
The Llama 3 Herd of Models
(Part 1)

Aditya S and Aditya C

Agenda

1. Introduction
2. Pre-Training
3. Model Architecture
4. Training Infrastructure
5. Post-Training
6. Data Processing
7. Capability Enhancements

Intro and Improvements

Stages:

- Pre-training (next-word prediction, captioning)
- Post-training (instructions, alignment, capabilities)

Big 3 Levers:

- Data (15T multilingual token vs 2T)
- Scale (3.8 × 10^25 FLOPs, 50x larger)
- Complexity Management (Dense Transformer >

mixture-of-experts)

End result:

- 405B trained on 15.6T
- Solve complex reasoning problems

Multilingual (8 languages)
- Tools-out-the-box / Zero-shot

More Improvements (LLama3 Updates)

- Data Scale
- 7x larger
- 30+ languages

- Scaling Laws (Optimal data mix and Informed Decision making)
- Optimization Techniques:

- Parallelization (Data, Model, Pipeline)
- Detection for silent data corruption
- Scalable storage systems

- Model Differences:
- Larger context window
- No switch to MoE

Overview

Pre-training:

- Multilingual text corpus -> discrete tokens
- Pre train to perform next-token prediction
- Objective: learn language structure/obtain knowledge about the world

Post-training:

- Several rounds of SFT and DPO
- Integrate new capabilities (tool-use, improved coding and reasoning)
- Safety mitigations

Vision/Speech Adapter Preview

Vision:

- Cross-attention-based adapter integrates a pre-trained image encoder uses:
- aligning image
- language representations

- Trained on text-image pairs, updating only image encoder

Speech:

- Convert speech encodings into token representations
- Parameters updated in SFT
- Language Model remains unchanged

Pre-Training

Components:

1) Curation and filtering of large-scale training corpus
2) Development of model architecture and scaling laws
3) Techniques for efficient large-scale pre-training
4) Development of a “pre-training recipe”

Pre-Training Data Curation and Filtering

Web Data Curation:

- PII and safety filtering
- Text extraction and cleaning
- De-duplication
- Heuristic filtering (n-gram coverage ratio, “dirty word”)

Fast Classifiers:

- Fasttext
- Roberta-based classifiers trained on Llama-2 predictions

Data Mix and Discussion

Token Breakdown:

- 50% general knowledge,
- 25% mathematical and reasoning
- 17% code
- 8% multilingual tokens

Data “Transparency” and collection

- Meta is committed to open-source but generally shy about data
- NY Times article on availability of data

- Reddit
- Twitter

Annealing Data and Dataset Evaluation

- Annealing small amounts of high-quality code/mathematical data
boosts performance of pre-trained models on:

- GSM8k (24.0%)
- MATH Validation sets (6.4%)

- Improvements on 405B model were negligible
- Flagship model has strong

- In-context learning
- Reasoning capabilities

- Specific in-domain training samples aren’t needed for strong
performance

Model Architecture

- Dense Transformer architecture
- Performance gains driven by improvements in:

- Data quality
- Diversity
- Increased training scale

- Grouped Query Attention
- Inference speed
- Reduce key-value cache sizes

- Attention Mask
- Vocabulary with 128K tokens
- Training budget of 3.8 × 10^25 FLOPs

Scaling Laws

- Determine the optimal model size given pre-training compute budget
- Issues with current laws:

- Predict next-token prediction loss, not specific benchmark performance
- Noisy/Unreliable due to small compute budgets

- Methodology:
1) Correlate compute-optimal model’s negative log-likelihood on

downstream tasks and the training FLOPs
2) Correlate negative log-likelihood on downstream tasks with task accuracy

Scaling Law Experiments

- Extrapolate across four orders of magnitude
- Model sizes ranging from 40M to 16B

parameters, optimizing learning rate and
weight decay

- IsoFLOPs Curves: Compute-optimal model
determined by finding minimums in
polynomial-fitted validation loss curves,
showing robustness to trade-offs in model
size and training tokens

Scaling Law Experiments

- At each compute budget, we pre-train models
- Cosine learning rate schedule, linear warmup for 2,000 training steps
- Cosine decay: 0.1 of the peak value
- Weight decay: 0.1 times learning rate at step
- Fixed batch size: 250K to 4M
- minimum of a parabola

- compute-optimal model
- predict the optimal number of training tokens

for a compute budget

Infrastructure and Efficiency

Compute infrastructure:

- 16K H100 GPUs (700W with 80GB HBM3)
- Meta's Grand Teton AI server platform

Storage:

- Tectonic distributed file system provides (240 PB of storage across 7,500 servers)
- 7 TBs throughput

Checkpointing:

- Each GPU's model state (1 MB to 4 GB)
- Reduce GPU pause time and increase checkpoint frequency

Network:

- RDMA over Converged Ethernet (RoCE) fabric with 400 Gbps interconnects
- Network design: The RoCE network is fully owned and designed by Meta for large-scale AI workloads.

Parallelism

TP: weight tensors

PP: partitions the model
vertically into stages by layers

CP: divides the input context
into segments

DP: shards the model, optimizer,
and gradients while implementing
data parallelism which processes data in parallel on multiple GPUs

Operational Challenges

“Training Recipe”

1) Initial Pre-Training
- AdamW optimizer, peak learning rate: 8 × 10⁻⁵
- Gradual increase in batch size for stability: 4M tokens to 16M tokens
- Dynamic data adjustments: More non-English data, mathematical reasoning, up-to-date web content

2) Long-Context Pre-Training
- Gradually increased context window from 8K to 128K tokens
- Six stages of context adaptation, totaling 800B training tokens
- Goal: Maintain short-context performance and solve complex tasks

3) Annealing Phase
- Linear reduction of learning rate to 0 during final 40M tokens
- Upsampling high-quality data sources

Main Takeaway: A multi-stage, stable training approach combining careful batch sizing, long-context adaptation,
and annealing ensures optimal model performance.

Post-Training Overview

Key Components

● Reward Model
○ Use ranking loss to train

○ Used to perform rejection sampling for SFT data

Key Components

● Reward Model
○ Use ranking loss to train

○ Used to perform rejection sampling for SFT data

● SFT
○ Standard cross-entropy loss

○ Mostly synthetic data

Key Components

● Reward Model
○ Use ranking loss to train

○ Used to perform rejection sampling for SFT data

● SFT
○ Standard cross-entropy loss

○ Mostly synthetic data

● DPO
○ More computationally efficient and better instruction following than PPO

○ Mask header & termination tokens

○ Added NLL loss on the chosen responses

DPO Preference Data

● Collect responses from previous models for each prompt

● Annotators choose preferred response & categorize into 4 levels
○ Significantly better, better, slightly better, or marginally better

○ Significantly better and better responses chosen

● Annotators can edit chosen response to further improve it
○ Preference order is edited > chosen > rejected

● Use data generated from most recent batch for DPO

DPO Preference Data

● Collect responses from previous models for each prompt

● Annotators choose preferred response & categorize into 4 levels
○ Significantly better, better, slightly better, or marginally better

○ Significantly better and better responses chosen

● Annotators can edit chosen response to further improve it
○ Preference order is edited > chosen > rejected

● Use data generated from most recent batch for DPO
○ Discussion: What are some advantages of adding this constraint? Disadvantages?

DPO Preference Data

● Length of prompt & response increased → more complex tasks

● Perform rigorous quality control & evaluation for in-training modifications

○ Ex. Increase prompt complexity in low-performing areas

SFT Data

Comprised of:

● Human-written prompts & model responses with rejection-sampling

● Synthetic & human-annotated data targeting capabilities

Data Processing

● Rule-based removal and modification (emojis, overused phrases)

Data Processing

● Rule-based removal and modification (emojis, overused phrases)

● Topic classification: fine-tuned Llama3-8B

Data Processing

● Rule-based removal and modification (emojis, overused phrases)

● Topic classification: fine-tuned Llama3-8B

● Quality scoring: RM, Llama3-405B checkpoint
○ Top quartile of RM scores

○ Llama3 ratings - 3 point scale for accuracy, instruction following, and tone/presentation; 2

point scale for bug identification and user intention

Data Processing

● Rule-based removal and modification (emojis, overused phrases)

● Topic classification: fine-tuned Llama3-8B

● Quality scoring: RM, Llama3-405B checkpoint

● Difficulty scoring: Instag using Llama3-70B, Llama3-405B ratings
○ Instag: measures intentions, more intentions → higher complexity

○ 3 point scale for Llama3 difficulty ratings

Data Processing

● Rule-based removal and modification (emojis, overused phrases)

● Topic classification: fine-tuned Llama3-8B

● Quality scoring: RM, Llama3-405B checkpoint

● Difficulty scoring: Instag using Llama3-70B, Llama3-405B ratings

● Semantic deduplication: Sort dialogues by Quality x Difficulty, keep

dialogues with low cosine similarity

Capability Specific Data

● Extraction of desired capabilities is stronger with data targeting those tasks

Capability Specific Data

● Extraction of desired capabilities is stronger with data targeting those tasks

● For Llama3 these are:
○ Coding

○ Multilinguality

○ Math and Reasoning

○ Long Context Adaptability

○ Tool Use

○ Factuality

○ Steerability

Coding

● Train coding expert model by continuing pre-training of checkpoint

○ 1T tokens, approx 85% code data

○ Apply SFT and DPO to expert with code data

Coding

● Train coding expert model by continuing pre-training of checkpoint

○ 1T tokens, approx 85% code data

○ Apply SFT and DPO to expert with code data

● 3 approaches for synthetic data generation:

○ Execution Feedback

○ Programming Language Translation

○ Backtranslation

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

5. Accept response when it passes all checks

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

5. Accept response when it passes all checks

6. Repeat process with model generating new data each round

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

5. Accept response when it passes all checks

6. Repeat process with model generating new data each round

Any issues?

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

5. Accept response when it passes all checks

6. Repeat process with model generating new data each round

Any issues?

Programming Language Translation

● Translation from Python to PHP

● Quality verified by syntax parsing, compiling code, and executing on tests

Backtranslation

● Primarily for documentation, explanation, debugging

● Process:

1. Generate target data from code snippet (comments on code, explanation for code)

2. Prompt model to backtranslate data to the original code

3. Verify quality of backtranslation using original code

a. High-scoring samples (backtranslation, generated data) are kept

Data Quality
● Adding steering system prompt during rejection sampling boosts generation quality

● Use model-as-a-judge to assess synthetic data

○ Some challenging prompts fail → manually generate samples

Multilinguality

● Train multilingual expert from pre-trained checkpoint; 90% multilingual data

Multilinguality

● Train multilingual expert from pre-trained checkpoint; 90% multilingual data

● Data sources:

○ Training data from NLP tasks reworked into a dialogue (44.2%)

○ Machine-translated reasoning data (34.6%)

○ Rejection-sampled data using expert model (18.8%)

○ Human annotated by linguists and native speakers (2.4%)

Math and Reasoning

Challenges Solutions

Few prompts for complex questions/topics

Ground truth lacks chain-of-thought annotations

Model-generated chain-of-thought can be incorrect →

incorrect response

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges Solutions

Few prompts for complex questions/topics Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations

Model-generated chain-of-thought can be incorrect →

incorrect response

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges Solutions

Few prompts for complex questions/topics Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations Generate step-by-step solutions with model and self-verify

for correct answer and reasoning

Model-generated chain-of-thought can be incorrect →

incorrect response

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges Solutions

Few prompts for complex questions/topics Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations Generate step-by-step solutions with model and self-verify

for correct answer and reasoning

Model-generated chain-of-thought can be incorrect →

incorrect response

Train RM to filter data with incorrect reasoning

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges Solutions

Few prompts for complex questions/topics Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations Generate step-by-step solutions with model and self-verify

for correct answer and reasoning

Model-generated chain-of-thought can be incorrect →

incorrect response

Train RM to filter data with incorrect reasoning

Matching real-world usage (with human feedback) in a

training environment

Prompt model to revise incorrect reasonings/answers it

generated (simulating feedback)

Long Context Data

● Generated by Llama3:

○ Question answering: Prompt model to generate QAs on random chunks of a

document, with whole document used in training

Long Context Data

● Generated by Llama3:

○ Question answering: Prompt model to generate QAs on random chunks of a

document, with whole document used in training

○ Summarization: Summarize chunks of document, then summarize summaries;

train model to summarize document and answer questions about entire document

Long Context Data

● Generated by Llama3:

○ Question answering: Prompt model to generate QAs on random chunks of a

document, with whole document used in training

○ Summarization: Summarize chunks of document, then summarize summaries;

train model to summarize document and answer questions about entire document

○ Code Reasoning: Remove common dependencies in repository and prompt model

to generate missing file + code

Long Context Data

● Generated by Llama3:

○ Question answering: Prompt model to generate QAs on random chunks of a

document, with whole document used in training

○ Summarization: Summarize chunks of document, then summarize summaries;

train model to summarize document and answer questions about entire document

○ Code Reasoning: Remove common dependencies in repository and prompt model

to generate missing file + code

● Adding 0.1% long context data to SFT mix improves performance

Tool Use

● Primarily trained with 3 tools

○ Search engine: looking up specific information or information after cutoff

○ Python interpreter: generating and running code for tasks, reading user files, etc.

○ Math engine: accesses WolframAlpha API for math and science questions

Tool Use

● Primarily trained with 3 tools

○ Search engine: looking up specific information or information after cutoff

○ Python interpreter: generating and running code for tasks, reading user files, etc.

○ Math engine: accesses WolframAlpha API for math and science questions

● Generalizes to any zero-shot tools as Python functions

Tool Use Data

● Single-Step: generate prompts which require a tool, then execute query and prompt

model for a final answer with new information

Tool Use Data

● Single-Step: generate prompts which require a tool, then execute query and prompt

model for a final answer with new information

● Multi-Step: generate prompts which require at least 2 tools, then prompt model for

solution with reasoning and tool calls

Tool Use Data

● Single-Step: generate prompts which require a tool, then execute query and prompt

model for a final answer with new information

● Multi-Step: generate prompts which require at least 2 tools, then prompt model for

solution with reasoning and tool calls

● Files: prompts for summarization, code optimization, etc. with model response

Tool Use Data

● Single-Step: generate prompts which require a tool, then execute query and prompt

model for a final answer with new information

● Multi-Step: generate prompts which require at least 2 tools, then prompt model for

solution with reasoning and tool calls

● Files: prompts for summarization, code optimization, etc. with model response

● Human Data: from multi-turn dialogues, tool failure, other difficult scenarios

Tool Use Data

● Single-Step: generate prompts which require a tool, then execute query and prompt

model for a final answer with new information

● Multi-Step: generate prompts which require at least 2 tools, then prompt model for

solution with reasoning and tool calls

● Files: prompts for summarization, code optimization, etc. with model response

● Human Data: from multi-turn dialogues, tool failure, other difficult scenarios

● Zero-Shot Data: generating NL queries from Python functions

Tool Use

Factuality

● Goal: model should refuse to answer instead of hallucinating

● Data collection:

1. Generate grounded question from snippet of pre-training data

2. Generate responses from model

3. Score correctness and informativeness using model-as-a-judge

4. If responses are informative + incorrect, pair prompt with a refusal to answer

Steerability

● Annotators design prompts for specific tasks and evaluate model on instruction-following consistency

● Preferred prompts with high consistency are used in SFT, DPO, and other training

Thank you for listening!
Any questions?

