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This Lecture

‣ Vanishing gradient problem

‣ Recurrent neural networks

‣ LSTMs / GRUs

‣ ApplicaBons / visualizaBons



Readings

‣ Reading: RNNs 
‣ Eisenstein 7.6 
‣ Jurafsky and MarBn, Chapter 9 
‣ Goldberg 10, 11



RNN Basics



RNN MoBvaBon
‣ Feedforward NNs isn’t the best to handle sentences with variable length, 

words with mulBple senses, or same words appear at different posiBons

‣ Instead, we need to:

1) Process each word in a uniform way

the  movie  was   great that   was   great     !

2) …while sBll exploiBng the context that that token occurs in

‣ These don’t look related (great is in two different orthogonal subspaces)



RNN AbstracBon
‣ Cell that takes some input x, has some hidden state h, and updates that 

hidden state and produces output y (all vector-valued)

previous h next h

(previous c) (next c)

input x

output y



Elman Networks

input xt

prev 
hidden 
state ht-1 ht

output yt

‣ Computes output from hidden state

‣ Updates hidden state based on input 
and current hidden state

‣ Long history! (invented in the late 1980s)

yt = tanh(Uht + by)

Elman (1990)

ht = tanh(Wxt + V ht�1 + bh)



RNN Uses
‣ Transducer: make some predicBon for each element in a sequence

‣ Encoder: encode a sequence into a fixed-sized vector and use that for 
some purpose

the  movie  was   great

predict senBment (matmul + socmax)

translate

the  movie  was   great

DT      NN    VBD     JJ

paraphrase/compress

output y = score for each tag, then socmax



RNN IntuiBon

the  movie  was   great

predict senBment

‣ RNN potenBally needs to learn how to “remember” informaBon for a 
long Bme!

it was my favorite movie of 2016, though it wasn’t without problems -> +

‣ “Correct” parameter update is to do a beier job of remembering the 
senBment of favorite



Training RNNs

the  movie  was   great

‣ Loss = negaBve log likelihood of probability of gold label (socmax or 
use SVM or other loss)

P (y|x)

‣ “BackpropagaBon through Bme”: build the network as one big 
computaBon graph, some parameters are shared

‣ Example: senBment analysis



Training RNNs

the  movie  was   great

‣ Loss = negaBve log likelihood of probability of gold predicBons, 
summed over the tags

‣ Loss terms filter back through network

P (ti|x)

‣ Example: POS tagging, language modeling (predict next word given context)



Vanishing Gradient

‣ Gradient diminishes going through tanh; if 
not in [-2, 2], gradient is almost 0

<- gradient<- smaller gradient<- Bny gradient

hip://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs/GRUs



A Bit of History
‣ Long Short-term Memory (Hochreiter & Schmidhuber, 1997)



Gated ConnecBons
‣ Designed to fix “vanishing gradient” problem using gates

‣ Vector-valued “forget gate” f computed 
based on input and previous hidden state

‣ Sigmoid: elements of f are in (0, 1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣  If f ≈ 1, we simply sum up a funcBon of 
all inputs — gradient doesn’t vanish!



LSTMs

‣ “Cell” c in addiBon to hidden state h

‣ Vector-valued forget gate f depends on the h hidden state

‣ Basic communicaBon flow: x -> c -> h -> output, each step of this 
process is gated in addiBon to gates from previous Bmesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)

‣ Long short-term memory network: hidden state as a “short-term” memory



LSTMs

xj

hjhj-1

cj-1

hj

Hochreiter & Schmidhuber (1997)

cj

hip://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs

xj

hjhj-1

cj-1

hip://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control informaBon flow

hj

Hochreiter & Schmidhuber (1997)

cj

f i o



LSTMs

xj

hjhj-1

cj-1

hip://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control informaBon flow

hj

Hochreiter & Schmidhuber (1997)

cj

f i o

‣ g reflects the main computaBon of the cell



LSTMs
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LSTMs

xj

hjhj-1

cj-1

hip://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control informaBon flow

hj

Hochreiter & Schmidhuber (1997)

cj

f i og

‣ g reflects the main computaBon of the cell



LSTMs

xj

hjhj-1

cj-1

hj

cj

f i og

‣ Can we ignore the old value of c for this Bmestep?

‣ Can we ignore a parBcular input x?
‣ Can an LSTM sum up its inputs x?



LSTMs

xj

hjhj-1

cj-1

hj

cj

f i og

‣ Ignoring recurrent state enBrely:

‣ Lets us discard stopwords

‣ Summing inputs:

‣ Lets us get feedforward layer over token

‣ Ignoring input:

‣ Lets us compute a bag-of-words 
representaBon



LSTMs

‣ Gradient sBll diminishes, but in a controlled way and generally by less — 
usually iniBalize forget gate = 1 to remember everything to start

<- gradientsimilar gradient <-

hip://colah.github.io/posts/2015-08-Understanding-LSTMs/
"A Gentle Tutorial of Recurrent Neural Network with Error BackpropagaBon” Gang Chen (2018)



Gated Recurrent Units (GRUs)

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU: faster, a bit simpler‣ LSTM: more complex and 
slower, may work a bit beier

X

hj

sj

σ X

+
1-z z

σ tanh
r

‣ Two gates: z (forget, mixes s and h) 
and r (mixes h and x)

xj

hj



GRUs
‣ Also solves the vanishing gradient problem, simpler than LSTM

‣ z controls mixing of hidden state h with new input x

ht = (1� z)� ht�1 + z� func(xt,hj�1)

z = �(Wxt + Uht�1)

‣ Faster to train and someBmes work beier (most Bmes not) than LSTMs

Cho et al. (2014)

z = �(Wxt + Uht�1)

‣ Other variants of LSTMs:  
‣ mulBplicaBve LSTMs, rotaBonal unit of memory (RUM), …



ApplicaBons



What can LSTMs model?
‣ Sentence classificaBon (e.g., senBment)

‣ TranslaBon/GeneraBon

‣ SequenBal tagging (e.g., POS/NER), or Language models

‣ Encode one sentence, predict

‣ Move lec-to-right, per-token predicBon 

‣ Encode sentence + then decode, use token predicBons for aienBon 
weights (later in the course)

‣ Sentence pair classificaBon (e.g., paraphrase idenBficaBon, NLI)

‣ Encode two sentences, predict



What do RNNs produce?

‣ Encoding of each word — can pass this to another layer to make a 
predicBon (can also pool these to get a different sentence encoding)

=

‣ Encoding of the sentence — can pass this a decoder or make a 
classificaBon decision about the sentence

the  movie  was   great

‣ RNN can be viewed as a transformaBon of a sequence of vectors into a 
sequence of context-dependent vectors



MulBlayer BidirecBonal RNN

‣ Sentence classificaBon 
based on concatenaBon 
of both final outputs

‣ Token classificaBon based on 
concatenaBon of both direcBons’ 
token representaBons

the  movie  was   great the  movie  was   great



Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

An older and younger man smiling Two men are smiling and 
laughing at cats playing

A boy plays in the snow A boy is outsideentails

contradicts

neutral

‣ Long history of this task: “Recognizing Textual Entailment” challenge in 
2006 (Dagan, Glickman, Magnini)

‣ Early datasets: small (hundreds of pairs), very ambiBous (lots of world 
knowledge, temporal reasoning, etc.)

Premise Hypothesis



SNLI Dataset

Bowman et al. (2015)

‣ Show people capBons for (unseen) images and solicit entailed / neural / 
contradictory statements

‣ >500,000 sentence pairs

100D LSTM: 78% accuracy
300D LSTM: 80% accuracy 
                (Bowman et al., 2016)
300D BiLSTM: 83% accuracy 
                (Liu et al., 2016)

‣ Encode each sentence and process

‣ Later: beier models for this



Sentence Pair ClassificaBon

Wuwei Lan, Wei Xu. “Neural Network Models for Paraphrase IdenBficaBon, SemanBc Textual Similarity, Natural Language Inference, and QuesBon Answering” (COLING 2018)  



RNN Language Modeling



Neural Language Models

Bengio (2003), Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

I visited New _____

FFNN
P (wi|wi�n, . . . , wi�1)

‣ Slow to train over lots of data!

‣ SBll only look at a fixed window of informaBon…can we use more?



RNN Language Modeling

I       saw    the    dog

hi
P (w|context) = softmax(Whi)

‣ W is a (vocab size) x (hidden size) matrix

word probs

=



Training RNNLMs

<s>       I       saw    the    dog

‣ Input is a sequence of words, output is those words shiced by one,

I       saw    the    dog  running

‣ Allows us to efficiently batch up training across Bme (one run of the RNN)



Training RNNLMs

I       saw    the    dog

‣ Total loss = sum of negaBve log likelihoods at each posiBon

‣ Backpropagate through the network to simultaneously learn to 
predict next word given previous words at all posiBons

P(w|context)

loss = — log P(w*|context)



Batched LM Training
I saw the dog running in the park and it looked very excited to be there

<s>       I       saw    the    dog

I       saw    the    dog  running

<s>      in      the    park   and

in      the    park   and     it
batch dim

‣ MulBple sequences and mulBple 
Bmestamps per sequence

looked very excited to be



Padding
‣ Prepending or appending zeros

‣ To create batches of equal length for faster training Bme



LM EvaluaBon
‣ Accuracy doesn’t make sense — predicBng the next word is generally 

impossible so accuracy values would be very low

‣ Evaluate LMs on the likelihood of held-out data (averaged to 
normalize for length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity: exp(average negaBve log likelihood). Lower is beier

‣ Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predicBons

‣ Avg NLL (base e) = 1.242     Perplexity = 3.464 geometric mean of  
denominators



Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on 

history) over two datasets: War and Peace and Linux kernel source code

hip://karpathy.github.io/2015/05/21/rnn-effecBveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on 

history) over two datasets: War and Peace and Linux kernel source code

‣ Counter: know when to generate \n
‣ Visualize acBvaBons of specific cells (components of c) to understand them

hip://karpathy.github.io/2015/05/21/rnn-effecBveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Binary switch: tells us if we’re in a quote or not
‣ Visualize acBvaBons of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

hip://karpathy.github.io/2015/05/21/rnn-effecBveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Stack: acBvaBon based on indentaBon
‣ Visualize acBvaBons of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

hip://karpathy.github.io/2015/05/21/rnn-effecBveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Uninterpretable: probably doing double-duty, or only makes sense in the 
context of another acBvaBon

‣ Visualize acBvaBons of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

hip://karpathy.github.io/2015/05/21/rnn-effecBveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


ApplicaBons of Language Modeling

‣ All generaBon tasks: translaBon, dialogue, text simplificaBon, 
paraphrasing, etc.

‣ GrammaBcal error correcBon

‣ PredicBve text

‣ Pretraining!    (more later in the course) 
‣ Language modeling involves predicBng words given context.  
‣ Learning a neural network to do this induces useful representaBons 

for other tasks, similar to word2vec/GloVe. 
‣ ELMo, BERT, RoBERTa, GPT-2, GPT-3, BART, T5 …



Takeaways
‣ RNNs can transduce inputs (produce one output for each input) or 

compress the whole input into a vector

‣ Useful for a range of tasks with sequenBal input: senBment analysis, 
language modeling, natural language inference, machine translaBon

‣ Next Bme: CNNs and neural CRFs


