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This Lecture

‣ Word representa7ons

‣ word2vec/GloVe

‣ Reading: Eisenstein 3.3.4, 14.5, 14.6, J+M 6, Goldberg 5

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
http://u.cs.biu.ac.il/~yogo/nnlp.pdf


Word Representa7ons



Sen7ment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of 

word embeddings from input

Iyyer et al. (2015)



good
enjoyable

bad

dog

great

is

‣ Want a vector space where similar words have similar embeddings

the movie was great

the movie was good
~~

Word Embeddings

‣ Goal: come up with a way to 
produce these embeddings

‣ For each word, want 
“medium” dimensional vector 
(50-300 dims) represen7ng it. 



Word Representa7ons

‣ Con7nuous model <-> expects con7nuous seman7cs from input

‣ “You shall know a word by the company it keeps” Firth (1957)

‣ Neural networks work very well at con7nuous data, but words are discrete

slide credit: Dan Klein, Dan Jurafsky



Discrete Word Representa7ons
‣ Brown clusters: hierarchical agglomera7ve hard clustering (each word has 

one cluster, not some posterior distribu7on like in mixture models)

‣ Maximize

‣ Useful features for tasks like NER, not suitable for Neural Networks
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P (wi|wi�1) = P (ci|ci�1)P (wi|ci)

Brown et al. (1992)

‣ Input: a (large) text corpus



‣ Brown clusters: hierarchical agglomera7ve hard clustering
‣ Example clusters from Miller et al. 2004

word cluster features (bit string prefix)

Discrete Word Representa7ons



‣ Brown clusters: hierarchical agglomera7ve hard clustering 
‣ We give a very brief sketch of the algorithm here:

■k: a hyper-parameter, sort words by frequency 

■Take the top k most frequent words, put each of them in its own cluster  

■For  

■Create a new cluster (we have  clusters) 

■Choose two clusters from  clusters based on quality(C) and merge (back to k clusters) 
 
 
 
 

■Carry out  final merges  (full hierarchy) 

■Running time , n=#words in corpus

𝑐1, 𝑐2,  𝑐3,  …𝑐k
𝑖 = (k + 1)… |𝑉 |

𝑐k+1  k + 1
k + 1

k − 1
𝑂( 𝑉 k2 + 𝑛)  

Learn more: Percy Liang’s  phd thesis - Semi-Supervised Learning for Natural Language  

Quality(C) = loge(wi |C(wi ))
i

n

∑ q(C(wi ) |C(wi−1)) = p(c,c ')log p(c,c ')
p(c)p(c ')c '=1

k

∑
c=1

k

∑ +G

mutual information  
between adjacent clusters

entropy of  
the word distribution

Discrete Word Representa7ons



Word Representa7ons
‣ Count-based: e*idf, PPMI, …

‣ Class-based: Brown Clusters, …

‣ Distributed predic7on-based embeddings: Word2vec (2013), GloVe (2014), 
FastText, …

‣ Distributed contextual embeddings: ELMo (2018), BERT (2019), GPT, …

‣ + many more variants: mul7-sense embeddings, syntac7c embeddings, …



word2vec/GloVe



Neural Probabilis7c Language Model

Bengio et al. (2003)



word2vec: Con7nuous Bag-of-Words
‣ Predict word from context the dog bit the man

‣ Parameters: d x |V| (one d-length context vector per voc word), 
                      |V| x d output parameters (W)

dog

the

+

size d

sokmax

gold label = bit, 
no manual labeling 
required!

Mikolov et al. (2013)

d-dimensional 
word embeddings

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

size |V| x d

W

size |V|



word2vec: Skip-Gram
the dog bit the man‣ Predict one word of context from word

bit

sokmax

gold label = dog

‣ Parameters: d x |V| vectors, |V| x d output parameters (W) (also 
usable as vectors!)

