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Unsupervised 
Training

Learn to predict the next token

● LM generates highly fluent text (very cool) 

○ Is it machine-generated or human-written text?

Wikipedia articles

Web-scraped text 

Open-source books

Pre-training Corpus

So many issues with LMs if we just stop here
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Harmful & Toxic Generations
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Harmful & Toxic Generations
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Abid et al. (2021)
https://thezvi.substack.com/p/jailbreaking-the-chatgpt-on-release
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Hallucinations
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175B LLM trained only for next token prediction
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Hallucinations
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Most references given by the model are:

● Wrong (inaccurate author, date, etc.)

● Completely made up
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How LLMs are pre-trained
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≠
Helping users solve their task
(answering their questions)

while being harmless and factual

Unsupervised Sequence Modeling

How LLMs are pre-trained How LLMs will be used

Misalignment between the model’s pre-training objective and desired behavior



Reinforcement Learning from Human Feedback (RLHF)

16



3 Key Steps in RLHF

17

1) Supervised 
Fine-tuning

Fine-tune a pre-trained 
LLM (SFT) on 
human-written 
demonstrations 

(prompts + responses) 

● Make model better at 
following instructions

● Better initialization for 
RL fine-tuning



3 Key Steps in RLHF

18

1) Supervised 
Fine-tuning

2)  Reward Model 
Training

Fine-tune a pre-trained 
LLM (SFT) on 
human-written 
demonstrations 

(prompts + responses) 

● Make model better at 
following instructions

● Better initialization for 
RL fine-tuning

Fine-tune a “reward 
model”  to output a scalar 

value for a 
prompt-response pair 

● Important component to 
get a reward signal that 
encodes human 
preferences for RL 
fine-tuning



3 Key Steps in RLHF

19

1) Supervised 
Fine-tuning

2)  Reward Model 
Training

3)  Proximal Policy 
Optimization (PPO)

Fine-tune a pre-trained 
LLM (SFT) on 
human-written 
demonstrations 

(prompts + responses) 

● Make model better at 
following instructions

● Better initialization for 
RL fine-tuning

Fine-tune a “reward 
model”  to output a scalar 

value for a 
prompt-response pair 

● Important component to 
get a reward signal that 
encodes human 
preferences for RL 
fine-tuning

Fine-tune the SFT model 
(policy) with PPO using 

the reward model to 
obtain reward signals
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Sample K responses per prompt x  → K choose 2 comparisons
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Sample K responses per prompt x  → K choose 2 comparisons

Comparisons for same x very correlated, train on comparisons for 
same x within the same batch instead of shuffling all into one 
dataset to avoid overfitting
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Reinforcement Learning
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Proximal Policy Optimization (PPO)
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State Action

Policy Network

State
Q-Value

Value Function

Action

Reinforcement Learning LM training with RLHF

Policy (SFT Model)

Prompt Response

Reward Model

Prompt Scalar
Response



Proximal Policy Optimization (PPO)

KL Divergence between RL Policy and SFT model

● Ensure outputs don’t deviate too far from the 
useful text SFT model produces

Image Credit: Nathan Lambert



Image Credit: Nathan Lambert

Conventional RL loop

Policy gradient updates the policy 
LLM leveraging reward from reward 
model
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Bias Evaluation
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Multilinguality of RLHF

81(RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs, Dang et al., 2024)
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RLHF for Code
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InstructGPT Makes Simple Mistakes

● Incorrectly assumes the premise is true when itʼs not 

● Overly hedging: model might answer “no one answer to the question” when the one 
answer is clear from the context
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InstructGPT Makes Simple Mistakes

● Incorrectly assumes the premise is true when itʼs not 

● Overly hedging: model might answer “no one answer to the question” when the one 
answer is clear from the context

● Performance degrades when instructions contain multiple explicit constraints (e.g. 
“list 10 movies made in the 1930ʼs set in France”)
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Summary
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Limitations
● PPO involves numerous iterations, debugging, and fine-tuning to achieve optimal 

performance
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Limitations
● RLHF is often unstable, requiring fine-tuning the large unsupervised LM using 

reinforcement learning to maximize estimated rewards from human preferences 
without drifting too far from the original model
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Limitations
● RLHF pipeline is considerably more complex than supervised learning, involving 

training multiple LMs and sampling from the LM policy in the loop of training, 
incurring significant computational costs

● RLHF is often unstable, requiring fine-tuning the large unsupervised LM using 
reinforcement learning to maximize estimated rewards from human preferences 
without drifting too far from the original model
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Other Approaches
● RLHF with PPO is an online training approach: PPO trains on online data generated 

by the current policy
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Other Approaches
● Is there a way to create a more efficient, offline RL approach that directly learns the 

optimal policy from the human preference data? 
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optimal policy from the human preference data? 
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Other Approaches
● Wednesday: How does DPO compare to PPO for RLHF? 
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