
Unpacking DPO and PPO: Disentangling 
Best Practices for Learning from 

Preference Feedback
Geyang Guo and Duong Minh Le



RLHF

Training language models to follow instructions with human feedback



RLHF

Training language models to follow instructions with human feedback

Limitations?

1. Complex: involves training 
multiple LMs

2. Significant computational 
costs: need to sample 
from LM policy in the loop 
of training

3. Hard to implement: many 
hyper-parameters



PPO -> DPO
Intuition?

Directly optimize a 
language model to 
align to human 
preferences, without 
explicit reward 
modeling or 
reinforcement learning



PPO -> DPO
Intuition?

Directly optimize a 
language model to 
align to human 
preferences, without 
explicit reward 
modeling or 
reinforcement learning



RLHF objective: 

Goal: implicitly optimizes the same objective as existing RLHF algorithms

get high reward stay close to reference model

DPO derivation



RLHF objective: 

Goal: implicitly optimizes the same objective as existing RLHF algorithms

get high reward Stay close to reference model

DPO derivation

？



RLHF objective: 

get high reward Stay close to reference model

Step 1: Got optimal policy

KL function



RLHF objective: 

get high reward Stay close to reference model

Step 1: Got optimal policy

KL function



RLHF objective: 

get high reward Stay close to reference model

Step 1: Got optimal policy

KL function



RLHF objective: 

get high reward Stay close to reference model

Step 1: Got optimal policy

KL function

Optimal policy



Optimal policy: 

Step 2: Write any reward function as function of optimal policy

log



Optimal policy: 

Step 2: Write any reward function as function of optimal policy

log

Ratio is positive if the optimal policy 
likes response more than reference 
model, negative if policy likes response 
less than reference model.

And the more the policy favors this 
response, the higher this ratio will be.



A loss function on 
reward functions: 

Step 3: Loss function

Transformation between 
reward functions and 
policies:

A loss function on 
policy: 

+

=



A loss function on 
reward functions: 

Step 3: Loss function

Transformation between 
reward functions and 
policies:

A loss function on 
policy: 

+

=



A loss function on 
reward functions: 

Step 3: Loss function

Transformation between 
reward functions and 
policies:

A loss function on 
policy: 

+

=



A loss function on 
reward functions: 

Step 3: Loss function

Transformation between 
reward functions and 
policies:

A loss function on 
policy: 

+

=

reward of preferred 
response

reward of dispreferred 
response



Explorations beyond DPO



PPO vs DPO

Contents Compute and Speed Exploration and Quality

PPO

More complicated
1. Additional training of reward model and value 

model
2. Decode online responses during policy training

Trains on online data generated 
by the current policy

DPO More efficient, stable Trains on pre-generated offline 
data, thus limit exploration



A Recipe for Learning from Preferences

Preference data

Preference Learning 
Algorithm

Reward model

Policy training 
prompt



Experiments: Benchmarks

MMLU GSM8k
Big Bench Hard

TruthfulQAHumanEval+
MBPP+

ToxiGen
XSTest

AlpacaEval 1&2
IFEval



Experiments: Preference Data



Experiments: Preference Data



Experiments: Preference Data

● Synthetic data with per-aspect annotations performs best (i.e., UltraF.)
● Per-aspect annotations (i.e., UltraF, HelpSteer): Datasets collected by first getting per-aspect 

annotations (e.g., helpfulness, harmlessness) then averaging



A Recipe for Learning from Preferences

Preference data

Preference Learning 
Algorithm

Reward model

Policy training 
prompt

High-quality, synthetic 
preference dataset



Experiments: Preference Learning Algorithm (DPO vs. PPO)

R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct preference optimization: Your language model is secretly a reward 
model

GPT-2-L (774M) GPT-J (6B)



Experiments: Preference Learning Algorithm (DPO vs. PPO)



A Recipe for Learning from Preferences

Preference data

Preference Learning 
Algorithm

Reward model

Policy training 
prompt

High-quality, synthetic 
preference dataset

PPO



Experiments: Reward Models

● Scaling up the training data for RM:
○ Mix RM: Construct a data mixture of the top performing preference datasets 

(i.e., UltraFeedback, HelpSteer, Nectar, StackExchange, HH-RLHF, PRM800k)
○ UltraF. RM: Reward model trained only on UltraFeedback

● Scaling up the reward model size: 13B and 70B



Experiments: Reward Models

● Best-of-N: 
○ Sample 16 responses for each evaluation task
○ Pick the top-scoring response according to the RM as the final output

● RewardBench: evaluating if the relative scores given by reward models match a test set 
of chosen-rejected pairs from diverse sources



Experiments: Reward Models

● It is difficult to translate improvements in reward models to the underlying policy
● Increasing scale and data improves reward models, but these only minimally 

impact the average downstream performance



A Recipe for Learning from Preferences

Preference data

Preference Learning 
Algorithm

Reward model

Policy training 
prompt

High-quality, synthetic 
preference dataset

PPO

Large reward model



Experiments: Policy Training Prompts

● UltraF. Prompts: 20 random prompts 
from UltraFeedback

● Mined Math: math-related prompts 
from varied dataset

● GSM train: prompts from GASM train 
set



Experiments: Policy Training Prompts

● Mixed: mix math- and code-related 
prompts with UltraFeedback prompts, 
then downsample to the same size of UF

● UF: UltraFeedback



A Recipe for Learning from Preferences

Preference data

Preference Learning 
Algorithm

Reward model

Policy training 
prompt

High-quality, synthetic 
preference dataset

PPO

Large reward model

Domain-specific prompts for 
policy training (if focus on a 

specific domain)



A Recipe for Learning from Preferences



Summary


