Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation

Haoran Xu[♠] Amr Sharaf[♡] Yunmo Chen[♠] Weiting Tan[♠] Lingfeng Shen[♠] Benjamin Van Durme[♠] Kenton Murray^{*} [♠] Young Jin Kim^{*} [♡]

Zhiyi Chen, Jeongrok Yu

Recap

• DPO:
$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

• Need reference model (SFT model) + Ensure the policy model doesn't diverge too far

Recap

• DPO:
$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

• Need reference model (SFT model) + Ensure the policy model doesn't diverge too far

• SimPO:
$$\mathcal{L}_{\text{SimPO}}(\pi_{\theta}) = -\mathbb{E}_{(x,y_w,y_l)\sim\mathcal{D}}\left[\log\sigma\left(\frac{\beta}{|y_w|}\log\pi_{\theta}(y_w|x) - \frac{\beta}{|y_l|}\log\pi_{\theta}(y_l|x) - \gamma\right)\right]$$

- No need of reference model
- Intuition: The reward being optimized during DPO training and the generation metric used for inference is different

$$p_{\theta}(y \mid x) = \frac{1}{|y|} \log \pi_{\theta}(y \mid x) = \frac{1}{|y|} \sum_{i=1}^{|y|} \log \pi_{\theta}(y_i \mid x, y_{< i})$$

• Solution: Employs an implicit reward formulation that directly aligns with the generation metric

This paper: Relation to SimPO

- Contrastive Preference Optimization (CPO):
 - Shares a similar reference-free preference learning framework with SimPO
 - Key differences
 - Objective: CPO focuses on machine translation (MT) tasks, while SimPO targets more general tasks
 - Intuition: In MT tasks, the authors of CPO found that **human-written reference** data is often inferior in quality compared to system-generated translations

CPO-related work timeline

- Translation LLM: Advanced Language Model-based trAnslator (ALMA)
 - Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models (ICLR 2024)
- Contrastive Preference Optimization (CPO) & ALMA-R model
 - Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation (ICML 2024)
- CPO-SimPO
 - <u>GitHub</u> repo: A new training approach combining objectives of CPO and SimPO

Takeaway 1

- CPO shares the same reference-free idea of SimPO, and their objectives can be combined to a even better objective
 - They've published the source code

- Goal: Based on FLORES-200 dataset, evaluate its gold references and translation outputs from ALMA13B-LoRA2 and GPT-4.
- Approach: Use reference-free evaluation frameworks to rank and compare the gold references and system-generated translations
 - Evaluate the quality of a MT system's output without using human-produced reference translations for comparison
 - Model-based frameworks: two latest and largest reference-free models, each with a 10B parameter size
 - KIWI-XXL, XCOMET

- Scope: 5 English-centric language pairs, covering both translations from and to English (German (de), Czech (cs), Icelandic (is), Chinese (zh), and Russian (ru))
- Prompt:

	GPT-4 Prompt	
System: You are a helpful translator a	and only output the result.	
User: ### Translate this from <sou <source sentence=""/> ### <target language="">:</target></sou 	ırce language> to <target lang<="" th=""><th>uage>, <source language=""/>:</th></target>	uage>, <source language=""/> :
	ALMA Prompt	
Translate this from <source <source language=""/>: <source <target language="">:</target></source </source 	language> to <target languag<br="">sentence></target>	2>:

- Metrics: Average evaluation scores + win ratio (model outputs surpass the gold standard references)
- Observations?

	KIWI-XXL	Win Ratio (%)	XCOMET	Win Ratio (%)
	Translating	g to English (xx–	→en)	
Reference	85.31	-	88.82	-
ALMA-13B-LoRA	88.33	73.24	92.68	60.17
GPT-4	89.21	79.43	94.66	54.25
	Translating	from English (en	→xx)	
Reference	87.85	and the second second	94.42	-
ALMA-13B-LoRA	85.62	42.15	93.07	35.46
GPT-4	87.30	49.13	94.21	38.09

- For the average performance of translation models in xx→en, system-generated translations significantly exceeds the human-written references
- In the en→xx direction, while the overall performance between the translations from reference and two systems is comparable, approximately 40% are still deemed superior to the reference translations

	KIWI-XXL	Win Ratio (%)	XCOMET	Win Ratio (%)
	Translating	g to English (xx-	→en)	
Reference	85.31	-	88.82	-
ALMA-13B-LoRA	88.33	73.24	92.68	60.17
GPT-4	89.21	79.43	94.66	54.25
	Translating	from English (en	\rightarrow xx)	
Reference	87.85	100 C	94.42	-
ALMA-13B-LoRA	85.62	42.15	93.07	35.46
GPT-4	87.30	49.13	94.21	38.09

 Human-written references are not good enough -> we do not want our model to merely mimic (be fine-tuned) the gold references

Contrastive Preference Optimization – Preference data construction

- Preference data construction
 - Use the same setting in the previous evaluation: based on FLORES-200, use the two reference-free eval frameworks to rank (1) reference, (2) GPT-4, (3) ALMA translations based on average performance scores
 - $y_w = \mathbf{y}_{\arg\max_i(\mathbf{s})}, y_l = \mathbf{y}_{\arg\min_i(\mathbf{s})}$

Source Now this has become the central square, bustling day and night	Ref-Free Eval
GPT-4 现在它所为中央广场,无论白天还是晚上,总是有 很多事情再进行。	86.05 (Dis-Preferred)
ALMA-13B-LoRA 现在这里是中央广场,白天晚上总是热闹非凡。	88.32
Reference 现在这里成为了中央广场,昼夜都热闹繁忙。	90.32 90.32 (Preferred)

Contrastive Preference Optimization – Objective

- Idea 1: Starting from the DPO objective, get rid of the reference policy term
 - Consider the weakest policy and the ideal policy:
 - Weakest: A uniform prior **U** (for a given x, predict the same score for all y)

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

$$\mathcal{L}(\pi_{\theta}; U) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \sigma \Big(\beta \log \pi_{\theta}(y_w | x) \\ -\beta \log \pi_{\theta}(y_l | x) \Big) \Big].$$

Contrastive Preference Optimization – Objective

- Idea 1: Starting from the DPO objective, get rid of the reference policy term
 - Consider the weakest policy and the ideal policy:
 - Weakest: A uniform prior **U** (give all x the same prediction)
 - Ideal: Predicts 1 for the preferred translation π_w
 - The objective of the weakest policy gets rid of references (what we want), while the ideal policy is what we target
 - How to build the connection between the two objectives?

• The DPO loss of the ideal policy $\mathcal{L}(\pi_{\theta}; \pi_{w})$ is upper-bounded by $\mathcal{L}(\pi_{\theta}; U)$

 $\mathcal{L}(\pi_{\theta};\pi_{w}) = -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\frac{\pi_{\theta}(y_{w}|x)}{\pi_{w}(y_{w}|x)} \beta\log\frac{\pi_{\theta}(y_{l}|x)}{\pi_{w}(y_{l}|x)}\Big) \Big]$ $= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\pi_{\theta}(y_{w}|x) - \beta\log\pi_{\theta}(y_{l}|x) + \beta\log\pi_{w}(y_{l}|x)\Big) \Big]$

