transformer Transformer Transformer
block 2 block 2 block 2
1 [ [
Transformer Transformer Transformer
block 1 block 1 block 1
Expert 1 (7B) Expert 2 (7B) Expert 8 (7B)
Router
network

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-lim-architectures/



The actual design of MOE Expert is the FFN layer in each Transformer block.

|

Shared add and normalization
t

Layer 2 MoE
Expert 2.1 Expert 2.2 . Expert 2.8

Transformer block 2
Router (pick 2)
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Shared self attention layer

Shared add and normalization
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Layer 1 MoE
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Transformer block 1
Router (pick 2)
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Shared self attention layer

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-lim-architectures/



The actual design of MOE Expert is the FFN layer in each Transformer block.
Reason: FFN is the most computationally expensive part in a Transformer (most parameters)

|

| Shared add an;:l normalization |
Layer 2 MoE . .
Expert 2.1 Expert 2.2 Expert 2.8 For InStanCe, In
Transformer block 2 the PaLM [5]
i Router (pick 2) | model with the
i parameter
Shared self attention layer number of 540B )

the 90% of these
parameters are

Shared add and normalization Wlthln |tS F FN
f layers
Layer 1 MoE
Expert 1.1 Expert 1.2 . Expert 1.8

Transformer block 1
Router (pick 2)
t

Shared self attention layer

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-lim-architectures/



Why MOE?
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Why MOE?

Test Loss

1. Scaling Parameter Counts

From OpenAl’s “Scaling Laws for Neural Language Models” 2020
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Why MOE?

1. Scaling Parameter Counts

From OpenAl’s “Scaling Laws for Neural Language Models” 2020
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For Dense model, the compute per token scales
together with the parameter counts

MOE decouples this by keeping the compute per token fix while
scaling the parameters (more experts)



Why MOE?

1. Scaling Parameter Counts

From OpenAl’s “Scaling Laws for Neural Language Models” 2020
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Basically same For Dense model, the compute per token scales
compute as together with the parameter counts

Dense model,
with just more
memory.

MOE decouples this by keeping the compute per token fix while
scaling the parameters (more experts)



Why MOE?
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The brain is a mixture of experts
too! (Why and how the brain weights
contributions from a mixture of experts)

Why MOE?

2. Specialization

Different input token can go to different experts

We may have experts for number (1, 2, 3), experts for code, experts for instruction tokens
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https://www.sciencedirect.com/science/article/abs/pii/S0149763420306266
https://www.sciencedirect.com/science/article/abs/pii/S0149763420306266
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Limitations:
e Complexity
e Communication Costs
e Training instability



Routing

The router takes an input x and sends it to the
top-k experts based on a “gate value” which
represents how much that expert’s opinion
matters

Let W_r be the router variable

Step 1: Calculate logits h(x)

Step 2: Normalize via softmax over the N experts
to compute the gate values p i

Step 3: Let T be the top-k experts. Compute the
output y as a weighted sum of the gate values
and the expert computation
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Switch Transformer

e Instead of routing to multiple experts, route to just one!

e Benefits:
o Less router computation
o Capacity of each expert can be at least halved
o  Simpler implementation and reduced communication costs

e \What are some other benefits to routing to just one expert?
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Capacity and Load

e Expert Capacity: The number of tokens each expert computes each batch
o Low expert capacity -> Dropped tokens
o High expert capacity -> Wasted computation/memory
o Q: Does the number of experts have an effect on the number of dropped tokens?

e A good solution for load balancing is to add an auxiliary loss

Alpha is a constant hyperparameter and N is the number of experts (Why multiply by N?)
f iis the fraction of tokens dispatched to expert i
P_iis the fraction of the router probability allocated to expert i

O
O
O
o The loss is minimized when all f i and P_i are equal to 1/N
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Implementation Details

The Switch-Base and Switch-Large models are trained on the Colossal Clean
Crawled Corpus (C4) dataset and is “FLOP matched” to the T5-Base and
T5-Large models respectively

They also train a Switch-XXL (395B) and Switch-C (1571B)

The MoE Transformer uses top-2 routing and therefore has higher FLOPs
For multilingual tasks, the authors use the mC4 dataset



Results (Pre-Training)

Model Capacity Quality after Time to Quality Speed (1)
Factor 100k steps (1) Threshold (|)  (examples/sec)
(Neg. Log Perp.) (hours)

T5-Base — -1.731 Not achieved' 1600
Tb5-Large — -1.550 131.1 470
MoE-Base 2.0 -1.547 68.7 840
Switch-Base 2.0 -1.554 72.8 860
MoE-Base 1.25 -1.559 80.7 790
Switch-Base 1.25 -1.553 65.0 910
MoE-Base 1.0 -1.572 80.1 860
Switch-Base 1.0 -1.561 62.8 1000
Switch-Base+ 1.0 -1.534 67.6 780

Table 1: Benchmarking Switch versus MoE. Head-to-head comparison measuring per step
and per time benefits of the Switch Transformer over the MoE Transformer and
T5 dense baselines. We measure quality by the negative log perplexity and the
time to reach an arbitrary chosen quality threshold of Neg. Log Perp.=-1.50. All
MoE and Switch Transformer models use 128 experts, with experts at every other
feed-forward layer. For Switch-Base+, we increase the model size until it matches
the speed of the MoE model by increasing the model hidden-size from 768 to 896
and the number of heads from 14 to 16. All models are trained with the same
amount of computation (32 cores) and on the same hardware (TPUv3). Further
note that all our models required pre-training beyond 100k steps to achieve our
level threshold of -1.50. T T5-Base did not achieve this negative log perplexity in
the 100k steps the models were trained.



Results (Pre-Training)
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Figure 8:

Language

Figure 7: Multilingual pre-training on 101 languages. Improvements of Switch T5 Base
model over dense baseline when multi-task training on 101 languages. We observe
Switch Transformers to do quite well in the multi-task training setup and yield
improvements on all 101 languages.

50

N @ IS
S =3 S

Number of Languages

=)

6 8 14 16
Switch Speedup over Dense Baseline

Multilingual pre-training on 101 languages. We histogram for each language, the
step speedup of Switch Transformers over the FLOP matched T5 dense baseline
to reach the same quality. Over all 101 languages, we achieve a mean step speed-
up over mT5-Base of 5x and, for 91% of languages, we record a 4x, or greater,
speedup to reach the final perplexity of mT5-Base.



Results (Pre-Training)

Model Parameters ~ FLOPs/seq Briivdal FFNggaLu dyy dp, Num. Heads
T5-Base 0.2B 124B 768 v 2048 64 12
T5-Large 0.7B 425B 1024 v 2816 64 16
T5-XXL 11B 6.3T 4096 v 10240 64 64
Switch-Base 7B 124B 768 v 2048 64 12
Switch-Large 26B 425B 1024 v 2816 64 16
Switch-XXL 395B 6.3T 4096 v 10240 64 64
Switch-C 1571B 890B 2080 6144 64 32

I

Model Expert Freq. Num. Layers Num Experts Neg. Log Perp. @250k Neg. Log Perp. @ 500k

T5-Base — 12 - -1.599 -1.556
T5-Large - 24 - -1.402 -1.350
T5-XXL = 24 - -1.147 -1.095
Switch-Base 1/2 12 128 -1.370 -1.306
Switch-Large 1/2 24 128 -1.248 -1.177
Switch-XXL 1/2 24 64 -1.086 -1.008
Switch-C 1 15 2048 -1.096 -1.043

Table 9: Switch model design and pre-training performance. We compare the hyper-
parameters and pre-training performance of the T5 models to our Switch Trans-
former variants. The last two columns record the pre-training model quality on the
C4 data set after 250k and 500k steps, respectively. We observe that the Switch-
C Transformer variant is 4x faster to a fixed perplexity (with the same compute
budget) than the T5-XXL model, with the gap increasing as training progresses.



Results (Fine-Tuning)

Model GLUE SQuAD SuperGLUE  Winogrande (XL)
T5-Base 84.3 85.5 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
T5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 187 51.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
T5-Large 20.9 56.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5

