
Presented by Anton Lavrouk and Loránd Cheng

From Last Time…

A closed form optimization solution for the reward model

A closed form optimization solution for the reward model

Plug into Bradley-Terry

An offline objective function for preference data - DPO

Two big problems….

Two big problems….

Using the reference model incurs additional memory and
computation costs, and in general feels weird in an offline
setting.

Two big problems….

Using the reference model incurs additional memory and
computation costs, and in general feels weird in an offline
setting.

There is a discrepancy between this reward and what is
actually used during text generation.

Computationally intractable during inference: cannot test every single possibility

There is a discrepancy between this reward and
what is actually used during text generation

What if we replace the reward function with the generation metric?

What if we replace the reward function with the generation metric?

Aside: length normalization

Plugging this into the Bradley-Terry model, and then
maximizing the log probability of the winning generation
over the losing one yields the SimPO objective function

(almost)

Plugging this into the Bradley-Terry model, and then
maximizing the log probability of the winning generation
over the losing one yields the SimPO objective function

(almost)

No reference model!

Plugging this into the Bradley-Terry model, and then
maximizing the log probability of the winning generation
over the losing one yields the SimPO objective function

(almost)

No reference model! Aligned with language modeling objective!

One more thing…

One more thing…

One more thing…

Ensures that the winning generation beats the losing generation by
at least 𝛄

One more thing…

Experiments and Results

Base Models

Four models were used as the base LM for preference optimization:

Base versions:

- Mistral-7B-v0.1
- Llama-3-8B

Instruction-tuned versions:

- Mistral-7B-Instruct-v0.2
- Llama-3-8B-Instruct

Training Data

Base versions:

- First trained on UltraChat-200k to obtain SFT model
- Then trained on UltraFeedback preference data

Instruction-tuned versions:

- Take instruction-tuned model as SFT model
- Only trained on preference data

- Re-generate UltraFeedback preference dataset responses using SFT model
- Use a reward model (PairRM, ArmoRM) to obtain synthetic preferences

Benchmarks

Use 3 main benchmarks for evaluation:

1. AlpacaEval 2: 805 Qs from 5 datasets
2. Arena-Hard: 500 technical problem solving Qs
3. MT-Bench: 80 Qs from 8 categories

All use GPT-4 (+variants) for automatic evaluation

Baselines

Main Results

- SimPO outperforms in most evals

- MT-Bench obtains poor separability

- Instruct versions perform better

- When controlling for length, SimPO
does better

Length Normalization

- LN leads to positive reward margin for all response pairs regardless of length
- Removing LN leads to signs of length exploitation

Target Reward Margin

- Reward accuracy increases with target margin, but generation quality doesn’t
only depend on reward accuracy

- 𝛾 flattens the distributions of reward differences and log probabilities
- Added parameter that requires tuning

Ablation of Length Normalization and Reward Margin

Both elements are
crucial to the
success of SimPO

Ablation of Length Normalization and Reward Margin

The same changes
do not necessarily
improve DPO

Comparisons with DPO

Other interesting points

● Empirically did not find much difference in other offline preference learning
methods

● MMLU and general knowledge is largely retained across all methods
● Reading comprehension/common sense improves
● Truthfulness improves
● Math performance degrades
● Enhanced reward model (ArmoRM vs. PairRM) yields significant perf increase
● Strong SFT baselines and high-quality preference data make algorithm

differences pretty minor
● SFT regularization added to SimPO leads to performance drop

Limitations

● No theoretical grounding or understanding of why this method works
● Evaluations only focus on helpfulness, not on other factors like safety or

honesty which may be very important in real scenarios
● Performance drops on some downstream tasks, notably math