The ideal policy predicts 1 for the preferred translation

$$\begin{aligned} \mathcal{L}(\pi_{\theta};\pi_{w}) &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\frac{\pi_{\theta}(y_{w}|x)}{\pi_{w}(y_{w}|x)} - \beta\log\frac{\pi_{\theta}(y_{l}|x)}{\pi_{w}(y_{l}|x)}\Big) \Big] \\ &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\pi_{\theta}(y_{w}|x) - \beta\log\pi_{\theta}(y_{l}|x) + \beta\log\pi_{w}(y_{l}|x)\Big) \Big] \\ \mathcal{L}(\pi_{\theta};\pi_{w}) &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\Big(\frac{1}{1+e^{-\beta\log\pi_{\theta}(y_{w}|x) + \beta\log\pi_{\theta}(y_{l}|x) - \beta\log\pi_{w}(y_{l}|x)}\Big) \Big] \\ &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\Big(\frac{1}{1+\frac{\pi_{\theta}(y_{l}|x)^{\beta}}{\pi_{\theta}(y_{w}|x)^{\beta} \cdot \pi_{w}(y_{l}|x)^{\beta}}}\Big) \Big] \end{aligned}$$
Expanding the sigmoid function
$$&= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\pi_{\theta}(y_{w}|x)^{\beta} + \log\pi_{w}(y_{l}|x)^{\beta} - \log\Big(\pi_{\theta}(y_{w}|x)^{\beta} \cdot \pi_{w}(y_{l}|x)^{\beta} + \pi_{\theta}(y_{l}|x)^{\beta}\Big) \Big] \end{aligned}$$

$$\begin{split} \mathcal{L}(\pi_{\theta};\pi_{w}) &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\frac{\pi_{\theta}(y_{w}|x)}{\pi_{w}(y_{w}|x)} - \beta\log\frac{\pi_{\theta}(y_{l}|x)}{\pi_{w}(y_{l}|x)}\Big) \Big] \\ &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\pi_{\theta}(y_{w}|x) - \beta\log\pi_{\theta}(y_{l}|x) + \beta\log\pi_{w}(y_{l}|x)\Big) \Big] \\ \mathcal{L}(\pi_{\theta};\pi_{w}) &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\Big(\frac{1}{1+e^{-\beta\log\pi_{\theta}(y_{w}|x)+\beta\log\pi_{\theta}(y_{l}|x)-\beta\log\pi_{w}(y_{l}|x)}\Big) \Big] \\ &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\Big(\frac{1}{1+\frac{\pi_{\theta}(y_{w}|x)^{\beta}}{\pi_{\theta}(y_{w}|x)^{\beta}\pi_{w}(y_{l}|x)^{\beta}} - \log\Big(\pi_{\theta}(y_{w}|x)^{\beta} + \pi_{\theta}(y_{l}|x)^{\beta} + \pi_{\theta}(y_{l}|x)^{\beta}\Big) \Big] \\ \mathcal{L}'(\pi_{\theta};\pi_{w}) \stackrel{\Delta}{=} \mathcal{L}(\pi_{\theta};\pi_{w}) + \mathbb{E}_{(x,y_{l})\sim\mathcal{D}} \Big[\log\pi_{\theta}(y_{w}|x)^{\beta} - \log\Big(\pi_{\theta}(y_{w}|x)^{\beta} + \pi_{\theta}(y_{l}|x)^{\beta}\Big) \Big] \\ &= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\pi_{\theta}(y_{w}|x)^{\beta} - \log\Big(\pi_{\theta}(y_{w}|x)^{\beta} + \pi_{\theta}(y_{l}|x)^{\beta}\Big) \Big] \\ \end{split}$$

$$\mathcal{L}(\pi_{\theta};\pi_{w}) = -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\frac{\pi_{\theta}(y_{w}|x)}{\pi_{w}(y_{w}|x)} - \beta\log\frac{\pi_{\theta}(y_{l}|x)}{\pi_{w}(y_{l}|x)}\Big) \Big]$$

$$= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\Big(\beta\log\pi_{\theta}(y_{w}|x) - \beta\log\pi_{\theta}(y_{l}|x) + \beta\log\pi_{w}(y_{l}|x)\Big) \Big]$$

$$\mathcal{L}(\pi_{\theta};\pi_{w}) = -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\Big(\frac{1}{1+e^{-\beta\log\pi_{\theta}(y_{w}|x) + \beta\log\pi_{\theta}(y_{l}|x) - \beta\log\pi_{w}(y_{l}|x)}\Big) \Big]$$

$$= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\Big(\frac{1}{1+\frac{\pi_{\theta}(y_{w}|x)^{\beta}}{\pi_{\theta}(y_{w}|x)^{\beta} - \log\big(\pi_{\theta}(y_{w}|x)^{\beta} + \pi_{w}(y_{l}|x)^{\beta} + \pi_{\theta}(y_{l}|x)^{\beta}\big)} \Big]$$

$$= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\pi_{\theta}(y_{w}|x)^{\beta} + \log\pi_{w}(y_{l}|x)^{\beta} - \log\big(\pi_{\theta}(y_{w}|x)^{\beta} + \pi_{\theta}(y_{l}|x)^{\beta}\big) \Big]$$

$$\mathcal{L}'(\pi_{\theta};\pi_{w}) \stackrel{\leq}{=} \mathcal{L}(\pi_{\theta};\pi_{w}) + \underbrace{\mathbb{E}_{(x,y_{l})\sim\mathcal{D}} \Big[\log\pi_{\theta}(y_{w}|x)^{\beta} - \log\big(\pi_{\theta}(y_{w}|x)^{\beta} \cdot \pi_{w}(y_{l}|x)^{\beta}\big) + \pi_{\theta}(y_{l}|x)^{\beta}\big) \Big]$$

$$\mathcal{L}'(\pi_{\theta};\pi_{w}) \stackrel{\leq}{=} -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\pi_{\theta}(y_{w}|x)^{\beta} - \log\big(\pi_{\theta}(y_{w}|x)^{\beta} \cdot 1 + \pi_{\theta}(y_{l}|x)^{\beta}\big) \Big]$$

$$= -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \Big[\log\sigma\big(\beta\log\pi_{\theta}(y_{w}|x) - \beta\log\pi_{\theta}(y_{l}|x)\big) \Big]$$

$$Uppe = \mathcal{L}(\pi_{\theta};U).$$

Ipper-bound

18

Contrastive Preference Optimization – Objective

 Idea 2: incorporate a behavior cloning (BC) regularizer to ensure that the policy model does not deviate from the preferred data distribution

```
\begin{split} \min_{\theta} \mathcal{L}(\pi_{\theta}, U) \\ \text{s.t. } \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[ \mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big] < \epsilon \end{split}
```

• How to incorporate the regularizer into the objective?

 $\min_{\theta} \mathcal{L}(\pi_{\theta}, U) \text{ s.t. } \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big] < \epsilon$

 $\min_{\theta} \mathcal{L}(\pi_{\theta}, U) + \lambda \cdot \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big]$ Lagrangian duality

 $\min_{\theta} \mathcal{L}(\pi_{\theta}, U) \text{ s.t. } \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big] < \epsilon$

 $\min_{\theta} \mathcal{L}(\pi_{\theta}, U) + \lambda \cdot \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big]$

$$\mathcal{L}_{\text{CPO}} = \mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[\mathbb{KL}(\pi_w(y_w|x)) | \pi_{\theta}(y_w|x)) \right]$$

= $\mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[\pi_w(y_w|x) \log \left(\pi_w(y_w|x) \right) - \pi_w(y_w|x) \cdot \log \left(\pi_{\theta}(y_w|x) \right) \right]$
= $\mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[1 \cdot 0 - 1 \cdot \log \left(\pi_{\theta}(y_w|x) \right) \right]$
= $\mathcal{L}(\pi_{\theta}, U) - \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[\log \left(\pi_{\theta}(y_w|x) \right) \right].$

Set lambda to 1, ideal policy predicts 1 for the preferred translation

 $\min_{\theta} \mathcal{L}(\pi_{\theta}, U) \text{ s.t. } \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big] < \epsilon$

 $\min_{\theta} \mathcal{L}(\pi_{\theta}, U) + \lambda \cdot \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big]$

$$\begin{aligned} \mathcal{L}_{\text{CPO}} &= \mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w | x) | | \pi_{\theta}(y_w | x)) \Big] \\ &= \mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\pi_w(y_w | x) \cdot \log \left(\pi_w(y_w | x) \right) - \pi_w(y_w | x) \cdot \log \left(\pi_{\theta}(y_w | x) \right) \Big] \\ &= \mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[1 \cdot 0 - 1 \cdot \log \left(\pi_{\theta}(y_w | x) \right) \Big] \\ &= \mathcal{L}(\pi_{\theta}, U) - \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\log \left(\pi_{\theta}(y_w | x) \right) \Big]. \end{aligned}$$

• CPO Loss: $\min_{\theta} \underbrace{\mathcal{L}(\pi_{\theta}, U)}_{\mathcal{L}_{\text{prefer}}} \underbrace{-\mathbb{E}_{(x, y_w) \sim \mathcal{D}}[\log \pi_{\theta}(y_w | x)]}_{\mathcal{L}_{\text{NLL}}}$

• Preference optimization term (reference-free) + negative log-likelihood term

Experimental Setup

• English, Czech, Chinese, German, Russian, Icelandic (10 translation directions)

Preference dataset: FLORES-200 + Human-labeled

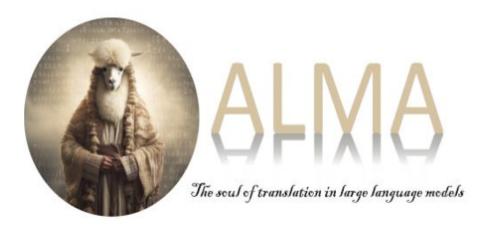
The statistic of how many translations win or tie by each system evaluated by human.

	Google Wins	GPT-4 Wins	Ties
en→de	418	435	203
en→zh	362	412	282

 ALMA-13B-LoRA vs WMT Winner vs GPT 4 vs Gold Reference vs SFT vs DPO vs CPO on WMT 21, WMT 22, assessed with reference-free evaluation models (KIWI-22, XXL, XCOMET...)

ALMA-13B-LoRA

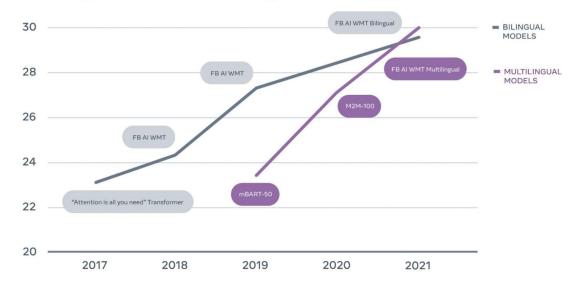
 Llama2-13B→ Full-weight training on monolingual data → LoRA on high quality parallel data



ALMA: Advanced Language Model-based translator

WMT

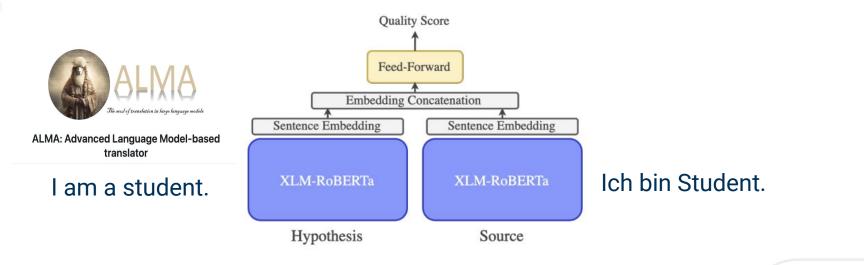
• ALMA-13B-LoRA vs WMT Winner vs GPT 4 vs Gold Reference vs SFT vs DPO vs CPO on WMT 21, WMT 22, assessed with reference-free evaluation models (KIWI-22, XXL, XCOMET...)



Multilingual model beats bilingual model for the first time

Reference-free Evaluation Models

ALMA-13B-LoRA vs WMT Winner vs GPT 4 vs Gold Reference vs SFT vs DPO vs CPO on WMT 21,22 assessed with reference-free evaluation models (KIWI-22, XXL, XCOMET...)



Overall Results for Multilingual Outputs (en \rightarrow **xx)**

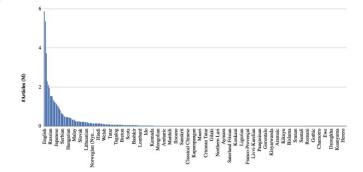
	12	de		CS		is			
Models	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	82.67	84.01	97.85	83.19	81.83	90.27	80.51	85.20	91.52
WMT Winners	83.56	83.70	96.99	85.31	87.27	94.38	81.77	84.94	91.61
GPT-4	83.48	84.91	97.56	84.81	85.35	93.48	81.03	81.21	90.00
ALMA-13B-LoRA	82.62	81.64	96.49	84.14	84.24	92.38	81.71	83.31	91.20
+ SFT on preferred data	82.75	81.85	96.67	84.14	83.46	91.99	81.48	82.11	90.30
+ DPO	82.40	81.20	96.40	83.86	83.45	91.68	81.43	82.66	90.33
+ CPO (Ours, ALMA-13B-R)	83.28	84.25	97.48	84.99	87.06	93.61	82.18	85.68	91.93
	zh		ru			Avg.			
Models	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	80.92	81.70	90.42	82.96	84.62	94.17	82.05	83.47	92.85
WMT Winners	82.04	81.13	91.14	84.35	87.01	94.79	83.41	84.81	93.78
GPT-4	81.73	81.53	90.79	83.64	86.15	94.3	82.94	83.83	93.23
ALMA-13B-LoRA	80.82	79.96	89.92	83.10	84.17	93.79	82.48	82.66	92.76
+ SFT on preferred data	81.25	80.51	90.18	83.23	84.15	93.54	82.57	82.42	92.54
+ DPO	80.74	79.64	89.58	82.94	83.40	93.25	82.27	82.07	92.25
+ CPO (Ours, ALMA-13B-R)	82.25	84.32	92.03	83.98	87.37	95.22	83.34	85.74	94.05

Overall Results for Multilingual Inputs (xx \rightarrow **en)**

Models		de			cs			is	
Models	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	78.74	78.56	88.82	82.08	83.11	84.60	80.88	85.04	76.16
WMT Winners	81.38	83.59	93.74	82.47	82.53	85.65	81.39	85.60	78.14
GPT-4	81.50	84.58	94.47	82.52	83.55	88.48	81.49	85.90	81.11
ALMA-13B-LoRA	81.14	83.57	93.30	81.96	82.97	83.95	80.90	85.49	76.68
+ SFT on preferred data	81.36	83.98	93.84	82.36	83.15	86.67	81.32	85.61	80.20
+ DPO	81.13	83.52	93.25	81.82	82.69	83.84	80.89	85.22	76.09
+ CPO (Ours, ALMA-13B-R)	81.50	83.97	94.20	82.63	83.75	88.03	81.57	85.73	80.49
	zh		ru		Avg.				
Models	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	77.09	74.19	90.70	80.74	79.59	88.56	79.91	80.10	85.77
WMT Winners	77.66	73.28	87.2	81.71	80.97	90.91	80.92	81.19	87.13
GPT-4	79.33	77.65	92.06	81.57	81.34	90.95	81.28	82.60	89.41
ALMA-13B-LoRA	77.32	74.41	89.88	81.31	81.05	89.89	80.53	81.50	86.74
+ SFT on preferred data	78.32	76.03	90.65	81.46	81.17	90.65	80.96	81.99	88.40
+ DPO	77.50	74.50	89.94	81.19	80.88	89.76	80.51	81.36	86.58
+ CPO (Ours, ALMA-13B-R)	79.24	77.17	91.65	81.72	81.54	91.18	81.33	82.43	89.11

Discussion 1: For LLMs, what is more challenging? Translating multilingual input or multilingual output? Why?

Paucity of data



Tokenization Disparity

English

OpenAI's large la text using tokens set of text. The between these tok of tokens.

> enAI's large la cext using toker set of text. The celationships be

Burmese/Myanmar (Google Translated)

GPT-3.5 & GPT-4 GPT-3 (Legacy)

guage models (sometimes referred to as GPT's) process which are common sequences of characters found in a model learn to understand the statistical relationships ns, and excel at producing the next token in a sequence	ါစာမား၊ ၏ကြံမားသောသာဘာတောက်သံမိုး၊ (ဘစ်မိတ်၏ တို့၊ မူဟုရည်သွန်သည်) စာသာအနာမာတွေကိုကျွေးလွှေနိုသောဘူးရာများဖြစ်သည့် ကိုက်းရာကိုစသည်မျှ၍ စာသာ လုပ်ဆောင်ဆွန်း စစ်သံမိုးရာသည် ဤတိုက်ရောက္ကြား၊ လိုခ်ကာနောက်ရောက်မှုမှုတွေကို နားလည်းနဲ့ သံသူကြံပြီး တိုက်ရော၏ အတိုလိုက် နောက်သာမည့် တိုက်ငံကို ထုတ်လိုစရာတွင် ထူးချွန်သည်။
s	Cear Show example Tokens Characters 617 325
quage models (sometimes)referred to as GPTS1 process , which are common sequences of characters found in a models learn to understand the statistical ween these tokens, and excel at producing the ment ce of tokens.	
	Taxt Tokan IDs

GPT-3.5 & GPT-4 GPT-3 (Legacy)

Similar content, 10.6x the tokens!

Discussion 2: Reliability of Reference-free Evaluation?

Model Evaluated on FLORES-200

	KIWI-XXL	Win Ratio (%)	XCOMET	Win Ratio (%)				
Translating to English (xx \rightarrow en)								
Reference	85 31		88.82	-				
ALMA-13B-LoRA	88.33	73.24	92.68	60.17				
GPT-4	89.21	79.43	94.66	54.25				
	Translating	from English (en	→xx)					
Reference	87.85		94.42	-				
ALMA-13B-LoRA	85.62	42.15	93.07	35.46				
GPT-4	87.30	49.13	94.21	38.09				

 $en \rightarrow xx$

 $xx \rightarrow en$

		Avg.	~	40-	Avg.	
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	82.05	83.47	92.85	79.91	80.10	85.77
WMT-Winners	83.41	84.81	93.78	80.92	81.19	87.13
GPT4	82.94	83.83	93.23	81.28	82.60	89.41
ALMA13B-LoRA	82.48	82.66	92.76	80.53	81.50	86.74
SFT	82.57	82.42	92.54	80.96	81.99	88.40
30 DPO	82.27	82.07	92.25	80.51	81.36	86.58
³⁰ CPO	83.34	85.74	94.05	81.33	82.43	89.11

Are Translations Really Better of Just Metric-Preferred?

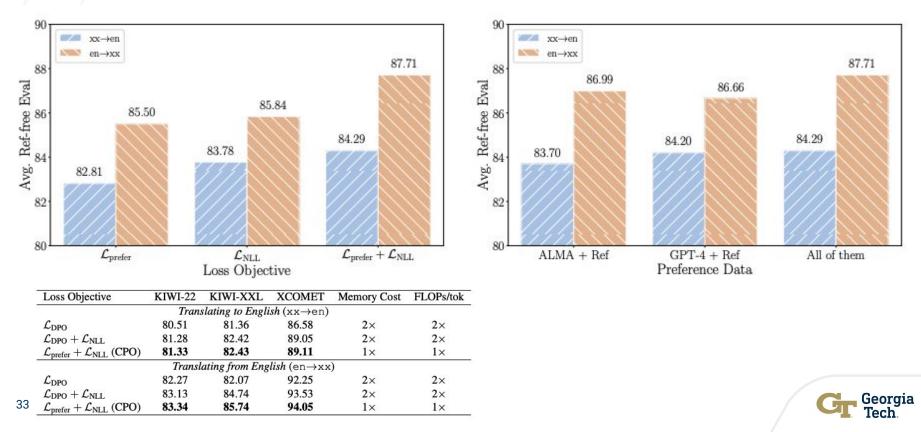
Models for Building Preference Data	KIWI-22	KIWI-XXL	XCOMET	
Translating to E	nglish (xx–	→en)		
N/A (ALMA-13B-LoRA baseline)	80.53	81.50	86.74	
KIWI-XXL	81.33	82.59	88.82	
XCOMET	81.27	82.33	89.17	
Ensemble of above (Original)	81.33	82.43	89.11	
Translating from	English (en	→xx)		
N/A (ALMA-13B-LoRA baseline)	82.48	82.66	92.76	
KIWI-XXL	83.31	85.87	93.97	
XCOMET	83.09	85.43	94.09	
Ensemble of above (Original)	83.34	85.74	94.05	

Human Evaluation on Sampled WMT 22 dataset

Human Evaluation on sampled $zh \rightarrow en$

	Avg. score ↑	Avg. rank↓	Avg. win ratio (%)	Ties (%)
ALMA-13B-LoRA	4.86	1.60	62.50	40.30
ALMA-13B-R	5.16	1.40	77.80	40.30

Ablation Study



Impact of Human-Labeled Preference Data

Table 12. A comparison of translation performance when utilizing solely triplet data versus a combination of triplet data and human-labeled data (our original setup) in the $en \rightarrow xx$ direction. The **bold** number indicates superior performance. There is not obvious performance difference adding our human-labeled data.

Dataset	de			CS			is		
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Only Triplet Data	83.43	84.63	97.56	84.97	87.24	93.50	82.05	85.37	91.83
Triplet Data + Human-Labeled Data	83.28	84.25	97.48	84.99	87.06	93.61	82.18	85.68	91.93
Dataset	zh			ru			Avg.		
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Only Triplet Data	82.15	84.08	91.59	84.05	87.43	95.26	83.33	85.75	93.95
Triplet Data + Human-Labeled Data	82.25	84.32	92.03	83.98	87.37	95.22	83.34	85.74	94.05

Table 13. A comparison of translation performance when utilizing solely triplet data versus a combination of triplet data and human-labeled data (our original setup) in the $en \rightarrow xx$ direction. The **bold** number indicates superior performance. Interestingly, the inclusion of our human-labeled data results in a slight decrease in average performance.

Dataset	de			CS			is		
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Only Triplet Data	81.57	84.25	94.32	82.68	83.70	87.97	81.63	85.87	80.89
Triplet Data + Human-Labeled Data	81.50	83.97	94.20	82.63	83.75	88.03	81.57	85.73	80.49
Dataset	zh			ru			Avg.		
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Only Triplet Data	79.34	77.31	91.76	81.76	81.63	91.34	81.40	82.55	89.26
Triplet Data + Human-Labeled Data	79.24	77.17	91.65	81.72	81.54	91.18	81.33	82.43	89.11

Discussion 3: Limitation and Discussions?

Discussion 3: Limitations and Discussions

 Why did you pick only 5 out of 7 pairs of languages for WMT 21 and 22 challenge? 3 languages for WMT23→

 ^{KIWI-22} KIWI-XXL XCOMET ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-XXL XCOMET
 ^{KIWI-22} KIWI-22 KIWI-

How does ALMA-13B-R perform when compared with more sophisticated multilingual prompts?

 Cross-Lingual Thought Prompting (Huang et. al., 2023) Cross-Lingual Consistent Prompting (Qin et. al, 2023), Cross-lingual Transfer Prompting (Kim et al., 2023), Prompts Augmented by Retrieval Cross Lingual (Nie et al., 2023), Chain-of-Dictionary (Lu et al., 2023) ...

TowerInstruct

ALMA-13B-LoRA

CPO (Ours, ALMA-13B-R)

80.31

79.48

80.55

77.18

76.00

78.97

88.11

87.16

89.74

ALMA Prompt

Translate this from <source language> to <target language>: <source language>: <source sentence> <target language>:

