
Neural Networks

Wei Xu
(many slides from Greg Durrett)

Linear Transforma5on (math review)

Image adopted from Duane Q. Nykamp

Administrivia

‣ Reading: Eisenstein 2.6, 3.1-3.3, J+M 7, Goldberg 1-4

‣ Problem Set 1 is released

‣ PyTorch Tutorial can also be found on the course project

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://u.cs.biu.ac.il/~yogo/nnlp.pdf

This and Next Lectures

‣ Feedforward neural networks

‣ Neural network basics

‣ Applica5ons

‣ Neural network history

‣ Implemen5ng neural networks

‣ Training of neural networks - backpropaga5on, more op5miza5on

A Bit of History
‣ The Mark I Perceptron machine was the first implementa5on of the

perceptron algorithm.

The IBM Automa5c Sequence Controlled Calculator, called Mark I by Harvard University’s staff.

‣ Perceptron (Frank Rosenbla`, 1957)

‣ Ar5ficial Neuron (McCulloch & Pi`s, 1943)

It was designed for image recogni5on: it had an array of 400 photocells, randomly connected to
the "neurons". Weights were encoded in poten5ometers, and weight updates during learning
were performed by electric motors.

h`ps://www.youtube.com/watch?5me_con5nue=71&v=cNxadbrN_aI&feature=emb_logo

https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_aI&feature=emb_logo

A Bit of History

‣ Adaline/Madeline - single and mul5-layer “ar5ficial neurons”
(Widrow and Hoff, 1960)

A Bit of History
‣ First 5me back-propaga5on became popular (Rumbelhart et al, 1986)

History: NN “dark ages”
‣ ConvNets: applied to MNIST by LeCun in 1990s

‣ LSTMs: Hochreiter and Schmidhuber (1997)

‣ Henderson (2003): neural shim-reduce parser, not SOTA

h`ps://www.youtube.com/watch?v=FwFduRA_L6Q&feature=youtu.be

h`ps://www.andreykurenkov.com/wri5ng/ai/a-brief-history-of-neural-nets-and-deep-learning/

https://www.youtube.com/watch?v=FwFduRA_L6Q&feature=youtu.be
https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for
sequen5al CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version 5ed SOTA

‣ Socher 2011-2014: tree-structured RNNs working okay

‣ Krizhevskey et al. (2012): AlexNet for vision

2014: Stuff starts working

‣ Sutskever et al. (2014) + Bahdanau et al. (2015) : seq2seq + a`en5on for
neural MT (LSTMs work for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classifica5on / sen5ment
(convnets work for NLP?)

‣ 2015: explosion of neural nets for everything under the sun

‣ Chen and Manning (2014) transi5on-based dependency parser (even
feedforward networks work well for NLP?)

Why didn’t they work before?
‣Datasets too small: for MT, not really be`er un5l you have 1M+ parallel

sentences (and really need a lot more)

‣Op3miza3on not well understood: good ini5aliza5on, per-feature scaling
+ momentum (AdaGrad / AdaDelta / Adam) work best out-of-the-box

‣Regulariza3on: dropout (2012) is pre`y helpful

‣Inputs: need word representa5ons to have the right con5nuous seman5cs

‣Computers not big enough: can’t run for enough itera5ons

‣Libraries: TensorFlow (firs released in Nov 2015), PyTorch (Sep 2016)

Neural Net Basics

Neural Networks: mo5va5on

‣ How can we do nonlinear classifica5on? Kernels are too slow…

‣ Want to learn intermediate conjunc5ve features of the input

argmaxyw
>f(x, y)‣ Linear classifica5on:

the movie was not all that good

I[contains not & contains good]

Neural Networks: XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets
to learn a simple nonlinear func5on

‣ Inputs

‣ Output

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural Networks: XOR

x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the movie was not all that good

Neural Networks

Taken from h`p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

tanh

Neural Networks

Taken from h`p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because
we transformed the
space!

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second
Layer

First
Layer

“Feedforward” computa5on (not
recurrent)

z = V(Wx+ b) + c

Check: what happens if no nonlinearity?
More powerful than basic linear models?

Ac5va5on Func5ons

Image Credit: Junxi Feng

Deep Neural Networks

Taken from h`p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropaga5on

Recap: Mul5class Logis5c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

exp
6.05
22.2
0.55

probabili5es
must be >= 0

unnormalized
probabili5es

normalize
 0.21

 0.77
 0.02

probabili5es
must sum to 1

probabili5es

1.00
0.00
0.00

correct (gold)
probabili5es

too many drug trials,
too few pa6ents

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

log(0.21) = - 1.56

Logis5c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ sommax: exps and normalizes a
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class;
W is [num classes x num feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now one hidden layer

Neural Networks for Classifica5on

V

n features

d hidden units

d x n matrix num_classes x d
matrix

sommaxWf
(x
)

z

nonlinearity
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes

probs

We can think of a neural network classifier with one hidden layer as building a vector z which is a hidden layer representation
(i.e. latent features) of the input, and then running standard logistic regression on the features that the network develops in z.

