
Word Embeddings

Wei Xu
(many slides from Greg Durrett)

This Lecture

‣ Word representations

‣ word2vec/GloVe

‣ Reading: Eisenstein 3.3.4, 14.5, 14.6, J+M 6, Goldberg 5

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
http://u.cs.biu.ac.il/~yogo/nnlp.pdf

Word Representations

Sentiment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of

word embeddings from input

Iyyer et al. (2015)

good
enjoyable

bad

dog

great

is

‣ Want a vector space where similar words have similar embeddings

the movie was great

the movie was good
~~

Word Embeddings

‣ Goal: come up with a way to
produce these embeddings

‣ For	each word, want
“medium” dimensional vector
(50-300 dims) representing it.

Word Representations

‣ Continuous model <-> expects continuous semantics from input

‣ “You shall know a word by the company it keeps” Firth (1957)

‣ Neural networks work very well at continuous data, but words are discrete

slide credit: Dan Klein, Dan Jurafsky

Discrete Word Representations
‣ Brown clusters: hierarchical agglomerative hard clustering (each word has

one cluster, not some posterior distribution like in mixture models)

‣ Maximize

‣ Useful features for tasks like NER, not suitable for Neural Networks

good
enjoyablegreat

0

fishcat
dog
…

is
go

0

0 1 1

1
1

1

1
0

0

P (wi|wi�1) = P (ci|ci�1)P (wi|ci)

Brown et al. (1992)

‣ Input: a (large) text corpus

‣ Brown clusters: hierarchical agglomerative hard clustering
‣ Example clusters from Miller et al. 2004

word cluster features (bit string prefix)

Discrete Word Representations

‣ Brown clusters: hierarchical agglomerative hard clustering

‣ We give a very brief sketch of the algorithm here:

■k: a hyper-parameter, sort words by frequency

■Take the top k most frequent words, put each of them in its own cluster

■For

■Create a new cluster (we have clusters)

■Choose two clusters from clusters based on quality(C) and merge (back to k clusters) 
 
 
 
 

■Carry out final merges (full hierarchy)

■Running time , n=#words in corpus

𝑐1, 𝑐2, 𝑐3, …𝑐k
𝑖 = (k + 1)… |𝑉 |

𝑐k+1 k + 1
k + 1

k − 1
𝑂(𝑉 k2 + 𝑛)

Learn more: Percy Liang’s phd thesis - Semi-Supervised Learning for Natural Language

Quality(C) = loge(wi |C(wi))
i

n

∑ q(C(wi) |C(wi−1)) = p(c,c ')log p(c,c ')
p(c)p(c ')c '=1

k

∑
c=1

k

∑ +G

mutual information

between adjacent clusters

entropy of

the word distribution

Discrete Word Representations

Word Representations
‣ Count-based: tf*idf, PPMI, …

‣ Class-based: Brown Clusters, …

‣ Distributed prediction-based embeddings: Word2vec (2013), GloVe (2014),
FastText, …

‣ Distributed contextual embeddings: ELMo (2018), BERT (2019), GPT, …

‣ + many more variants: multi-sense embeddings, syntactic embeddings, …

word2vec/GloVe

Neural Probabilistic Language Model

Bengio et al. (2003)

word2vec: Continuous Bag-of-Words
‣ Predict word from context the dog bit the man

‣ Parameters: d x |V| (one d-length context vector per voc word), 
 |V| x d output parameters (W)

dog

the

+

size d

softmax

gold label = bit, 
no manual labeling 
required!

Mikolov et al. (2013)

d-dimensional 
word embeddings

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

size |V| x d

W

size |V|

word2vec: Skip-Gram
the dog bit the man‣ Predict one word of context from word

bit

softmax

gold label = dog

‣ Parameters: d x |V| vectors, |V| x d output parameters (W) (also
usable as vectors!)

‣ Another training example: bit -> the

P (w0|w) = softmax(We(w))

Mikolov et al. (2013)

W

d-dimensional 
word embeddings

size |V| x d

Hierarchical Softmax

‣ Matmul + softmax over |V| is very slow to compute for CBOW and SG

‣ Hierarchical softmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard softmax:  
O(|V|) dot products of size d
- per training instance per
context word

O(log(|V|)) dot products of size d,

…

…

the
a

‣ Huffman encode
vocabulary, use binary 
classifiers to decide
which branch to take

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))

‣ log(|V|) binary decisions

http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Skip-Gram with Negative Sampling

‣ d x |V| vectors, d x |V| context vectors (same # of params as before)

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create
random negative examples by sampling from unigram distribution

words in similar
contexts select for
similar c vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ Objective = logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)

sampled

the dog bit the man

logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)

Connections with Matrix Factorization
‣ Skip-gram model looks at word-word co-occurrences and produces two

types of vectors

word pair 
counts

|V|

|V|

knife dog sword love like

knife 0 1 6 5 5

dog 1 0 5 5 5

sword 6 5 0 5 5

love 5 5 5 0 5

like 5 5 5 5 2

Two words are “similar” in meaning if their context vectors are similar. Similarity == relatedness

Levy et al. (2014)

Connections with Matrix Factorization

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two
types of vectors

word pair 
counts

|V|

|V| |V|

d

d

|V|

context vecs
word 
vecs

‣ Looks almost like a matrix factorization…can we interpret it this way?

Skip-Gram as Matrix Factorization

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

‣ If we sample negative examples from the unigram distribution over words

num negative samples

‣ …and it’s a weighted factorization problem (weighted by word freq)

Skip-gram objective exactly corresponds to factoring this matrix:

GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Objective =

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix

‣ Constant in the dataset size (just need counts), quadratic in voc size

‣ By far the most common non-contextual word vectors used today
(10000+ citations)

word pair 
counts

|V|

|V|

Using Word Embeddings
‣ Approach 1 (from scratch): learn embeddings as parameters from your data

‣ Approach 2 (freeze): initialize using GloVe/word2vec/ELMo, keep fixed

‣ Approach 3 (fine-tune): initialize using GloVe/BERT, fine-tune on your data
‣ Faster because no need to update these parameters

‣ Works best for some tasks, not used for ELMo, often used for BERT

‣ Often works pretty well

NER in Twitter

2m 2ma 2mar 2mara 2maro 2marrow 2mor 2mora
2moro 2morow 2morr 2morro 2morrow 2moz 2mr
2mro 2mrrw 2mrw 2mw tmmrw tmo tmoro tmorrow

tmoz tmr tmro tmrow tmrrow tmrrw tmrw tmrww tmw
tomaro tomarow tomarro tomarrow tomm tommarow

tommarrow tommoro tommorow tommorrow
tommorw tommrow tomo tomolo tomoro tomorow

tomorro tomorrw tomoz tomrw tomz

Ritter et al. (2011) Cherry & Guo (2015)

Word2vec
Both

Brown clusters

Visualization

Kulkarni et al. (2015)

Takeaways

‣ Word vectors: learning word -> context mappings has given way to
matrix factorization approaches (constant in dataset size)

‣ Next time: sequence modeling, HMM, …

‣ Lots of pretrained embeddings work well in practice, they capture some
desirable properties

‣ Even better: context-sensitive word embeddings (ELMo/BERT/etc.) —
will talk later in the semester

Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous
words in the sentence, use its internal representations as word vectors

‣ Context-sensitive word embeddings: depend on rest of the sentence

‣ Huge improvements across nearly all NLP tasks over word2vec & GloVe

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls

