
Mixture of Experts (MOE) 
in LLM

Yao Dou and Sanath Kamath



Mixture of Experts (MOE) 
in LLM

Independent mirrored components in a model

Yao Dou and Sanath Kamath



This MOE idea is introduced in 1990s.

1991

1993



Mixtral 8 * 7B



GPT-4: 8 * 220B



https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

A plausible design of MOE Expert is a single model



https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

The actual design of MOE Expert is the FFN layer in each Transformer block.



https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

The actual design of MOE Expert is the FFN layer in each Transformer block.
Reason: FFN is the most computationally expensive part in a Transformer (most parameters)

For instance, in 
the PaLM [5] 
model with the 
parameter 
number of 540B, 
the 90% of these 
parameters are 
within its FFN 
layers



Why MOE?
1. Scaling Parameter Counts

2. Specialization



Why MOE?
1. Scaling Parameter Counts

From OpenAI’s “Scaling Laws for Neural Language Models” 2020



Why MOE?
1. Scaling Parameter Counts

From OpenAI’s “Scaling Laws for Neural Language Models” 2020

For Dense model, the compute per token scales 
together with the parameter counts
MOE decouples this by keeping the compute per token fix while 
scaling the parameters (more experts)



Why MOE?
1. Scaling Parameter Counts

From OpenAI’s “Scaling Laws for Neural Language Models” 2020

For Dense model, the compute per token scales 
together with the parameter counts
MOE decouples this by keeping the compute per token fix while 
scaling the parameters (more experts)

Basically same 
compute as 
Dense model, 
with just more 
memory.



Why MOE?
2. Specialization



Why MOE?
2. Specialization

Different input token can go to different experts
We may have experts for number (1, 2, 3), experts for code, experts for instruction tokens

The brain is a mixture of experts 
too! (Why and how the brain weights 
contributions from a mixture of experts)

https://www.sciencedirect.com/science/article/abs/pii/S0149763420306266
https://www.sciencedirect.com/science/article/abs/pii/S0149763420306266


Mixture of Experts

Limitations:
● Complexity
● Communication Costs
● Training instability



Routing

● The router takes an input x and sends it to the 
top-k experts based on a “gate value” which 
represents how much that expert’s opinion 
matters

● Let W_r be the router variable
● Step 1: Calculate logits h(x)
● Step 2: Normalize via softmax over the N experts 

to compute the gate values p_i
● Step 3: Let T be the top-k experts. Compute the 

output y as a weighted sum of the gate values 
and the expert computation







Switch Transformer

● Instead of routing to multiple experts, route to just one!
● Benefits:

○ Less router computation
○ Capacity of each expert can be at least halved
○ Simpler implementation and reduced communication costs

● What are some other benefits to routing to just one expert?



Switch Transformer

● Instead of routing to multiple experts, route to just one!
● Benefits:

○ Less router computation
○ Capacity of each expert can be at least halved
○ Simpler implementation and reduced communication costs

● What are some other benefits to routing to just one expert?



Capacity and Load

● Expert Capacity: The number of tokens each expert computes each batch
○ Low expert capacity -> Dropped tokens
○ High expert capacity -> Wasted computation/memory
○ Q: Does the number of experts have an effect on the number of dropped tokens?

● A good solution for load balancing is to add an auxiliary loss
○ Alpha is a constant hyperparameter and N is the number of experts (Why multiply by N?)
○ f_i is the fraction of tokens dispatched to expert i
○ P_i is the fraction of the router probability allocated to expert i
○ The loss is minimized when all f_i and P_i are equal to 1/N



Capacity and Load

● Expert Capacity: The number of tokens each expert computes each batch
○ Low expert capacity -> Dropped tokens
○ High expert capacity -> Wasted computation/memory
○ Q: Does the number of experts have an effect on the number of dropped tokens?

● A good solution for load balancing is to add an auxiliary loss
○ Alpha is a constant hyperparameter and N is the number of experts (Why multiply by N?)
○ f_i is the fraction of tokens dispatched to expert i
○ P_i is the fraction of the router probability allocated to expert i
○ The loss is minimized when all f_i and P_i are equal to 1/N



Implementation Details

● The Switch-Base and Switch-Large models are trained on the Colossal Clean 
Crawled Corpus (C4) dataset and is “FLOP matched” to the T5-Base and 
T5-Large models respectively

● They also train a Switch-XXL (395B) and Switch-C (1571B) 
● The MoE Transformer uses top-2 routing and therefore has higher FLOPs
● For multilingual tasks, the authors use the mC4 dataset



Results (Pre-Training)



Results (Pre-Training)



Results (Pre-Training)



Results (Fine-Tuning)



Scaling Properties



Scaling Properties



Scaling Properties



Discussion

● The Switch Transformer is more sample efficient than comparable dense 
models

● While their Switch-XXL model faced training instability, their Switch-C model 
faced no instability at all according to the authors

● Q: How can we extend the Switch Transformer to multi-modal applications?



More on MOE



– We demonstrate that in the absence of instruction tuning, MoE 
models fall short in performance when compared to dense models on 
downstream tasks.
 
– We highlight that when supplemented with instruction tuning, 
MoE models exceed the performance of dense models on downstream 
tasks, as well as on held-out zero-shot and few-shot tasks.

2023 May



in the absence of instruction tuning, MoE models fall short of dense ones.



when supplemented with instruction tuning, MoE models exceed dense ones.



Review on T5 (encoder-decoder) model

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2020)



Review on T5 (encoder-decoder) model

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2020)



Having separate parameters was natural when Transformer was first introduced with translation as the 
main evaluation task; input is in one language and output is in another.

Modern language models used in multiturn chat interfaces make this assumption awkward. Output in the 
current turn becomes the input of the next turn. Why treat them separately?

Transit from T5 to GPT-x

Before 
ChatGPT

Nowadays

From: https://x.com/hwchung27/status/1800676312916656592



Vision LM (Encoder - decoder): LLaVA



Vision LM (decoder): Google Gemini and Meta Chameleon



GLM: the decoder MOE counterpart of the Switch Transformer



Some parallel strategies for MoE

From: A Survey on Mixture of Experts (Cai, et al., 2024)

Data Parallelism: Divide data 
into different GPUs

Expert Parallelism: Divide 
experts into different GPUs

Tensor Parallelism: Divide one 
layer (tensor) into different GPUs

Pipeline Parallelism: Divide 
layers into different GPUs



Dense MOE is useful in LoRA 
scenarios, without sacrifice 
computational efficiency.

What about Dense MOE



Balance the load on each expert

A good solution for load balancing is to add an auxiliary loss

○ Alpha is a constant hyperparameter and N is the number of experts (Why multiply by N?)
○ f_i is the fraction of tokens dispatched to expert i
○ P_i is the fraction of the router probability allocated to expert i
○ The loss is minimized when all f_i and P_i are equal to 1/N

Recap: auxiliary loss



Expert Choice – Another way to balance the load on each expert



Expert Choice – Another way to balance the load on each expert



Expert Choice – Another way to balance the load on each expert

Instead of token choose which expert, each expert choose 
the top-k tokens, k is the capacity of the expert.



Expert Choice – Another way to balance the load on each expert

Instead of token choose which expert, each expert choose 
the top-k tokens, k is the capacity of the expert.

Token_i Router 0.2, 0.1, 0.2, …., 0.03
Probability on each expert



Expert Choice – Another way to balance the load on each expert

Instead of token choose which expert, each expert choose 
the top-k tokens, k is the capacity of the expert.

Token_i Router 0.2, 0.1, 0.2, …., 0.03
Probability on each expert

So all tokens 
form a 
token-to-expert 
matrix

n tokens

e experts



Expert Choice – Another way to balance the load on each expert

Instead of token choose which expert, each expert choose 
the top-k tokens, k is the capacity of the expert.

Token_i Router 0.2, 0.1, 0.2, …., 0.03
Probability on each expert

So all tokens 
form a 
token-to-expert 
matrix

n tokens

e experts

Take top-k on 
each column.



Expert Choice – Another way to balance the load on each expert

Instead of token choose which expert, each expert choose 
the top-k tokens, k is the capacity of the expert.

Token_i Router 0.2, 0.1, 0.2, …., 0.03
Probability on each expert

So all tokens 
form a 
token-to-expert 
matrix

n tokens

e experts

Take top-k on 
each column.

Guarantee balance loading



Expert Choice – Another way to balance the load on each expert

Instead of token choose which expert, each expert choose 
the top-k tokens, k is the capacity of the expert.

Token_i Router 0.2, 0.1, 0.2, …., 0.03
Probability on each expert

So all tokens 
form a 
token-to-expert 
matrix

n tokens

e experts

Take top-k on 
each column.

Guarantee balance loading



Expert Choice – Another way to balance the load on each expert

So each token can go to various number of experts



Expert Choice – Another way to balance the load on each expert



The new technique behind the recent Phi 3.5-MOE



Why MOE?
2. Specialization

Different input token can go to different experts
We may have experts for number (1, 2, 3), experts for code, experts for instruction tokens

The brain is a mixture of experts 
too! (Why and how the brain weights 
contributions from a mixture of experts)

https://www.sciencedirect.com/science/article/abs/pii/S0149763420306266
https://www.sciencedirect.com/science/article/abs/pii/S0149763420306266


Do different tokens go to different experts?

No, the routing 
distribution across 
57 tasks are very 
similar.



The reason is because the routing (Top-k) is not differentiable, 
gradient only backpropagate to selected experts not the non-selected 
experts.



The reason is because the routing (Top-k) is not differentiable, 
gradient only backpropagate to selected experts not the non-selected 
experts.

GRIN replaces this top-k with a gradient estimator 



The reason is because the routing (Top-k) is not differentiable, 
gradient only backpropagate to selected experts not the non-selected 
experts.

GRIN replaces this top-k with a gradient estimator 

See this paper for details 
on the gradient estimator



GRIN MOE has a much 
more different routing 
distributions across tasks.



MoMa: Efficient Early-Fusion Pre-training 
with Mixture of Modality-Aware Experts

2024 July



MoMa - Mixture of Modality-aware Experts



MoMa - Mixture of Modality-aware Experts

They use expert 
choice (EC)



MoMa - Mixture of Modality-aware Experts



Expert Choice Router in MoMa

Instead of softmax across all experts.



Expert Choice Router in MoMa

Instead of softmax across all experts.

cannot directly apply the expert-choice routing for MoE and layer-choice 
routing for MoD during inference time, as the top-k token selection 
within a batch breaks causality. 



Expert Choice Router in MoMa

Instead of softmax across all experts.

cannot directly apply the expert-choice routing for MoE and layer-choice 
routing for MoD during inference time, as the top-k token selection 
within a batch breaks causality. 

We employ a two-stage training approach, where the main model and auxiliary routers are 
trained separately. First, we train the main model to convergence. Then, we train the 
auxiliary routers using binary cross-entropy loss, supervised by the ground-truth top-k 
routing assignments computed over an entire batch. 



Upcycling Komatsuzaki et al. (2023) in MoMa
The insight we identified is that MoE routers are responsible for 
partitioning the representation space for each expert. However, this 
representation space is sub-optimal in the early stages of model 
training, leading to a sub-optimally trained routing function. 

Specifically, we begin by training an architecture consisting of 1 
FFN expert per modality. After a predetermined number of steps, we 
upcycle this model by converting each modality-specific FFN into an 
expert-choice MoE module, initializing each expert with the expert 
trained from the first stage. We reset the learning rate scheduler while 
preserving the data loader state from the previous stage, thereby 
ensuring the second stage training is exposed to refreshed data.



Upcycling Komatsuzaki et al. (2023) in MoMa
The insight we identified is that MoE routers are responsible for 
partitioning the representation space for each expert. However, this 
representation space is sub-optimal in the early stages of model 
training, leading to a sub-optimally trained routing function. 

Specifically, we begin by training an architecture consisting of 1 
FFN expert per modality. After a predetermined number of steps, we 
upcycle this model by converting each modality-specific FFN into an 
expert-choice MoE module, initializing each expert with the expert 
trained from the first stage. We reset the learning rate scheduler while 
preserving the data loader state from the previous stage, thereby 
ensuring the second stage training is exposed to refreshed data.



Modality group improves over normal MOE.



But Modality group MOE has the same text loss only improves on image.



But Modality group MOE has the same text loss only improves on image.

Maybe it’s because the text data is much 
more than image?


