Multilingual / Cross-lingual Methods

(many slides from Greg Durrett)

Wei Xu

Alpacas and llamas are cousins, but they aren't exactly alike

Alpacas...

- weigh 150 lbs.
- have soft, luxurious fleece
- are very gentle and timid
- can learn tricks
- need protection

Alpaca and Llama

Llamas...

- weigh over 400 lbs.
- have coarse fleece
- are very brave
- · can carry heavy packs
- serve as herd guards

Image Credit: Unknown

- Morphology
- Word Segmentation
- Cross-lingual Tagging and Parsing
- Cross-Lingual Word Representations (Multilingual LLMs)
- Extras: Pairwise Ranking Model, Class-balanced Focal Loss

This Lecture

Morphology

What is morphology?

- Study of how words form
- Derivational morphology: create a new *lexeme* from a base estrange (v) => estrangement (n) become (v) => unbecoming (adj)
 - May not be totally regular: enflame => inflammable
- Inflectional morphology: word is inflected based on its context
 - I become / she becomes
 - Mostly applies to verbs and nouns

Neologism

Semantic shift, lexical derivation, dialectal variation, blending, or compounding, etc.

Figure 6: Rankings of neologisms over time compared to 5000 common words. Newer models are plotted separately. Dashed lines show model knowledge cutoffs⁵. Example neologisms from each year are provided, and neologisms without trendlines are reported at the end.

Zhang et al. (2024)

Morphological Inflection

In English: I arrive you arrive we arrive you arrive

In French:

he/she/it arrives they arrive

[X] arrived

singular			plural	
second	third	first	second	th
tu	il, elle	nous	vous	ils,
arrives	arrive	arrivons	arrivez	arriven
/a.ʁiv/	/a.ĸiv/	/a.ĸi.vɔ̃/	/a.ĸi.ve/	/a.ĸiv
arrivais	arrivait	arrivions	arriviez	arrivaie
/a.ʁi.vɛ/	/a.ĸi.vɛ/	/a.ʁi.vjɔ̃/	/a.ʁi.vje/	/а.кі.
arrivas	arriva	arrivâmes	arrivâtes	arrivère
/a.ʁi.va/	/a.ʁi.va/	/a.ʁi.vam/	/a.ʁi.vat/	/а.кі.
arriveras	arrivera	arriverons	arriverez	arriver
/а.ві.vва/	/а.кі.vка/	/a.ĸi.vĸɔ̃/	/a.ĸi.vĸe/	/а.кі.
arriverais	arriverait	arriverions	arriveriez	arrivera
/a.ĸi.vĸɛ/	/a.ĸi.ʌĸɛ/	/a.ĸi.və.ĸjɔ̃/	/a.ĸi.və.ĸje/	/а.кі.

Morphological Inflection

In Spanish:

			singular		plural		
		1st person	2nd person	3rd person	1st person	2nd person	3rd person
		yo	tú vos	él/ella/ello usted	nosotros nosotras	vosotros vosotras	ellos/ellas ustedes
	present llego	llegas ^{tú} llegás ^{vos}	llega	llegamos	llegáis	llegan	
indicative	imperfect	llegaba	llegabas	llegaba	llegábamos	llegabais	llegaban
manuative	preterite	llegué	llegaste	llegó	llegamos	llegasteis	llegaron
	future	llegaré	llegarás	llegará	llegaremos	llegaréis	llegarán
	conditional	llegaría	llegarías	llegaría	llegaríamos	llegaríais	llegarían

Not just verbs either; gender, number, case complicate things

Declension of Kind						
			singular	plural		
	indef.	def.	noun	def.	noun	
nominative	ein	das	Kind	die	Kinder	
genitive	eines	des	Kindes, Kinds	der	Kinder	
dative	einem	dem	Kind, Kinde ¹	den	Kindern	
accusative	ein	das	Kind	die	Kinder	

I taught the children <=> Ich unterrichte die Kinder

I give the children a book <=> Ich gebe <u>den Kindern</u> ein Buch

Noun Inflection

Nominative: I/he/she, accusative: me/him/her, genitive: mine/his/hers

Dative: merged with accusative in English, shows recipient of something

Irregular Inflection

- Common words are often irregular
 - I am / you are / she is
 - Je suis / tu es / elle est (French)
 - Soy / está / es (Spanish)
- Less common words typically fall into some regular paradigm these are somewhat predictable

Agglutinating Langauges

Finnish/Hungarian (Finno-Ugric), also Turkish: what a preposition would do in English is instead part of the verb

Turkish	English				
Muvaffak	Successful				
Muvaffakiyet	Success				
Muvaffakiyet siz	Unsuccessful ('without success')				
Muvaffakiyetsiz leş (-mek)	(To) become unsuccessful				
Muvaffakiyetsizleş tir (-mek)	(To) make one unsuccessful				
Muvaffakiyetsizleştiri ci	Maker of unsuccessful ones				
Muvaffakiyetsizleştirici leş (- <i>mek</i>)	(To) become a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileş tir (-mek)	(To) make one a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiri ver (-mek)	(To) easily/quickly make one a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştirivere bil (-mek)	(To) be able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştirivere meye bil(- <i>mek</i>)	Not (to) be able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebil ecek	One who is not able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebilecek ler	Those who are not able to make one easily/quickly a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebilecekleri miz	Those who we cannot make easily/quickly a maker unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimiz den	From those we can not easily/quickly make a maker of unsuccessful ones				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizden miş	(Would be) from those we can not easily/quickly make a maker of unsuccessful o				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizdenmiş siniz	You would be from those we can not easily/quickly make a maker of unsuccessful				
Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizdenmişsiniz cesine	Like you would be from those we can not easily/quickly make a maker of unsucce				

Many possible forms — and in newswire data, only a few are observed

10
nes
ones
ssful ones

Morphologically-Rich Languages

- Many languages spoken all over the world have much richer morphology than English
 - CoNLL 2006 / 2007: dependency parsing + morphological analyses for ~15 mostly Indo-European languages
 - SPMRL shared tasks (2013-2014): Syntactic Parsing of Morphologically-Rich Languages
 - Universal Dependencies project (2005-now): >100 languages
- Word piece / byte-pair encoding models for MT are pretty good at handling these if there's enough data

NLP performance inequalities

6,500 languages

Inflection and Machine Translation from English.

NLP progress has been restricted to a minuscule subset of the world's

Figure 1: Left panel: linguistic and demographic global utility metrics for a number of language technology tasks. The red curve corresponds to the sequence where first the language with the largest number of users is set to utility 1, then the second, and so on. Right panel: recent historical progression of two language technology tasks:

Blasi (2021)

CMU Wilderness Multilingual Speech

- 650+ Languages
- 20 hours of aligned speech per language
- Data from read New Testaments (<u>http://www.bible.is/</u>)

Black (2019) http://festvox.org/cmu_wilderness/map.html

Universal Dependencies

Over 100 languages Current UD Languages

Information about language families (and genera for families with multiple branches) is mostly taken from WALS Online (IE = Indo-European).

-	2 ()	Abaza	1	<1K	\mathcal{O}	Northwest Caucasian
•		Afrikaans	1	49K	<0	IE, Germanic
•	dia di	Akkadian	2	25K		Afro-Asiatic, Semitic
•		Akuntsu	1	1K		Tupian, Tupari
•	*	Albanian	1	<1K	W	IE, Albanian
•	*	Amharic	1	10K		Afro-Asiatic, Semitic
-	ŧ	Ancient Greek	2	416K		IE, Greek
•	\$	Ancient Hebrew	1	39K		Afro-Asiatic, Semitic
-		Apurina	1	<1K		Arawakan
•	٢	Arabic	3	1,042K	ew	Afro-Asiatic, Semitic
•		Armenian	2	94K		IE, Armenian
•	\mathbf{X}	Assyrian	1	<1K		Afro-Asiatic, Semitic
•		Bambara	1	13K		Mande
•	Ж	Basque	1	121K		Basque
•		Beja	1	<1K	\mathcal{O}	Afro-Asiatic, Cushitic
•		Belarusian	1	305K		IE, Slavic
•		Bengali	1	<1K		IE, Indic
•		Bhojpuri	1	6K		IE, Indic
•	***	Breton	1	10K		IE, Celtic
-		Bulgarian	1	156K		IE, Slavic
-	.	Buryat	1	10K		Mongolic
•	*	Cantonese	1	13K	\mathcal{O}	Sino-Tibetan
•		Catalan	1	553K		IE, Romance
		Cebuano	1	1K		Austronesian, Central Philippine
	*)	Chinese	6	287K		Sino-Tibetan
-		Chukchi	1	6K	2	Chukotko-Kamchatkan
-	ten	Classical Chinese	1	310K	0.1	Sino-Tibetan

https://universaldependencies.org/

Massively Multilingual MT

For 103 languages

Arivazhagan et al. (2019), Kudugunta et al. (2019)

Massively Multilingual MT

- For 200 languages (54B parameters)
 - Mixture of Expert (BOE) model. With more low-resource language pairs in the training data, the multilingual systems start to overfit.
 - Solutions: regularization, curriculum learning, self-supervised learning, and diversifying back-translation.

		eng_Latn-xx		xx-eng_Latn		
	MMTAfrica	M2M-100*	NLLB-200	MMTAfrica	M2M-100*	NLLB-200
hau_Latn	-/-	4.0/-	33.6/53.5	-/-	16.3/-	38.5/57.3
ibo_Latn	21.4/-	19.9/-	${f 25.8}/{f 41.4}$	15.4/-	12.0/-	${f 35.5}/{f 54.4}$
lug_Latn	-/-	7.6/-	16.8/39.8	-/-	7.7/-	${f 27.4}/{f 46.7}$
luo_Latn	-/-	13.7/-	${f 18.0/38.5}$	-/-	11.8/-	${f 24.5}/{f 43.7}$
swh_Latn	40.1/-	27.1/-	37.9/58.6	28.4/-	25.8/-	$\bf 48.1/66.1$
wol_Latn	-/-	8.2/-	11.5/29.7	-/-	7.5/-	${\bf 22.4}/{41.2}$
xho_Latn	27.1/-	-/-	${f 29.5/48.6}$	21.7/-	-/-	${f 41.9}/{f 59.9}$
yor_Latn	12.0/-	13.4/-	${f 13.8/25.5}$	9.0/-	9.3/-	${f 26.6/46.3}$
zul_Latn	-/-	19.2/-	${\bf 36.3}/{f 53.3}$	-/-	19.2/-	${f 43.4/61.5}$

Table 31: Comparison on FLORES-101 devtest on African Languages. We compare to two

Fan et al. (2022), NLLB Team (2022)

Word Segmentation

Chinese Word Segmentation

- Word segmentation: some languages including Chinese do not have white spaces between words.
- LSTMs over character embeddings / character bigram embeddings to predict word boundaries

首页 分类索引 特色内容 新闻动态 最近更改 随机条目 资助维基百科

帮助
帮助
维基社群
方针与指引
互助客栈
知识问答
字词转换
IRC即时聊天
联络我们
关于维基百科
工具
链入页面

相关更改

上传文件

Challenges of Chinese

Thousands of characters! >80K

- 的不用一新时吗所被说男事 人在之二市也家后只着女得 上于要三与还可分都位几真 中前好四内出件种做把各对 下者了五本去里将已吧谁看 大会年六地到最很长难找见 小号月十这他回而行来子加 是我日个此性万数等站字更 没和为次建就能天再每那多 有你名元全部爱无以起哪少

Challenges of Chinese

- Mandarin and Cantonese are both tonal languages. The homophone problem is ubiquitous.

mā má mà mà •ma 妈麻马骂吗

English Word Segmentation?

A case study: Hashtag Segmentation

conveys the **topic** of the tweet

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

conveys the **sentiment** of the tweet

Challenges: entities, abbreviations, non-standard spellings, slang ...

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

 Most hashtags have <15 characters. We can (almost) enumerate all 2^(1-len) possible segmentations.

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

It's also very hard to tell apart the top-ranked ones.

input hashtag

h: #songsongaddafisitunes

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

candidate segmentations (top-k)

Solution: pairwise ranking!

 $g(s_a, s_b) > 0$ means s_a is better

a pair of candidate segmentations

songs on gaddafis itunes

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

the top-k candidates.

So we can more easily compare very similar segmentations. We rerank

binary features.

- Twitter
- Gigaword

- Twitter
- Gigaword

Word length Number of words Word shapes **Urban Dictionary** Named entities Google counts

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

The neural pairwise ranking model uses a small number of numerical/

Vectorize numerical/binary features.

Gaussian Vectorization

 $f_1(s_a) = 0.41$

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

Trained with mean squared error (MSE) or margin ranking loss.

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

multi-word hashtags, we introduce a binary classification task.

input hashtag: #songsongaddafisitunes

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

Adaptive multi-task learning: as different features work for single-vs.

multi-word hashtags, we introduce a binary classification task.

input hashtag: #songsongaddafisitunes

Mounica Maddela, Wei Xu, Daniel Preotiuc-Pietro. "Multi-task Pairwise Neural Ranking for Hashtag Segmentation" in ACL (2019)

Adaptive multi-task learning: as different features work for single-vs.

Pairwise Ranking (main) Multi-task Learning Objective: $L_{multitask} = \lambda_1 L_{MSE} + \lambda_2 L_{BCE}$ **Binary Classification (auxiliary)**

Cross-Lingual Tagging and Parsing

Cross-Lingual Tagging

- Labeling POS datasets is expensive
- to *low-resource* languages?

Cross-Lingual Tagging

Can we leverage word alignment here?

Tag with English tagger, project across bitext, train French tagger? Works pretty well

Das and Petrov (2011)
Cross-Lingual Parsing

- Now that we can POS tag other languages, can we parse them too?
- Direct transfer: train a parser over POS sequences in one language, then apply it to another language

McDonald et al. (2011)

Cross-Lingual Parsing

	best	-source	avg-source	gold	I-POS	pred	l-POS
	source	gold-POS	gold-POS	multi-dir.	multi-proj.	multi-dir.	multi-pro
da	it	48.6	46.3	48.9	49.5	46.2	47.5
de	nl	55.8	48.9	56.7	56.6	51.7	52.0
el	en	63.9	51.7	60.1	65.1	58.5	63.0
es	it	68.4	53.2	64.2	64.5	55.6	56.5
it	pt	69.1	58.5	64.1	65.0	56.8	58.9
nl	el	62.1	49.9	55.8	65.7	54.3	64.4
pt	it	74.8	61.6	74.0	75.6	67.7	70.3
sv	pt	66.8	54.8	65.3	68.0	58.3	62.1
avg		63.7	51.6	61.1	63.8	56.1	59.3

- target language
- Multi-proj: more complex annotation projection approach

Multi-dir: transfer a parser trained on several source treebanks to the

McDonald et al. (2011)

EasyProject

Rely on a robust MT system (w/ or w/o word alignment) to do label projection:

Figure 1: An example of translating and projecting English ACE event triggers and named entities to Chinese. (a) Label projection pipeline starts with machine translation of the English sentence to Chinese, followed by word-toword alignment. Then, label spans are projected based on word alignments. (b) Markers are inserted around entity and event trigger spans in the text. The modified sentence with markers inserted is then fed as input to a machine translation system, projecting the label span markers to the target language as a byproduct of translation.

Chen et al. (2023)

Cross-Lingual Word Representations (Multilingual LLMs)

Multilingual Embeddings

Input: corpora in many languages. Output: embeddings where similar words in different languages have similar embeddings

I have an apple 47 24 18 427

J' ai des oranges 47 24 89 1981

- multiCluster: use bilingual dictionaries to form clusters of words that are translations of one another, replace corpora with cluster IDs, train "monolingual" embeddings over all these corpora
- Works okay but not all that well

Ammar et al. (2016)

Multilingual Sentence Embeddings

- Form BPE vocabulary over all corpora (50k merges); will include characters from every script
- Take a bunch of bitexts and train an MT model between a bunch of language pairs with shared parameters, use W as sentence embeddings

Artetxe et al. (2019)

Multilingual BERT

- Take top 104 Wikipedias, train BERT on all of them simultaneously
- What does this look like?

Beethoven may have proposed unsuccessfully to Therese Malfatti, the supposed dedicatee of "Für Elise"; his status as a commoner may again have interfered with those plans.

当人们在马尔法蒂身后发现这部小曲的手稿时,便误认为上面写的是 "Für Elise"(即《给爱丽丝》)[51]。

Кита́й (официально — Кита́йская Наро́дная Респу́блика, сокращённо — КНР; кит. трад. 中華人民共和國, упр. 中华人民共和

国, пиньинь: Zhōnghuá Rénmín Gònghéguó, палл.: Чжунхуа Жэньминь Devlin et al. (2019)

Fine-tuning \setminus Eval	EN	DE	NL	ES
EN	90.70	69.74	77.36	73.59
DE	73.83	82.00	76.25	70.03
NL	65.46	65.68	89.86	72.10
ES	65.38	59.40	64.39	87.18

Table 1: NER F1 results on the CoNLL data.

- Can transfer BERT directly across languages with some success
- ...but this evaluation is on languages that all share an alphabet

Multilingual BERT: Results

Fine-tuning \setminus Eval	EN	DE	ES	IT
EN	96.82	89.40	85.91	91.60
DE	83.99	93.99	86.32	88.39
ES	81.64	88.87	96.71	93.71
IT	86.79	87.82	91.28	98.11

Table 2: POS accuracy on a subset of UD languages.

Pires et al. (2019)

	HI	UR	
HI	97.1	85.9	EN
UR	91.1	93.8	BG

Table 4: POS accuracy on the UD test set for languages with different scripts. Row=fine-tuning, column=eval.

- different alphabets!
- Japanese => English: different script and very different syntax

Multilingual BERT: Results

	EN	BG	JA
EN	96.8	87.1	49.4
BG	82.2	98.9	51.6
JA	57.4	67.2	96.5

Urdu (Arabic/Nastaliq script) => Hindi (Devanagari). Transfers well despite

Pires et al. (2019)

XLM-RoBERTa (XLM-R)

Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

Larger "Common Crawl" dataset, better performance than mBERT

Low-resource languages benefit from training on other languages

High-resource languages see a small performance hit, but not much

Conneau et al. (2019)

Figure 1: Page counts per language in mC4 (left axis), and percentage of mT5 training examples coming from each language, for different language sampling exponents α (right axis). Our final model uses α =0.3.

Model	Architecture	Parameters	# languages	Data source
mBERT (Devlin, 2018)	Encoder-only	180M	104 100	Wikipedia Wikipedia
XLM (Conneau and Lample, 2019) XLM-R (Conneau et al., 2020)	Encoder-only Encoder-only	270M - 550M	100	Common Crawl (CCNet)
mBART (Lewis et al., 2020b)	Encoder-decoder	680M 060M	25 26	Common Crawl (CC25) Wikipedia or CC News
mT5 (ours)	Encoder-decoder	300M - 13B	20 101	Common Crawl (mC4)

Table 1: Comparison of mT5 to existing massively multilingual pre-trained language models. Multiple versions of XLM and mBERT exist; we refer here to the ones that cover the most languages. Note that XLM-R counts five Romanized variants as separate languages, while we ignore six Romanized variants in the mT5 language count.

mT5

Xue et al. (2021)

Scaling Up: mT5 vs. ByT5

Pre-training example creation and network architecture of mT5 (Xue et al., 2021) vs. ByT5 (this work). mT5: Text is split into SentencePiece tokens, spans of ~3 tokens are masked (red), and the encoder/decoder transformer stacks have equal depth. ByT5: Text is processed as UTF-8 bytes, spans of ~20 bytes are masked, and the encoder is 3 × deeper than the decoder. $\langle X \rangle$, $\langle Y \rangle$, and $\langle Z \rangle$ represent sentinel tokens.

Xue et al. (2022)

- Multilingual extension of BART, a seq2seq denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages.
- Works well for machine translation! (especially Chinese in comparison to M2M and NLLB — based on my student's experiments)

mBART

Code	Language	Tokens/M	Size/GB
En	English	55608	300.8
Ru	Russian	23408	278.0
Vi	Vietnamese	24757	137.3
Ja	Japanese	530 (*)	69.3
De	German	10297	66.6
Ro	Romanian	10354	61.4
Fr	French	9780	56.8
Fi	Finnish	6730	54.3
Ко	Korean	5644	54.2
Es	Spanish	9374	53.3
Zh	Chinese (Sim)	259 (*)	46.9
It	Italian	4983	30.2
NI	Dutch	5025	29.3
Ar	Arabic	2869	28.0
Tr	Turkish	2736	20.9
Hi	Hindi	1715	20.2
Cs	Czech	2498	16.3
Lt	Lithuanian	1835	13.7
Lv	Latvian	1198	8.8
Kk	Kazakh	476	6.4
Et	Estonian	843	6.1
Ne	Nepali	237	3.8
Si	Sinhala	243	3.6
Gu	Gujarati	140	1.9
My	Burmese	56	1.6

Table 1: Languages and Statistics of the CC25 Corpus. A list of 25 languages ranked with monolingual corpus size. Throughout this paper, we replace the language names with their ISO codes for simplicity. (*) Chinese and Japanese corpus are not segmented, so the tokens counts here are sentences counts

Liu et al. (2020)

- 59 languages (46 natural language + 13 programming language)
- 1.6TB of pre-processed text

Code - 10.8%

Indic family - 4.4%

Portuguese - 4.9%

Arabic - 4.6% Chinese (Traditional) - 0.05%

Chinese (Simplified) - 16.2%

Niger-Congo Family - 0.03%

Bloom

A BigScience initiative, open-access, 176B parameter (GPT-2 architecture)

https://huggingface.co/bigscience/bloom

- Meta AI, 7.5B parameter (similar to GPT-3 architecture)
- Solution 30 languages, 500B tokens of pre-processed text (CC100-XL of 68)

better visualize the tail distribution.

Common Crawl snapshots (from Summer 2013 to March/April 2020))

Figure 1: The % of each language l (l = 1, 2, ..., 30) in XGLM's pre-training data pre-upsampling (blue), postupsampling (green), and its corresponding % in GPT-3's training data (orange). We truncate the y-axis at 10% to

Lin et al. (2022)

Tested on 26 languages, MMLU - Multiple-choice questions in 57 subjects

GPT-4 3-shot accuracy on MMLU across languages

GPT-4

Prompt GPT-4 vs. Fine-tune mBERT

GPT-4 works pretty well on African languages, but fine-tuning a smaller BERT model (e.g., mDeBERTa-v3 of 276M parameters) with label projection methods can work even better.

Lang.	GPT-4 [†]	FTER		Translate-tra	in	Trans	slate-test
g.			Awes-align	EasyProject	CODEC ($\Delta_{\rm FT}$)	Awes-align	CODEC ($\Delta_{\rm FT}$)
Bambara	46.8	37.1	45.0	45.8	45.8 (+8.7)	50.0	55.6 (+18.5)
Ewe	75.5	75.3	78.3	78.5	79.1 (+3.8)	72.5	79.1 (+3.8)
Fon	19.4	49.6	59.3	61.4	65.5 (+15.9)	62.8	61.4 (+11.8)
Hausa	70.7	71.7	72.7	72.2	72.4 (+0.7)	70.0	73.7 (+2.0)
Igbo	51.7	59.3	63.5	65.6	70.9 (+11.6)	77.2	72.8 (+13.5)
Kinyarwanda	59.1	66.4	63.2	71.0	71.2 (+4.8)	64.9	78.0 (+11.6)
Luganda	73.7	75.3	77.7	76.7	77.2 (+1.9)	82.4	82.3 (+7.0)
Luo	55.2	35.8	46.5	50.2	49.6 (+13.8)	52.6	52.9 (+17.1)
Mossi	44.2	45.0	52.2	53.1	55.6 (+10.6)	48.4	50.4 (+5.4)
Chichewa	75.8	79.5	75.1	75.3	76.8 (-2.7)	78.0	76.8 (-2.7)
chiShona	66.8	35.2	69.5	55.9	72.4 (+37.2)	67.0	78.4 (+43.2)
Kiswahili	82.6	87.7	82.4	83.6	83.1 (-4.6)	80.2	81.5 (-6.2)
Setswana	62.0	64.8	73.8	74.0	74.7 (+9.9)	81.4	80.3 (+15.5)
Akan/Twi	52.9	50.1	62.7	65.3	64.6 (+14.5)	72.6	73.5 (+23.4)
Wolof	62.6	44.2	54.5	58.9	63.1 (+18.9)	58.1	67.2 (+23.0)
isiXhosa	69.5	24.0	61.7	71.1	70.4 (+46.4)	52.7	69.2 (+45.2)
Yoruba	58.2	36.0	38.1	36.8	41.4 (+5.4)	49.1	58.0 (+22.0)
isiZulu	60.2	43.9	68.9	73.0	74.8 (+30.9)	64.1	76.9 (+33.0)
AVG	60.4	54.5	63.6	64.9	67.1 (+12.7)	65.8	70.4 (+16.0)

[0] Awes-align - "Word Alignment by Fine-Tuning Embeddings on Parallel Corpora" Zi-Yi Dou, Graham Neubig (EACL 2021) [1] EasyProject - "Frustratingly Easy Label Projection for Cross-lingual Transfer" Yang Chen, Chao Jiang, Alan Ritter, Wei Xu (ACL 2023 Findings) [2] CODEC - "Constrained Decoding for Cross-lingual Label Projection" Duong Minh Le, Yang Chen, Alan Ritter, Wei Xu (ICLR 2024) Le et al. (2024)

Language Contamination

- Models trained only on English text have been found to transfer surprisingly well to other languages.
- Common English pretraining corpora actually contain significant amounts of non-English text.

Figure 1: Estimated non-English data in English pretraining corpora (token count and total percentage); even small percentages lead to many tokens. C4.En (†) is estimated from the first 50M examples in the corpus.

Blevins & Zettlemoyer (2022)

Multilingual Datasets ++

Multilingual Benchmarks

Task	Corpus	Train	Dev	Test	Test sets	Lang.	Task
Classification	XNLI PAWS-X	392,702 49,401	2,490 2,000	5,010 2,000	translations translations	15 7	NLI Paraphrase
Struct. pred.	POS NER	21,253 20,000	3,974 10,000	47-20,436 1,000-10,000	ind. annot. ind. annot.	33 (90) 40 (176)	POS NER
QA	XQuAD MLQA TyDiQA-GoldP	87,599 3,696	34,726 634	1,190 4,517–11,590 323–2,719	translations translations ind. annot.	11 7 9	Span extraction Span extraction Span extraction
Retrieval	BUCC Tatoeba	-	-	1,896–14,330 1,000	-	5 33 (122)	Sent. retrieval Sent. retrieval

- datasets, not originally annotated in those languages
- Exceptions: POS, NER, TyDiQA

XTREME Benchmark: many of these datasets are translations of base

Hu et al. (2020)

- Typologicallydiverse QA dataset
- Annotators write questions based on very short snippets of articles; answers may or may not exist, fetched from elsewhere in Wikipedia

TyDiQA

Language	Train (1-way)	Dev (3-way)	Test (3-way)
(English)	9,211	1031	1046
Arabic	23,092	1380	1421
Bengali	10,768	328	334
Finnish	15,285	2082	2065
Indonesian	14,952	1805	1809
Japanese	16,288	1709	1706
Kiswahili	17,613	2288	2278
Korean	10,981	1698	1722
Russian	12,803	1625	1637
Telugu	24,558	2479	2530
Thai	11,365	2245	2203
TOTAL	166,916	18,670	18,751

Clark et al. (2021)

Why not translate?

what topics will be discussed. For example, in TYDI QA, one Bengali question asks What does sapodilla taste like?, referring to a fruit that is unlikely to be mentioned in an English corpus, presenting unique challenges for transfer learning. Each of these issues makes a translated corpus more English-like, potentially inflating the apparent gains of transfer-learning approaches.

Clark et al. (2021)

- Typologicallydiverse QA dataset
- Annotators write questions based on very short snippets of articles; answers may or may not exist, fetched from elsewhere in Wikipedia
- Q: Как далеко Уран how far Земл-и? Earth-SG.GEN? How far is Uranus from Earth?
- А: Расстояние между Уран-ом distance и Земл-ёй and Earth-SG.INSTR varies до 3,15 млрд км... to 3,15 bln km...
 - *tuates from 2.6 to 3.15 bln km...*

TyDiQA

OT Uranus-SG.NOM from

between Uranus-SG.INSTR 2,6 меняется от from 2,6

The distance between Uranus and Earth fluc-

Figure 3: Russian example of morphological variation across question-answer pairs due to the difference in syntactic context: the entities are identical but have different representation, making simple string matching more difficult. The names of the planets are in the subject (VpaH, Uranus-NOM) and object of the preposition (ОТ ЗЕМЛИ, from Earth-GEN) context in the question. The relevant passage with the answer has the names of the planets in a coordinating phrase that is an object of a preposition (между Ураном и Землёй, between Uranus-INSTR and Earth-INSTR). Because the syntactic contexts are different, the names of the planets have different case marking.

Clark et al. (2021)

Stanceosaurus

Claim: "Raid at Tirupati temple priest's house, 128 kg gold found"

Keyword search: "Tirupati", "gold"

- Lexically similar but irrelevant tweets are included to train robust stance classifiers;
- Finer-grained stance identification (i.e., lean supporting/refuting) to handle implicitness;
- Tweet threads are collected as misinformation often spreads through multi-turn conversations.

Zheng et al. (2022)

Stanceosaurus

More diverse (multicultural & multilingual) with 28k tweets towards 250 claims in English, Arabic, Hindi.

Zheng et al. (2022)

Stance Categories

Stance categories include 4 relevant classes seen in previous work

Neutral tweets may have an indirect bias

- Topically similar but irrelevant tweets are included to help build robust models

Stance Distributions

Supporting and Refuting make up only 21~22% of datapoints in Stanceosaurus and RumourEval.

Inclusion of similar but irrelevant datapoints

Automatic Stance Classification

Imbalanced label distributions are a significant challenge in stance classification.

Stance identification is modeled as a sentence-pair classification task Tweets are encoded into contextualized word embeddings using transformer-based models

Baseline models are trained using cross-entropy loss

Unnormalized scores

 $\boldsymbol{\wedge}$

C J

Class-Balanced Focal Loss

To address the imbalanced label distributions in stance classification:

Unnormalized scores

$$ext{CB}_{ ext{foc}}(\hat{s},y)$$
 =

Re-weighting

$$\hat{s} = (z_0, z_1, ..., z_{|C|-1})$$

y = correct label

 $n_y =$ number of examples of label y

C = stance categories

 β and γ hyperparameters

* Class-Balanced Focal Loss (Lin et al. 2017) has been demonstrated to address imbalanced computer vision problems

• Hyper-parameter β is tuned between [0.1, 1]

• Re-weighting term is inversely proportional with the number of data points in a class • Weighs misclassifications of smaller classes more than larger classes • During evaluation, the proportion of classes is estimated with the training set

Class-Balanced Focal Loss

To address the imbalanced label distributions in stance classification:

Unnormalized scores

$$ext{CB}_{ ext{foc}}(\hat{s}, y)$$
 =

$$\hat{s} = (z_0, z_1, ..., z_{|C|-1})$$

y = correct label

 $n_y =$ number of examples of label y

C = stance categories

 β and γ hyperparameters

* Class-Balanced Focal Loss (Lin et al. 2017) has been demonstrated to address imbalanced computer vision problems

• The hyper-parameter γ is tuned between [0.1 1.1]

• Well-classified examples with high confidence reduce the focal loss term towards 0

• High confidence for incorrect classifications creates a larger focal loss

• Low confidence for correct classifications also generate a large focal loss

Pre-trained Models

Based on existing work, pre-trained Transformer models are used to establish baseline performance

English data

- BERT Bidirectional Encoder Representations from Transformers
- BERTweet (Nguyen et al., 2020) Pre-trained on a large Twitter corpus

Hindi and Arabic data

- Multilingual-BERT Trained on a corpus of 104 different languages
- XLM-RoBERTa Trained on CommonCrawl of 100 languages

Evaluation on English Dataset

20707 English tweets for 190 total claims; 112 train / 34 dev / 44 test English claims; evaluate on individual tweet text.

BERTweet-large trained on Class-balanced Focal Loss outperforms all other models.

Cross-Entropy Loss

Evaluation on Hindi tweets

Cross-lingual transfer models classify stance trained on English data and evaluated on Hindi tweets.

XLM-RoBERTa models outperform Multilingual-BERT in cross-lingual transfer for Hindi tweets

Cross-Entropy Loss

Evaluation on Arabic tweets

Cross-lingual transfer models classify stance trained on English data and evaluated on Arabic tweets.

XLM-RoBERTa models outperform Multilingual-BERT in cross-lingual transfer for Arabic tweets

Cross-Entropy Loss

African Languages!

AfroLID, a neural LID toolkit for 517 African languages and varieties.

Figure 1: All 50 African countries in our data, with our 517 languages/language varieties in colored circles overlayed within respective countries. More details are in Appendix E.

Word Order	Example Languages
SVO	Xhosa, Zulu, Yorùbá
SOV	Khoekhoe, Somali, Amharic
VSO	Murle, Kalenjin
VOS	Malagasy
No-dominant-order	Siswati, Nyamwezi, Bassa

Table 1: Sentential word order in our data.

Adebara et al. (2022)

Masakhane NER

NER datasets for 20 African languages

Language	Sentence
English	The Emir of Kano turbaned Zhang who has spent 18 years in Nigeria
Amharic	<mark>የካኖ</mark> ኢምር <mark>በናይጀርያ ፩፰ ዓመት</mark> ያሳለፈውን <mark>ዛንግን</mark> ዋና መሪ አደረጉት
Hausa	Sarkin Kano yayi wa Zhang wanda yayi shekara 18 a Nigeria sarauta
Igbo	Onye Emir nke Kano kpubere Zhang okpu onye nke nogoro afo iri na asato na Naijiria
Kinyarwanda	Emir w'i Kano yimitse Zhang wari umaze imyaka 18 muri Nijeriya
Luganda	Emir w'e Kano yatikkidde Zhang amaze emyaka 18 mu Nigeria
Luo	Emir mar Kano ne orwakone turban Zhang ma osedak Nigeria kwuom higni 18
Nigerian-Pidgin	Emir of Kano turban Zhang wey don spend 18 years for Nigeria
Swahili	Emir wa Kano alimvisha kilemba Zhang ambaye alikaa miaka 18 nchini Nigeria
Wolof	Emiiru Kanó dafa kaala kii di Zhang mii def Nigeria fukki at ak juróom ñett
Yorùbá	Émíà ìlú <mark>Kánò</mark> wé láwàní lé orí <mark>Zhang</mark> eni tí ó ti lo <mark>odún méjìdínlógún</mark> ní orílè-èdè <mark>Nàìjíríà</mark>

Table 2: Example of named entities in different languages. PER, LOC, and DATE are in colours purple, orange, and green respectively. The original sentence is from BBC Pidgin.³

Adelani et al. (2021)

- Universal dependencies: treebanks (+ tags) for 100+ languages
- Datasets in other languages are still small, so projection techniques may still help
- More corpora in other languages, less and less reliance on structured tools like parsers, and pretraining on unlabeled data means that performance on other languages is better than ever
- Multilingual models seem to be working better and better but still many challenges for low-resource settings

- challenges
- Problems: how to analyze rich morphology, how to generate with it
- Can leverage resources for English using bitexts
- between languages

Takeaways

Many languages have richer morphology than English and pose distinct

Multilingual models can be learned in a bitext-free way and can transfer