Model CB Web QA CB Natural QA CB Trivia QA
T5-Base 26.6 25.8 24.5
Switch-Base 27.4 26.8 30.7
T5-Large 27.7 27.6 29.5
Switch-Large 31.3 29.5 36.9
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Figure 6: Scaling Transformer models with Switch layers or with standard dense model
scaling. Left Plot: Switch-Base is more sample efficient than both the T5-Base,
and Tb5-Large variant, which applies 3.5x more FLOPS per token. Right Plot: As
before, on a wall-clock basis, we find that Switch-Base is still faster, and yields a
2.5x speedup over T5-Large.
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Figure 13: Upstream pre-trained quality to downstream model quality. We correlate the

upstream performance with downstream quality on both SuperGLUE and Triv-
iaQA (SOTA recorded without SSM), reasoning and knowledge-heavy bench-
marks, respectively (validation sets). We find that, as with the baseline, the
Switch model scales with improvements in the upstream pre-training task. For
SuperGLUE, we find a loosely linear relation between negative log perplexity
and the average SuperGLUE score. However, the dense model often performs
better for a fixed perplexity, particularly in the large-scale regime. Conversely,
on the knowledge-heavy task, TriviaQA, we find that the Switch Transformer
may follow an improved scaling relationship — for a given upstream perplexity,
it does better than a dense counterpart. Further statistics (expensive to collect
and left to future work) would be necessary to confirm these observations.



Discussion

e The Switch Transformer is more sample efficient than comparable dense
models

e \While their Switch-XXL model faced training instability, their Switch-C model
faced no instability at all according to the authors

e (Q: How can we extend the Switch Transformer to multi-modal applications?



More on MOE



Mixture-of-Experts Meets Instruction Tuning:
A Winning Combination for Large Language Models

2023 May

— We demonstrate that in the absence of instruction tuning, MoE

models fall short in performance when compared to dense models on
downstream tasks.

— We highlight that when supplemented with instruction tuning,
MoE models exceed the performance of dense models on downstream
tasks, as well as on held-out zero-shot and few-shot tasks.



in the absence of instruction tuning, MoE models fall short of dense ones.
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when supplemented with instruction tuning, MoE models exceed dense ones.
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Review on TS (encoder-decoder) model
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Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2020)



Review on TS (encoder-decoder) model

["translate English to German: That is good."

"Das ist gut.”]
course is jumping well."”

[ “cola sentence: The

"not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"six people hospitalized after
a storm in attala county.”

"summarize: state authorities
dispatched emergency crews tuesday to

survey the damage after an onslaught
of severe weather in mississippi.."

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2020)



Transit from T5 to GPT-x

Having separate parameters was natural when Transformer was first introduced with translation as the
main evaluation task; input is in one language and output is in another.

Modern language models used in multiturn chat interfaces make this assumption awkward. Output in the
current turn becomes the input of the next turn. Why treat them separately?

Performance

Difference between the two methods is the additional
4 “inductive biases” or structure imposed

Before
ChatGPT

More structure —

Even less structure

'
.
>
¥

1

Nowadays

>
>

Compute

If we are here, we should choose “Less structure”. But
remember to undo later From: https://x.com/hwchung27/status/1800676312916656592



Vision LM (Encoder - decoder): LLaVA
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Figure 1: LLaVA network architecture.



Vision LM (decoder): Google Gemini and Meta Chameleon
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GLM: the decoder MOE counterpart of the Switch Transformer

Model Name Model Type Nparams  Tlact-params
BERT Dense Encoder-only 340M 340M
TS Dense Encoder-decoder 13B 13B
GPT-3 Dense Decoder-only 175B  175B
Jurassic-1 Dense Decoder-only 178B  178B
Gopher Dense Decoder-only 280B  280B
Megatron-530B Dense Decoder-only 530B 530B
GShard-M4 _MoE Encoder-decoder ___600B _ 1.5B

< Switch-C MoE Encoder-decoder 1.5T 1.5B >
GLaM (64B/64E) MOoE Decoder-only 1.2T 96.6B

GLaM: Efficient Scaling of Language Models with Mixture-of-Experts




Some parallel strategies for MoE

Data Parallelism: Divide data Expert Parallelism: Divide

Tensor Parallelism: Divide one

Pipeline Parallelism: Divide

)

All-to-All Dispatch

* (b) Data + Expert + Tensor Parallelism
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From: A Survey on Mixture of Experts (Cai, et al., 2024)



What about Dense MOE  MixTURE OF LORA EXPERTS

Xun Wu'?} Shaohan Huang''™, Furu Wei'
Microsoft Research Asia  2Tsinghua Univeristy
wuxun21@mails.tsinghua.edu.cn; {shaohanh, fuwei}@microsoft.com
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Balance the load on each expert

Recap: auxiliary loss

A good solution for load balancing is to add an auxiliary loss

Alpha is a constant hyperparameter and N is the number of experts (Why multiply by N?)
f iis the fraction of tokens dispatched to expert i

P_iis the fraction of the router probability allocated to expert i

The loss is minimized when all f_i and P_i are equal to 1/N

o O O O

N
loss=a-N-Zfz-~Pi
i=1



Expert Choice — Another way to balance the load on each expert

Mixture-of-Experts with Expert Choice Routing

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon

Google, Mountain View, CA, USA
{yanqiz, taole, hanxiaol, dunan, huangyp, vzhao, adai, zhifengc, qvl,
jlaudon}@google.com



Expert Choice — Another way to balance the load on each expert

expert. Previous methods add an auxiliary loss on load balancing to mitigate the issue. However, this
auxiliary 10ss does not guarantee a balanced load, especially during the important early stages of
training. Indeed, we empirically observe that the over-capacity ratio can reach 20%-40% for

some experts in token choice routing, indicating that a significant portion of the tokens routed to
these experts will be dropped.



Expert Choice — Another way to balance the load on each expert

Instead of token choose which expert, each expert choose
the top-k tokens, k is the capacity of the expert.
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Figure 1: High-level Comparison Between Conventional MoE and expert choice MoE.
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Expert Choice — Another way to balance the load on each expert

So each token can go to various number of experts

Figure 3: Distribution of the number of experts
routed to per token in a 100M/64E model.
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Expert Choice — Another way to balance the load on each expert
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Figure 2: (a) Training convergence is more than 2x faster using our method compared to GShard
top-2 gating. (b) Training perplexity scales strongly with the number of experts while keeping the

expert size fixed. EC consistently outperforms GShard top-2 gating.



The new technique behind the recent Phi 3.5-MOE

GRIN: GRadient-INformed MoE
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The brain is a mixture of experts
too! (Why and how the brain weights
contributions from a mixture of experts)

Why MOE?

2. Specialization

Different input token can go to different experts

We may have experts for number (1, 2, 3), experts for code, experts for instruction tokens
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Do different tokens go to different experts?
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(b) Pairwise Cosine Similarity of Routing Distribution on MMLU tasks (Control Recipe)
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Figure 6 (b): MoE Routing distribution similarity across MMLU 57 tasks for the control
recipe. This figure shares the same setting and the same color bar with Figure 6 (a).



The reason is because the routing (Top-k) is not differentiable,

gradient only backpropagate to selected experts not the non-selected
experts.

$1%0 Gating(2); (TopK (2),) Bapert(a, w,) )

where z = Router(z,r), r is the router parameters, Gating(-) is a gating function (usually
softmax), and Ezpert(-) is a FNN. In our study, we define use a linear network as the router,
i.e., Router(z,r) = x -rT As to TopK(z), it is the TopK function, i.e., TopK(z); := 1 if z;
is among the TopK coordinates of z and TopK (2); := 0 otherwise.
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The reason is because the routing (Top-k) is not differentiable,

gradient only backpropagate to selected experts not the non-selected
experts.

GRIN replaces this top-k with a gradient estimator

$1%0 Gating(2); (TopK (2),) Bapert(a, w,) )

where z = Router(z,r), r is the router parameters, Gating(-) is a gating function (usually
softmax), and Ezpert(-) is a FNN. In our study, we define use a linear network as the router,
i.e., Router(z,r) = x -rT As to TopK(z), it is the TopK function, i.e., TopK(z); := 1 if z;
is among the TopK coordinates of z and TopK (2); := 0 otherwise.

See this paper for details Bridging Discrete and Backpropagation:
on the gradient estimator Straight-Through and Beyond
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(a) Pairwise Cosine Stmllanty of Routing Distribution on MMLU tasks (Main Recipe)
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MoMa: Efficient Early-Fusion Pre-training
with Mixture of Modality-Aware Experts

2024 July



MoMa - Mixture of Modality-aware Experts

In Chameleon, images are tokenized using a learned image tokenizer that encodes a 512 x 512 image into
1024 discrete tokens from a codebook of size 8192. Text is tokenized using a BPE tokenizer with a vocabulary
size of 65,536, which includes the 8192 image codebook tokens. This unified tokenization scheme enables the
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MoMa - Mixture of Modality-aware Experts
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(b) Mixture of modality-aware experts (MoMa) transformer block.

They use expert
choice (EC)
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Expert Choice Router in MoMa

1. We use Sigmoid as the non-linearity in the router scoring function, enabling independent calculation of
token-to-expert affinity scores for each token.

Instead of softmax across all experts.

ZJ 1 QT(I)J FFNSwIGLUJ(IE) ifzeT
Z? 1 gz(x)J FFNSW:GLUJ(:E) ifrzreZ

M Sigmoid(z - W), if z is selected by E;
(z); = ' :
0 otherwise



Expert Choice Router in MoMa

1. We use Sigmoid as the non-linearity in the router scoring function, enabling independent calculation of
token-to-expert affinity scores for each token.

Instead of softmax across all experts.

2. We introduce auxiliary routers, inspired by Raposo et al. (2024), which predict the likelihood of an
expert selecting a token solely based on its hidden state representation. These routers are trained after
the main model training is completed and employed during inference to ensure causality. We discuss the

cannot directly apply the expert-choice routing for MoE and layer-choice
routing for MoD during inference time, as the top-k token selection
within a batch breaks causality.



Expert Choice Router in MoMa

1. We use Sigmoid as the non-linearity in the router scoring function, enabling independent calculation of
token-to-expert affinity scores for each token.

Instead of softmax across all experts.

2. We introduce auxiliary routers, inspired by Raposo et al. (2024), which predict the likelihood of an
expert selecting a token solely based on its hidden state representation. These routers are trained after
the main model training is completed and employed during inference to ensure causality. We discuss the

cannot directly apply the expert-choice routing for MoE and layer-choice
routing for MoD during inference time, as the top-k token selection
within a batch breaks causality.

We employ a two-stage training approach, where the main model and auxiliary routers are
trained separately. First, we train the main model to convergence. Then, we train the
auxiliary routers using binary cross-entropy loss, supervised by the ground-truth top-k
routing assignments computed over an entire batch.



Upcycling Komatsuzaki et al. (2023) in MoMa

The insight we identified is that MoE routers are responsible for
partitioning the representation space for each expert. However, this
representation space is sub-optimal in the early stages of model
training, leading to a sub-optimally trained routing function.

Specifically, we begin by training an architecture consisting of 1
FFN expert per modality. After a predetermined number of steps, we
upcycle this model by converting each modality-specific FFN into an
expert-choice MoE module, initializing each expert with the expert
trained from the first stage. We reset the learning rate scheduler while
preserving the data loader state from the previous stage, thereby
ensuring the second stage training is exposed to refreshed data.



Upcycling Komatsuzaki et al. (2023) in MoMa

The insight we identified is that MoE routers are responsible for
partitioning the representation space for each expert. However, this
representation space is sub-optimal in the early stages of model
training, leading to a sub-optimally trained routing function.

Specifically, we begin by training an architecture consisting of 1
FFN expert per modality. After a predetermined number of steps, we
upcycle this model by converting each modality-specific FFN into an
expert-choice MoE module, initializing each expert with the expert
trained from the first stage. We reset the learning rate scheduler while
preserving the data loader state from the previous stage, thereby
ensuring the second stage training is exposed to refreshed data.

To promote expert specialization, we augment the MoE routing function with Gumbel noise (Liu et al., 2022b;
Geng et al., 2020), allowing our router to differentiably sample experts. This is expressed in Equation 5:

Gumbel-Sigmoid(z) = Sigmoid(z + G — G") (5)

where G and G~ are independent Gumbel noise samples.



Modality group improves over normal VOLE.
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But Modality group MOE has the same text loss only improves on image.
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Text-Only: We use a variety of textual datasets, including a combination of the pre-training data used to
train LLaMa-2 (Touvron et al., 2023) and CodeLLaMa (Roziere et al., 2023) for a total of 2.9 trillion text-only
tokens.

Text-lmage: The text-image data for pre-training is a combination of publicly available data sources and
licensed data. The images are then resized and center cropped into 512 x 512 images for tokenization. In
total, we include 1.4 billion text-image pairs, which produces 1.5 trillion text-image tokens.

Text/Image Interleaved: We procure data from publicly available web sources, not including data from Meta’s
products or services, for a total of 400 billion tokens of interleaved text and image data similar to Laurencon
et al. (2023). We apply the same filtering for images, as was applied in Text-To-Image.
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