Training Neural Networks

‣ Maximize log likelihood of training data

‣ i*: index of the gold label
‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

one-hot vector

Training Neural Networks

‣ Maximize log likelihood of training data

‣ i*: index of the gold label

‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Training Neural Networks
‣ Maximize log likelihood of training data

‣ i*: index of the gold label
‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

exp
6.05
22.2
0.55

probabili5es
must be >= 0

unnormalized
probabili5es

normalize
 0.21

 0.77
 0.02

probabili5es
must sum to 1

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Health: +2.2
Sports: +3.1

Science: -0.6

too many drug trials,
too few pa6ents

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

1
0
0

one-hot
vector

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤) L = log(0.21)

Compu5ng Gradients

‣ Gradient with respect to W

‣ Looks like logis5c regression with z as the features!

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

if i = i*@

@Wij
L(x, i⇤) =

�P (y = i|x)zj otherwise{ zj � P (y = i|x)zj

�P (y = i|x)zj

i

jW

num_classes x d
matrix

index of
gold label index of vector z

Neural Networks for Classifica5on

V sommaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

‣ Gradient w.r.t. W: looks like logis5c
regression with z as the features!

Neural Networks for Classifica5on

V sommaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

err(root) = ei⇤ � P (y|x)

@L(x, i⇤)
@z

= err(z) = W>err(root)

Backpropaga5on: Picture

V sommaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can forget everything amer z, treat
it as the output and keep backpropping

https://inst.eecs.berkeley.edu/~cs182/sp06/notes/backprop.pdf

Compu5ng Gradients: Backpropaga5on
z = g(V f(x))

Ac5va5ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes dim = d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

[some math…]

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

z = g(V f(x))

Ac5va5ons at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear ac5va5on func5on at a (depends on
current value)

‣ Second term: gradient of linear func5on

‣ Straighyorward computa5on once we have err(z)

Compu5ng Gradients: Backpropaga5on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

Backpropaga5on: Picture

V sommaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

@L(x, i⇤)
@z

= err(z) = W>err(root)

err(root) = ei⇤ � P (y|x)

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

@L(x, i⇤)
@z

= err(z) = W>err(root)
@L(x, i⇤)

@Vij
=

@L(x, i⇤)
@z

@z

@Vij

Backpropaga5on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute deriva5ves of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute deriva5ves of V using err(z)

‣ Step 5+: con5nue backpropaga5on (compute err(f(x)) if necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)

Backpropaga5on: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logis5c regression with hidden layer z as feature vector

‣ Can compute deriva5ve of loss with respect to z to form an “error
signal” for backpropaga5on

‣ Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropaga5on

‣ Need to remember the values from the forward computa5on

https://inst.eecs.berkeley.edu/~cs182/sp06/notes/backprop.pdf

Applica5ons

NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)

?? em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector
than in sparse models, but every feature fires on
every example

em
b(interest)

em
b(rates)

‣ Weight matrix learns posi5on-dependent
processing of the words

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

‣ Hidden layer mixes these
different signals and learns
feature conjunc5ons

Botha et al. (2017)

NLP with Feedforward Networks
‣ Mul5lingual tagging results:

Botha et al. (2017)

‣ Gillick used LSTMs; this is smaller, faster, and be`er

Sen5ment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of

word embeddings from input

Iyyer et al. (2015)

Sen5ment Analysis

{

{
Bag-of-words

Tree RNNs /
CNNS / LSTMS

Wang and
Manning (2012)

Kim (2014)

Iyyer et al. (2015)

Coreference Resolu5on
‣ Feedforward networks iden5fy coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

President Obama signed…

He later gave a speech…

?

‣ Men5on features include: type of men5on (pronoun, nominal, proper),
the men5on’s posi5on in the ar5cle, length of the men5on in words …

Coreference Resolu5on
‣ Feedforward networks iden5fy coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

President Obama signed…

He later gave a speech…

?

Coreference Resolu5on

Clark and Manning (2015), Wiseman et al. (2015)

Training Tips

Training Basics
‣ Basic formula: compute gradients on batch, use first-order op5miza5on

method (SGD, Adagrad, etc.)

‣ How to ini5alize? How to regularize? What op5mizer to use?

‣ This lecture: some prac5cal tricks. Take deep learning or op5miza5on
courses to understand this further

How does ini5aliza5on affect learning?

V

n features

d hidden units

d x n matrix m x d matrix

sommaxWf
(x
)

z

nonlinearity
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How do we ini5alize V and W? What consequences does this have?

‣ Nonconvex problem, so ini5aliza5on ma`ers!

‣ Nonlinear model…how does this affect things?

‣ Tanh: If cell ac5va5ons are too large in absolute value, gradients are small

‣ ReLU: larger dynamic range (all posi5ve numbers), but can produce big
values, and can break down if everything is too nega5ve (“dead” ReLU)

How does ini5aliza5on affect learning?

Krizhevsky et al. (2012)

http://cs231n.github.io/neural-networks-1/

Ini5aliza5on
1) Can’t use zeroes for parameters to produce hidden layers: all values in that
hidden layer are always the same (0 if tanh) and have same gradients (0 if
tanh), and can’t break symmetry (or never change)

‣ Can do random uniform / normal ini5aliza5on with appropriate scale

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Xavier ini5alizer:

‣ Want variance of inputs and gradients for each layer to be the same

2) Ini5alize too large and cells are saturated

https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init

Glorot & Bengio (2010)

Maverick Meerkat’s answer - https://stats.stackexchange.com/questions/27112/danger-of-setting-all-initial-weights-to-zero-in-backpropagation

Batch Normaliza5on
‣ Batch normaliza5on (Ioffe and Szegedy, 2015): periodically shim+rescale

each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

https://medium.com/@shiyan/xavier-initialization-and-batch-normalization-my-understanding-b5b91268c25c

Regulariza5on: Dropout
‣ Probabilis5cally zero out parts of the network during training to prevent

overfi}ng, use whole network at test 5me

Srivastava et al. (2014)

‣ Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it
has redundancy

‣ Form of stochas5c
regulariza5on

‣ One line in Pytorch/Tensorflow

Op5miza5on

‣ Gradient descent
‣ Batch update for logis5c regression
‣ Each update is based on a computa5on over the en5re dataset

L

Lmin

L(w)

Lmin

w

Op5miza5on

‣ Stochas3c gradient descent
w w + ↵g, g =

@

@w
L

‣ Approx. gradient is computed on a single instance

‣ What if the loss func5on has a local minima or saddle point?

Dauphin et al. (2014)
Image credit: Paweł Cislo

Op5miza5on

‣ Stochas3c gradient descent
w w + ↵g, g =

@

@w
L

‣ Approx. gradient is computed on a single instance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201854

First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201855

Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Image credit: Stanford CS231N

‣ “First-order” technique: only relies on having gradient

Momentum

Polyak (1964), Sutskever et al. (2013)

‣ Gradients come from a single instance or a mini-batchcan be noisy

‣ Use “velocity” to accumulates the gradients from the past steps

Image credit: Stanford CS231N

Standard SGD SGD with Momentum

AdaGrad

Duchi et al. (2011)

‣ Op5mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201837

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201822

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Image credit: Stanford CS231N

AdaGrad

Duchi et al. (2011)

‣ Op5mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

61

OpImizer
‣ Adam	(Kingma	and	Ba,	ICLR	2015):	
very	widely	used.	AdapIve	step	size	
+	momentum

‣Wilson	et	al.	NIPS	2017:	adapIve	
methods	can	actually	perform	
badly	at	test	Ime	(Adam	is	in	
pink,	SGD	in	black)

‣ One	more	trick:	gradient	clipping	
(set	a	max	value	for	your	gradients)

Computa5on Graphs

‣ Compu5ng gradients is hard!

‣ Automa5c differen5a5on: instrument code to keep track of deriva5ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa5on is now something we need to reason about symbolically

‣ Use a library like PyTorch or TensorFlow. This class: PyTorch

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

Computa5on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))‣ Define forward pass for

Computa5on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN(in_d, hi_d, out_d)

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector of  
the label(e.g.,[0, 1, 0])

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

optimizer = optim.Adam(ffnn.parameters(), lr=0.01)

Training a Model
Define a computa5on graph

For each epoch:

Compute loss on batch

For each batch of data:

Check performance on dev set periodically to iden5fy overfi}ng

Autograd to compute gradients and take step

Batching (aka, mini-batch)

‣ Batching data gives speedups due to more efficient matrix opera5ons

‣ Need to make the computa5on graph process a batch at the same 5me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch sizes from 1-100 omen work well

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

‣ Model: feedforward, RNNs, CNNs can be defined in a uniform framework

‣ Objec5ve: many loss func5ons look
similar, just changes the last layer of the
neural network

‣ Inference: define the network, your
library of choice takes care of it (mostly…)

‣ Training: lots of choices for op5miza5on/hyperparameters

Four Elements of NNs

Next Up

‣ Word representa5ons

‣ word2vec/GloVe

‣ Evalua5ng word embeddings