‣ Another training example: bit -> the

P (w0|w) = softmax(We(w))

Mikolov et al. (2013)

W

d-dimensional 
word embeddings

size |V| x d



Hierarchical Sokmax

‣ Matmul + sokmax over |V| is very slow to compute for CBOW and SG

‣ Hierarchical sokmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard sokmax:  
O(|V|) dot products of size d 
- per training instance per 
context word

O(log(|V|)) dot products of size d,

…

…

the
a

‣ Huffman encode 
vocabulary, use binary 
classifiers to decide 
which branch to take

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))

‣ log(|V|) binary decisions

http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/


Skip-Gram with Nega7ve Sampling

‣ d x |V| vectors, d x |V| context vectors (same # of params as before)

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random nega7ve examples by sampling from unigram distribu7on

words in similar 
contexts select for 
similar c vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ Objec7ve = logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)

sampled

the dog bit the man

logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)



Connec7ons with Matrix Factoriza7on
‣ Skip-gram model looks at word-word co-occurrences and produces two 

types of vectors

word pair 
counts

|V|

|V|

knife dog sword love like

knife 0 1 6 5 5

dog 1 0 5 5 5

sword 6 5 0 5 5

love 5 5 5 0 5

like 5 5 5 5 2

Two words are “similar” in meaning if their context vectors are similar. Similarity == relatedness

Levy et al. (2014)



Connec7ons with Matrix Factoriza7on

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two 
types of vectors

word pair 
counts

|V|

|V| |V|

d

d

|V|

context vecs
word 
vecs

‣ Looks almost like a matrix factoriza7on…can we interpret it this way?



Skip-Gram as Matrix Factoriza7on

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

‣ If we sample nega7ve examples from the unigram distribu7on over words

num nega7ve samples

‣ …and it’s a weighted factoriza7on problem (weighted by word freq)

Skip-gram objec7ve exactly corresponds to factoring this matrix:



GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Objec7ve = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix

‣ Constant in the dataset size (just need counts), quadra7c in voc size

‣ By far the most common non-contextual word vectors used today 
(10000+ cita7ons)

word pair 
counts

|V|

|V|



Using Word Embeddings
‣ Approach 1 (from scratch): learn embeddings as parameters from your data

‣ Approach 2 (freeze): ini7alize using GloVe/word2vec/ELMo, keep fixed

‣ Approach 3 (fine-tune): ini7alize using GloVe/BERT, fine-tune on your data
‣ Faster because no need to update these parameters

‣ Works best for some tasks, not used for ELMo, oken used for BERT

‣ Oken works prewy well



NER in Twiwer

2m 2ma 2mar 2mara 2maro 2marrow 2mor 2mora 
2moro 2morow 2morr 2morro 2morrow 2moz 2mr 
2mro 2mrrw 2mrw 2mw tmmrw tmo tmoro tmorrow 

tmoz tmr tmro tmrow tmrrow tmrrw tmrw tmrww tmw 
tomaro tomarow tomarro tomarrow tomm tommarow 

tommarrow tommoro tommorow tommorrow 
tommorw tommrow tomo tomolo tomoro tomorow 

tomorro tomorrw tomoz tomrw tomz

Riwer et al. (2011) Cherry & Guo (2015)

Word2vec
Both

Brown clusters



Visualiza7on

Kulkarni et al. (2015)



Takeaways

‣ Word vectors: learning word -> context mappings has given way to 
matrix factoriza7on approaches (constant in dataset size)

‣ Next 7me: sequence modeling, HMM, …

‣ Lots of pretrained embeddings work well in prac7ce, they capture some 
desirable proper7es

‣ Even bewer: context-sensi7ve word embeddings (ELMo/BERT/etc.) — 
will talk later in the semester



Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous 
words in the sentence, use its internal representa7ons as word vectors

‣ Context-sensi?ve word embeddings: depend on rest of the sentence

‣ Huge improvements across nearly all NLP tasks over word2vec & GloVe

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls


