The Llama 3 Herd of Models

(Part 1)
Aditya S and Aditya C

00 Meta

Agenda

NS ko=

Introduction

Pre-Training

Model Architecture
Training Infrastructure
Post-Training

Data Processing
Capability Enhancements

Intro and Improvements

Stages: End result:
- Pre-training (next-word prediction, captioning) - 405B trained on 15.6T
- Post-training (instructions, alignment, capabilities) - Solve complex reasoning problems

Multilingual (8 languages)

Big 3 Levers: - Tools-out-the-box / Zero-shot

- Data (15T multilingual token vs 2T)

- Scale (3.8 x 10725 FLOPs, 50x larger)

- Complexity Management (Dense Transformer >
mixture-of-experts)

| Finetuned Multilingual Longcontext Tooluse Release
Llama 3 8B X X X X April 2024
Llama 3 8B Instruct v X X X April 2024
Llama 3 70B X X X X April 2024
Llama 3 70B Instruct v X X X April 2024
Llama 3.1 8B X v v X July 2024
Llama 3.1 8B Instruct v v v v July 2024
Llama 3.1 70B X v v X July 2024
Llama 3.1 70B Instruct v v v v July 2024
Llama 3.1 405B X v v X July 2024
Llama 3.1 405B Instruct v v v v July 2024

More Improvements (LLama3 Updates)

- Data Scale
- Ixlarger
- 30+ languages
- Scaling Laws (Optimal data mix and Informed Decision making)

- Optimization Techniques:
- Parallelization (Data, Model, Pipeline)
- Detection for silent data corruption
- Scalable storage systems

- M Od e | D |ffe rences: GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPS/GPU BF16 MFU
_ 8192 8 1 16 64 8192 32 16M 430 43%
- Larger context window 16,384 8 1 16 128 8,192 16 16M 400 41%

16,384 8 16 16 4 131,072 16 16M 380 38%

- No switch to MoE

Category

Benchmark
MMLU (0-shot
MMLU PRO

IFEval

ode
HumanEval (0

MBPP EvalPlus
(base) (hot

GSMB8K (&-shot

MATH (0-shot

Reasoning

ARC Challenge (

GPQA (0-hot,

BFCL
Nexus

ZeroSCROLLS/QUALITY
InfiniteBench/En.MC

NIH/Multi-needle

tilin,

Multilingual MGSM

Llama 3.1

405B

88.6

733

88.6

89.0

88.6

96.8

73.8

96.9

511

88.5

58.7

95.2

83.4

981

91.6

Nemotron 4
3408B Instruct

787

62.7

85.1
73.2
72.8

92.3

0-shot)

41

94.6

86.5

)

GPT-4

85.4

64.8

84.3

86.6

83.6

94.2

64.5

96.4

41.4

88.3

50.3

95.2

721

100.0

85.9

GPT-4
Omni

88.7

74.0

85.6

90.2

87.8

96.1

76.6

96.7

53.6

80.5

56.1

90.5

82.5

100.0

90.5

Claude 3.5
Sonnet

88.3
77.0

88.0

92.0
90.5

96.4_ ‘
711
96.7
59.4

90.2

457

90.5

90.8

91.6

Token R Self- Feedforward v Self- Feedforward 7 ouTPUT

L] INPUT
ey —
O Ve rv I eW Text tokens embeddings ' attention network ! H attention network ! Text token

Pre-training:

- Multilingual text corpus -> discrete tokens
- Pre train to perform next-token prediction
- Obijective: learn language structure/obtain knowledge about the world

Post-training:

- Several rounds of SFT and DPO
- Integrate new capabilities (tool-use, improved coding and reasoning)
- Safety mitigations

Vision/Speech Adapter Preview

Vision:

- Cross-attention-based adapter integrates a pre-trained image encoder uses:
- aligning image
- language representations

- Trained on text-image pairs, updating only image encoder

Speech:

- Convert speech encodings into token representations
- Parameters updated in SFT
- Language Model remains unchanged

Pre-Training

Components:

1) Curation and filtering of large-scale training corpus
2) Development of model architecture and scaling laws
3) Techniques for efficient large-scale pre-training

4) Development of a “pre-training recipe”

Pre-Training Data Curation and Filtering

Web Data Curation:

- PIl and safety filtering

- Text extraction and cleaning

- De-duplication

- Heuristic filtering (n-gram coverage ratio, “dirty word”)

Fast Classifiers:

- Fasttext
- Roberta-based classifiers trained on Llama-2 predictions

Data MIX and DISCUSSIOn The Data That Powers A.1 Is

Disappearing Fast
TO ke N B rea kd own: New research from the Data Provenance Initiative has found a

dramatic drop in content made available to the collections used to
build artificial intelligence.

50% general knowledge,

25% mathematical and reasoning
17% code

8% multilingual tokens

P Listen to this article - 7:43 min

earn more & sharetullarticle 2> []

Data “Transparency” and collection

- Meta is committed to open-source but generally shy about data

- NY Times article on availability of data
- Reddit
- Twitter

Annealing Data and Dataset Evaluation

- Annealing small amounts of high-quality code/mathematical data

boosts performance of pre-trained models on:
- GSMS8k (24.0%)
- MATH Validation sets (6.4%)

- Improvements on 405B model were negligible

- Flagship model has strong

- In-context learning
- Reasoning capabilities

- Specific in-domain training samples aren’t needed for strong
performance

Model Architecture

- Dense Transformer architecture

- Performance gains driven by improvements in:

- Data quality
- Diversity
- Increased training scale
- Grouped Query Attention
- Inference speed
- Reduce key-value cache sizes

- Attention Mask
- Vocabulary with 128K tokens
- Training budget of 3.8 x 10725 FLOPs

| 8B 70B 405B
Layers 32 80 126
Model Dimension 4,096 8192 16,384
FFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key/Value Heads 8 8 8
Peak Learning Rate 3x107* 15x107% 8x107°
Activation Function SwiGLU
Vocabulary Size 128,000

Positional Embeddings

RoPE (6 = 500, 000)

Scaling Laws

- Determine the optimal model size given pre-training compute budget

- Issues with current laws:
- Predict next-token prediction loss, not specific benchmark performance
- Noisy/Unreliable due to small compute budgets

- Methodology:
1) Correlate compute-optimal model’s negative log-likelihood on
downstream tasks and the training FLOPs
2) Correlate negative log-likelihood on downstream tasks with task accuracy

Scaling Law Experiments

Extrapolate across four orders of magnitude
Model sizes ranging from 40M to 16B
parameters, optimizing learning rate and
weight decay

IsoFLOPs Curves: Compute-optimal model
determined by finding minimums in
polynomial-fitted validation loss curves,
showing robustness to trade-offs in model
size and training tokens

1011

Training Tokens

Validation Loss

0.70

- Fitted Line, a = 0.537, A = 0.299

1019 1020 1021 1022

Compute (FLOPs)

lel9
3el9
6el9
— 1e20
e 3e20
— 6e20
—_— 1e21
— 3e21
— 1022

. o

1010 1011
Training Tokens

1012

Scaling Law Experiments

- At each compute budget, we pre-train models

- Cosine learning rate schedule, linear warmup for 2,000 training steps

- Cosine decay: 0.1 of the peak value

- Weight decay: 0.1 times learning rate at step

- Fixed batch size: 250K to 4M 020 o Le1s
- minimum of a parabola Jez0

* — 1e20
. V —— 3e20
- compute-optimal model — 6620

- predict the optimal number of training tokens : =
L — 122
for a compute budget
0.70 ‘-t:-...—/

N*(C) = AC®.

Validation Loss
o
©
o

Training Tokens

Infrastructure and Efficiency

CompUte infrastructure: GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU
_ 8192 8 1 16 64 8192 32 16M 430 43%
- 16K H100 GPUs (700W with 80GB HBM3) 16384 8 1 16 128 8,102 16 16M 400 41%
- Meta's Grand Teton Al server platform 16384 8 16 16 4 131,072 16 T6M 880 38%
Storage:
- Tectonic distributed file system provides (240 PB of storage across 7,500 servers)
- 7 TBs throughput
Checkpointing:

- Each GPU's model state (1 MB to 4 GB)
- Reduce GPU pause time and increase checkpoint frequency

Network:

- RDMA over Converged Ethernet (RoCE) fabric with 400 Gbps interconnects
- Network design: The RoCE network is fully owned and designed by Meta for large-scale Al workloads.

Parallelism

TP: weight tensors

PP: partitions the model
vertically into stages by layers

CP: divides the input context

into segments

DP: shards the model, optimizer,
and gradients while implementing

PP

cpP

TPO CP1 PPO DPO TP1 CP1 PPO DPO

GPU1

TPO CPO PPO DPO TP1 CPO PPO DPO

GPU6 GPU7

TPO CP1 PP1 DPO TP1 CP1 PP1 DPO

GPU 4 GPUS

TPO CPO PP1 DPO TP1 CPO PP1 DPO

™

TPO CP1 PPO DP1 TP1 CP1 PPO DP1

TPO CPO PPO DP1 TP1 CPO PPO DP1

GPU 14 GPU 15

TPO CP1 PP1 DP1 TP1 CP1 PP1 DP1

GPU 12 GPU13

TPO CPO PP1 DP1 TP1 CPO PP1 DP1

DP

data parallelism which processes data in parallel on multiple GPUs

Operational Challenges

Component Category Interruption Count % of Interruptions
Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%
Host Maintenance nglanned 32 7.6%
Maintenance
GPU SRAM Memory GPU 19 4.5%
GPU System Processor GPU 17 4.1%
NIC Host 7 1.7%
NCCL Watchdog Timeouts Unknown 7 1.7%
Silent Data Corruption GPU 6 1.4%
GPU Thermal Interface + Sensor GPU 6 1.4%
SSD Host 3 0.7%
Power Supply Host 3 0.7%
Server Chassis Host 2 0.5%
IO Expansion Board Host 2 0.5%
Dependency Dependency 2 0.5%
CPU Host 2 0.5%
System Memory Host 2 0.5%

“Training Recipe”

1) Initial Pre-Training
- AdamW optimizer, peak learning rate: 8 x 10°°
- Gradual increase in batch size for stability: 4M tokens to 16M tokens
- Dynamic data adjustments: More non-English data, mathematical reasoning, up-to-date web content

2) Long-Context Pre-Training
- Gradually increased context window from 8K to 128K tokens
- Six stages of context adaptation, totaling 800B training tokens
- Goal: Maintain short-context performance and solve complex tasks

3) Annealing Phase
- Linear reduction of learning rate to 0 during final 40M tokens

- Upsampling high-quality data sources

Main Takeaway: A multi-stage, stable training approach combining careful batch sizing, long-context adaptation,
and annealing ensures optimal model performance.

Post-Training Overview

Collected Prompts

Best models from

K Generations per

Prompt previous rounds
l Best model for next round
DPO Training ;
Reward Model Rejection Sampling — Final DPO Model

Pairwise Annotated and

Specialized
Specialized Per-Capability Binary
Preference Data

Per-capability (
SFT data . Model
. Data

G J

Reward model training DPO Training

Key Components

e Reward Model

o Useranking loss to train Lranking = —log(o(re(z,yc) — ro(z,yr)))

o Used to perform rejection sampling for SFT data

Key Components

e Reward Model

o Use ranking loss to train Lrankmg = —log(a(’f'o(x,yc) — To(iﬂayr)))

o Used to perform rejection sampling for SFT data
o SFT

o Standard cross-entropy loss

o Mostly synthetic data

Key Components

e Reward Model

o Use ranking loss to train Lrankmg = —log(a(’f'o (33, yc) — 7”9(33, yr)))

o Used to perform rejection sampling for SFT data
o SFT

o Standard cross-entropy loss

o Mostly synthetic data
e DPO

o More computationally efficient and better instruction following than PPO
o Mask header & termination tokens

o Added NLL loss on the chosen responses

DPO Preference Data

e Collect responses from previous models for each prompt

e Annotators choose preferred response & categorize into 4 levels

o Significantly better, better, slightly better, or marginally better

o Significantly better and better responses chosen
e Annotators can edit chosen response to further improve it
o Preference order is edited > chosen > rejected

e Use data generated from most recent batch for DPO

DPO Preference Data

e Collect responses from previous models for each prompt

e Annotators choose preferred response & categorize into 4 levels

o Significantly better, better, slightly better, or marginally better

o Significantly better and better responses chosen

e Annotators can edit chosen response to further improve it
o Preference order is edited > chosen > rejected

e Use data generated from most recent batch for DPO

o Discussion: What are some advantages of adding this constraint? Disadvantages?

