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A closed form optimization solution for the reward model
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Plug into Bradley-Terry

An offline objective function for preference data - DPO
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Computationally intractable during inference: cannot test every single possibility

There is a discrepancy between this reward and 
what is actually used during text generation
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Aside: length normalization
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over the losing one yields the SimPO objective function 
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Plugging this into the Bradley-Terry model, and then 
maximizing the log probability of the winning generation 
over the losing one yields the SimPO objective function 

(almost)

No reference model! Aligned with language modeling objective!
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One more thing…

Ensures that the winning generation beats the losing generation by 
at least 𝛄



One more thing…





Experiments and Results



Base Models

Four models were used as the base LM for preference optimization:

Base versions: 

- Mistral-7B-v0.1
- Llama-3-8B

Instruction-tuned versions:

- Mistral-7B-Instruct-v0.2
- Llama-3-8B-Instruct



Training Data

Base versions: 

- First trained on UltraChat-200k to obtain SFT model
- Then trained on UltraFeedback preference data

Instruction-tuned versions:

- Take instruction-tuned model as SFT model
- Only trained on preference data

- Re-generate UltraFeedback preference dataset responses using SFT model
- Use a reward model (PairRM, ArmoRM) to obtain synthetic preferences



Benchmarks

Use 3 main benchmarks for evaluation:

1. AlpacaEval 2: 805 Qs from 5 datasets
2. Arena-Hard: 500 technical problem solving Qs
3. MT-Bench: 80 Qs from 8 categories

All use GPT-4 (+variants) for automatic evaluation



Baselines



Main Results

- SimPO outperforms in most evals

- MT-Bench obtains poor separability

- Instruct versions perform better

- When controlling for length, SimPO     
does better



Length Normalization

- LN leads to positive reward margin for all response pairs regardless of length
- Removing LN leads to signs of length exploitation



Target Reward Margin

- Reward accuracy increases with target margin, but generation quality doesn’t 
only depend on reward accuracy

- 𝛾 flattens the distributions of reward differences and log probabilities
- Added parameter that requires tuning



Ablation of Length Normalization and Reward Margin

Both elements are 
crucial to the 
success of SimPO



Ablation of Length Normalization and Reward Margin

The same changes 
do not necessarily 
improve DPO



Comparisons with DPO



Other interesting points

● Empirically did not find much difference in other offline preference learning 
methods

● MMLU and general knowledge is largely retained across all methods
● Reading comprehension/common sense improves
● Truthfulness improves
● Math performance degrades
● Enhanced reward model (ArmoRM vs. PairRM) yields significant perf increase
● Strong SFT baselines and high-quality preference data make algorithm 

differences pretty minor
● SFT regularization added to SimPO leads to performance drop



Limitations

● No theoretical grounding or understanding of why this method works
● Evaluations only focus on helpfulness, not on other factors like safety or 

honesty which may be very important in real scenarios
● Performance drops on some downstream tasks, notably math