DPO Preference Data

% of Avg. #turns Avg. #tokens Avg. #tokens Avg. # tokens

Dataset comparisons perdialog per example in prompt in response
General English 81.99% 4.1 1,000.4 36.4 271.2
Coding 6.93% 3.2 1,621.0 113.8 462.9
Multilingual 5.19% 1.8 1,299.4 77.1 420.9
Reasoning and tools 5.89% 1.6 707.7 46.6 129.9
Total 100% 3.8 1,041.6 44.5 284.0

o Ex. Increase prompt complexity in low-performing areas

Length of prompt & response increased — more complex tasks

Perform rigorous quality control & evaluation for in-training modifications

SFT Data

Avg. # tokens

Avg. # tokens

Dataset % of examples Avg. # turns Avg. # tokens in context in final response
General English 52.66% 6.3 974.0 656.7 317.1
Code 14.89% 2.7 753.3 378.8 374.5
Multilingual 3.01% 2.7 520.5 230.8 289.7
Exam-like 8.14% 2.3 297.8 124.4 173.4
Reasoning and tools 21.19% 3.1 661.6 359.8 301.9
Long context 0.11% 6.7 38,135.6 37,395.2 740.5
Total 100% 4.7 846.1 535.7 310.4

Comprised of:

Human-written prompts & model responses with rejection-sampling

Synthetic & human-annotated data targeting capabilities

Data Processing

e Rule-based removal and modification (emojis, overused phrases)

Data Processing

e Rule-based removal and modification (emojis, overused phrases)

e Topic classification: fine-tuned Llama3-8B

Data Processing

e Rule-based removal and modification (emojis, overused phrases)
e Topic classification: fine-tuned Llama3-8B

e Quality scoring: RM, Llama3-405B checkpoint

o Top quartile of RM scores
o Llama3 ratings - 3 point scale for accuracy, instruction following, and tone/presentation; 2

point scale for bug identification and user intention

Data Processing

e Rule-based removal and modification (emojis, overused phrases)
e Topic classification: fine-tuned Llama3-8B

e Quality scoring: RM, Llama3-405B checkpoint

e Difficulty scoring: Instag using Llama3-70B, Llama3-405B ratings

o Instag: measures intentions, more intentions — higher complexity

o 3 point scale for Llama3 difficulty ratings

Data Processing

e Rule-based removal and modification (emojis, overused phrases)
e Topic classification: fine-tuned Llama3-8B

e Quality scoring: RM, Llama3-405B checkpoint

e Difficulty scoring: Instag using Llama3-70B, Llama3-405B ratings
e Semantic deduplication: Sort dialogues by Quality x Difficulty, keep

dialogues with low cosine similarity

Capability Specific Data

e Extraction of desired capabilities is stronger with data targeting those tasks

Capability Specific Data

e Extraction of desired capabilities is stronger with data targeting those tasks

e For Llama3 these are:
o Coding
o Multilinguality
o Math and Reasoning
o Long Context Adaptability
o Tool Use
o Factuality

o Steerability

Coding

e Train coding expert model by continuing pre-training of checkpoint

o 1T tokens, approx 85% code data
o Apply SFT and DPO to expert with code data

Coding

® Train coding expert model by continuing pre-training of checkpoint
o 1T tokens, approx 85% code data
o Apply SFT and DPO to expert with code data
e 3 approaches for synthetic data generation:
o Execution Feedback
o Programming Language Translation

o Backtranslation

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments
3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments
3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

5. Accept response when it passes all checks

Execution Feedback

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments
3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

5. Accept response when it passes all checks

6. Repeat process with model generating new data each round

. . ,)
Execution Feedback Any issues”

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments
3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code or unit tests

a. ~20% of solutions corrected

5. Accept response when it passes all checks

6. Repeat process with model generating new data each round

. . ,)
Execution Feedback Any issues”

1. Generate programming problems by prompting the model with example code snippets

2. Prompt model to solve coding problem and include thought process in comments

3. Verify correctness of solution via parser + linter and model-generated unit tests

4. On syntax or operational error, prompt model to fix code‘or unit tests ‘

a. ~20% of solutions corrected

5. Accept response when it passes all checks

6. Repeat process with model generating new data each round

Programming Language Translation

def gushti_cdi(): <?php
n = int (input()) function gushti_cdi() {
arr = list(map(int, input().split())) $n = (int) fgets (STDIN) ;
points = 0 Sarr = explode(" ", fgets(STDIN));
for i in range(n): Spoints = 0;
if arr[i] == 0 and i != 0: for ($i = 0; $i < $n; $i++) {
idx = arr.index (max(arr[:1])) if ($Sarr[$i] == 0 && $i != 0) {
points += arr[idx] $maxVal = max(array slice($arr, 0, $i));
arr[idx] = 0 $idx = array search($maxVal, Sarr);
return points $points += Sarr([$idx];
Sarr([$idx] = 0;
for _ in range(int (input())): }
print (gushti_cdi()) }

return $points;

}

$t = (int) fgets (STDIN);
for ($i = 0; $i < $t; Si++) {
echo gushti cdi() . "\n";

}

?>

e Translation from Python to PHP

e Quality verified by syntax parsing, compiling code, and executing on tests

Backtranslation

e Primarily for documentation, explanation, debugging

e Process:
1. Generate target data from code snippet (comments on code, explanation for code)
2. Prompt model to backtranslate data to the original code

3. Verify quality of backtranslation using original code

a. High-scoring samples (backtranslation, generated data) are kept

Data Quality

e Adding steering system prompt during rejection sampling boosts generation quality
e Use model-as-a-judge to assess synthetic data

o Some challenging prompts fail — manually generate samples

public static int ClimbStairs(int n) public static int ClimbStairs(int n)
{ {
if (n == 1) // Base cases
{ if (n == 1) return 1;
return 1; if (n == 2) return 2;

}

// Initialize variables to store the number

if (n == 2) of ways to climb
{ int prev = 1;
return 2; int curr = 2;

}
// Calculate the number of ways to climb for
int[] dp = new int[n + 1]; n>2
dp[1] 1; for (int i = 3; i <= n; i++)
dp (2] 2; {
int temp = curr;

for (int i = 3; i <= n; i++) curr = prev + curr;
{ prev = temp;

dp[i] = dp[i - 1] + dp[i - 2]; }

}
return curr;
return dp[n]; }

Multilinguality

e Train multilingual expert from pre-trained checkpoint; 90% multilingual data

Multilinguality

e Train multilingual expert from pre-trained checkpoint; 90% multilingual data

e Data sources:
o Training data from NLP tasks reworked into a dialogue (44.2%)
o Machine-translated reasoning data (34.6%)
o Rejection-sampled data using expert model (18.8%)

o Human annotated by linguists and native speakers (2.4%)

Math and Reasoning

Challenges

Solutions

Few prompts for complex questions/topics

Ground truth lacks chain-of-thought annotations

Model-generated chain-of-thought can be incorrect —

incorrect response

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges

Solutions

Few prompts for complex questions/topics

Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations

Model-generated chain-of-thought can be incorrect —

incorrect response

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges

Solutions

Few prompts for complex questions/topics

Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations

Generate step-by-step solutions with model and self-verify

for correct answer and reasoning

Model-generated chain-of-thought can be incorrect —

incorrect response

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges

Solutions

Few prompts for complex questions/topics

Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations

Generate step-by-step solutions with model and self-verify

for correct answer and reasoning

Model-generated chain-of-thought can be incorrect —

incorrect response

Train RM to filter data with incorrect reasoning

Matching real-world usage (with human feedback) in a

training environment

Math and Reasoning

Challenges

Solutions

Few prompts for complex questions/topics

Convert math documents into a QA format; collect human

prompts for complex topics

Ground truth lacks chain-of-thought annotations

Generate step-by-step solutions with model and self-verify

for correct answer and reasoning

Model-generated chain-of-thought can be incorrect —

incorrect response

Train RM to filter data with incorrect reasoning

Matching real-world usage (with human feedback) in a

training environment

Prompt model to revise incorrect reasonings/answers it

generated (simulating feedback)

Long Context Data

e Generated by Llama3:
o Question answering: Prompt model to generate QAs on random chunks of a

document, with whole document used in training

Long Context Data

e Generated by Llama3:
o Question answering: Prompt model to generate QAs on random chunks of a
document, with whole document used in training
o Summarization: Summarize chunks of document, then summarize summaries;

train model to summarize document and answer questions about entire document

Long Context Data

e Generated by Llama3:
o Question answering: Prompt model to generate QAs on random chunks of a
document, with whole document used in training
o Summarization: Summarize chunks of document, then summarize summaries;
train model to summarize document and answer questions about entire document
o Code Reasoning: Remove common dependencies in repository and prompt model

to generate missing file + code

Long Context Data

e Generated by Llama3:
o Question answering: Prompt model to generate QAs on random chunks of a
document, with whole document used in training
o Summarization: Summarize chunks of document, then summarize summaries;
train model to summarize document and answer questions about entire document
o Code Reasoning: Remove common dependencies in repository and prompt model
to generate missing file + code

e Adding 0.1% long context data to SFT mix improves performance

Tool Use

e Primarily trained with 3 tools
o Search engine: looking up specific information or information after cutoff
o Python interpreter: generating and running code for tasks, reading user files, etc.

o Math engine: accesses WolframAlpha API for math and science questions

Tool Use

e Primarily trained with 3 tools
o Search engine: looking up specific information or information after cutoff
o Python interpreter: generating and running code for tasks, reading user files, etc.

o Math engine: accesses WolframAlpha API for math and science questions

e Generalizes to any zero-shot tools as Python functions

Tool Use Data

e Single-Step: generate prompts which require a tool, then execute query and prompt

model for a final answer with new information

Tool Use Data

e Single-Step: generate prompts which require a tool, then execute query and prompt
model for a final answer with new information
e Multi-Step: generate prompts which require at least 2 tools, then prompt model for

solution with reasoning and tool calls

Tool Use Data

e Single-Step: generate prompts which require a tool, then execute query and prompt
model for a final answer with new information

e Multi-Step: generate prompts which require at least 2 tools, then prompt model for
solution with reasoning and tool calls

e Files: prompts for summarization, code optimization, etc. with model response

Tool Use Data

e Single-Step: generate prompts which require a tool, then execute query and prompt
model for a final answer with new information

e Multi-Step: generate prompts which require at least 2 tools, then prompt model for
solution with reasoning and tool calls

e Files: prompts for summarization, code optimization, etc. with model response

e Human Data: from multi-turn dialogues, tool failure, other difficult scenarios

Tool Use Data

e Single-Step: generate prompts which require a tool, then execute query and prompt
model for a final answer with new information

e Multi-Step: generate prompts which require at least 2 tools, then prompt model for
solution with reasoning and tool calls

e Files: prompts for summarization, code optimization, etc. with model response

e Human Data: from multi-turn dialogues, tool failure, other difficult scenarios

e Zero-Shot Data: generating NL queries from Python functions

Tool Use

9
o

User prompt

Based on the inflation rate for the US in February 2024, and the cost of this list of tuples containing my daily groceries,
[(\"eggs\",3),(\"chicken\",4),(\"rice\",2),(\"beans\",2.50),(\"apples\",6.25)], can you give me the estimated total cost of
my groceries over a 30 day month when you add 1 cookie per day at Costco's food court giant cookie debut price and
adjust the total for the inflation percentage in $X.XX?

(3 Assistant response

To answer your question, | will need to:

(SN

. Look up the inflation rate for the US in February 2024

Look up the Costco food court giant cookie debut price

. Calculate the estimated total cost of your groceries

over a 30 day month when you add 1 cookie per day at
Costco's food court giant cookie debut price and adjust
the total for the inflation percentage

First, | will look up the inflation rate for the US in
February 2024.

2% Assistant tool call

brave_search.call(query="US inflation rate
February 2024")

[Tool output

{

"title": "US Inflation Remained
Higher Than Economists Had Expected in
February",

"url": "https://
www. investopedia.com/february-2024-
cpi-8607820",

"description": "Consumer prices rose
3.2% over the year in
February, higher than the 3.1% annual rate
in January and above what economists had
predicted. An uptick in gas prices and
housing prices was behind the unexpectedly
high inflation rate.",

}

The inflation rate for the US in February 2024 was
3.2%.Next, | will look up the Costco food court giant
cookie debut price.

2% Assistant tool call

brave_search.call(query:
giant cookie debut pric

"Costco food court
A

[Tool output

{

"t "Costco’s food court
replaced its churro with a giant cookie.
Here’s how it tastes",

"url": "https://www.today.com/food/
groceries/costco-double-chocolate-chunk-
cookie-food-court-review-rcnal3ss37",

"description": "Costco</
strong>'s Kirkland Signature Double
Chocolate Chunk Cookie,
the latest addition to its food</
strong> court, costs
$2.49 and has 750 calories. Here's my
review of the buttery treat.",

}

The Costco food court giant cookie debut price is

$2.49.Now, | will calculate the estimated total cost of your
groceries over a 30 day month when you add 1 cookie per

day at Costco's food court giant cookie debut price and
adjust the total for the inflation percentage.

) System Prompt

Environment: ipython,

Tools: brave_search, wolfram_alpha
Cutting Knowledge Date: : December 2023
Today's Date: Jul 11, 2024

X Assistant tool call

Define the list of tuples containing the
daily groceries

groceries = [("eggs",3),("chicken",4),
("rice",2), ("beans",2.50), ("apples",6.25)]

Calculate the total cost of the
groceries per day

total_cost_per_day = sum([item[1] for item
in groceries])

Calculate the total cost of the
groceries per day including the cookie
total_cost_per_day_with_cookie =
total_cost_per_day + 2.49

Calculate the total cost of the
groceries for 30 days including the cookie
total_cost_for_30_days_with_cookie =
total_cost_per_day_with_cookie * 30

Define the inflation rate
inflation_rate = 0.032

Calculate the total cost of the
groceries for 30 days including the cookie
and adjusted for inflation
total_cost_for_30_days_with_cookie_and_inf
lation =
total_cost_for_30_days_with_cookie * (1 +
inflation_rate)

Print the result

print(f'The estimated total cost of your
groceries over a 30 day month when you add
1 cookie per day at Costco's food court
giant cookie debut price and adjust the
total for the inflation percentage is
${total_cost_for_30_days_with_cookie_and_i
nflation:.2f}")

[Tool output

The estimated total cost of your groceries
over a 30 day month when you add 1 cookie
per day at Costco's food court giant
cookie debut price and adjust the total
for the inflation percentage is $626.63

The estimated total cost of your groceries over a 30 day
month when you add 1 cookie per day at Costco's food
court giant cookie debut price and adjust the total for the
inflation percentage is $626.63.

Factuality

e Goal: model should refuse to answer instead of hallucinating

e Data collection:
1. Generate grounded question from snippet of pre-training data
2. Generate responses from model
3. Score correctness and informativeness using model-as-a-judge

4. If responses are informative + incorrect, pair prompt with a refusal to answer

Steerability

e Annotators design prompts for specific tasks and evaluate model on instruction-following consistency

e Preferred prompts with high consistency are used in SFT, DPO, and other training

You are a helpful and cheerful AI Chatbot that acts as a meal plan assistant for busy families.
The family consists of 2 adults, 3 teenagers, and 2 preschoolers. Plan two or three days at a time
and use leftovers or extra ingredients for the second day’s plan. The user will let you know if they
want two or three days. If they don’t, assume three days. Each plan should include breakfast,
lunch, snack, and dinner. Ask the user if they approve of the plan or need adjustments. After they
approve provide a grocery list with family size in mind. Always keep family preferences in mind
and if there’s something that they don’t like provide a substitution. If the user is not feeling
inspired then ask them what’s the one place they wish they could visit on vacation this week
and then suggest meals based on that location’s culture. Weekend meals can be more complex.
Weekday meals should be quick and easy. For breakfast and lunch, easy food like cereal, English
muffins with pre-cooked bacon, and other quick easy foods are preferred. The family is busy. Be
sure to ask if they have essentials and favorites on hand like coffee or energy drinks so they don’t
forget to buy it. Remember to be budget-conscious unless it’s a special occasion.

Thank you for listening!

Any questions?

