
Transformer

Wei Xu
(many slides from Greg Durrett)



Readings

‣ “The Annotated Transformer” by Sasha Rush 

‣ “The Illustrated Transformer” by Jay Lamar
http://jalammar.github.io/illustrated-transformer/

https://nlp.seas.harvard.edu/2018/04/03/attention.html



Transformers



A>en?on is All You Need

Vaswani et al. (2017)



Sentence Encoders

the  movie  was   great

‣ LSTM abstrac?on: maps each vector in a 
sentence to a new, context-aware vector

‣ CNNs do something similar with filters

‣ A>en?on can give us a third way to do this

Vaswani et al. (2017)

the  movie  was   great



Self-A>en?on

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Assume we’re using GloVe/word2vec embeddings — what do we want our 
neural network to do?

‣ Q: What words need to be contextualized here?



Self-A>en?on

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Pronouns need to look at antecedents

‣ Ambiguous words should look at context

‣ Assume we’re using GloVe — what do we want our neural network to do?

‣ What words need to be contextualized here?

‣ Words should look at syntac?c parents/children

‣ Problem: LSTMs and CNNs don’t do this



Self-A>en?on

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Want:

‣ LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

‣ To appropriately contextualize embeddings, we need to pass informa?on 
over long distances dynamically for each word



Self-A>en?on

Vaswani et al. (2017)

the  movie  was   great

‣ Each word forms a “query” which then 
computes a>en?on over each word 

‣ Mul?ple “heads” analogous to different convolu?onal filters. Use 
parameters Wk and Vk to get different a>en?on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj



What can self-a>en?on do?

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Why mul?ple heads? Soemaxes end up being peaked, single distribu?on 
cannot easily put weight on mul?ple things

0.5 0.20.10.10.10 0 0 0 0 0 0

‣ A>end nearby + to seman?cally related terms

0.5 0 0.40 0.1 0 0 0 0 0 0 0



Visualiza?on

Vaswani et al. (2017)



Visualiza?on

Vaswani et al. (2017)



Visualiza?on

Vaswani et al. (2017)



Mul?-Head Self A>en?on

Vaswani et al. (2017)

‣ Mul?ple “heads” analogous to different convolu?onal filters

‣ Let X = [sent len, embedding dim] be the input sentence

‣ Query Q = WQX: these are like the decoder hidden state in a>en?on

‣ Keys K = WKX: these control what gets a>ended to, along with the query

‣ Values V = WVX: these vectors get summed up to form the output

dim of keys



Mul?-Head Self A>en?on

Credit: Alammar, The Illustrated Transformer



Mul?-Head Self A>en?on

Credit: Alammar, The Illustrated Transformer



Mul?-Head Self A>en?on

Credit: Alammar, The Illustrated Transformer



Mul?-Head Self A>en?on

sent len x hidden dim

Z is a weighted combina?on of V rows

sent len x sent len (a>n for 
each word to each other)

Credit: Alammar, The Illustrated Transformer

every row in X is a word in input sent



Mul?-Head Self A>en?on

Credit: Alammar, The Illustrated Transformer



Mul?-Head Self A>en?on

Credit: Alammar, The Illustrated Transformer



Proper?es of Self-A>en?on

Vaswani et al. (2017)

‣Quadra/c complexity, but O(1) sequen?al opera?ons (not linear like 
in RNNs) and O(1) “path” for words to inform each other

‣ n = sentence length, d = hidden dim, k = kernel size, r = restricted 
neighborhood size



Transformers for MT: Complete Model

Vaswani et al. (2017)

‣ Encoder and decoder are both transformers

‣ Decoder consumes the previous generated 
tokens but has no recurrent state

‣ Decoder alternates a>en?on over the output 
and a>en?on over the input as well



Transformers

Vaswani et al. (2017)

‣ Alternate mul?-head self-a>en?on 
layers and feedforward layers

‣ Residual connec?ons let the model 
“skip” each layer — these are 
par?cularly useful for training deep 
networks

23

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)



Residual Connec?ons

input from previous layer

output to next layer

g(x)

x

non-linearity

+x

g(x) + x

G

‣ allow gradients to flow through a network 
directly, without passing through non-linear 
ac?va?on func?ons

He et al. (2015)



Layer Normaliza?on

25

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

‣ subtract mean, divide by variance

Ba et al. (2016)



Transformers: Posi?on Sensi?vity

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ If this is in a longer context, we want words to a>end locally

‣ But transformers have no no@on of posi@on by default



27

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)



Transformers

Vaswani et al. (2017)

‣ Adam op?mizer with varied learning  
rate over the course of training

‣ Linearly increase for warmup, then  
decay propor?onally to the inverse 
square root of the step number

‣ This part is very important!



Transformers for MT: Complete Model

Vaswani et al. (2017)

‣ Many other details to get it to work: residual 
connec?ons, layer normaliza?on, posi?onal 
encoding, op?mizer with learning rate 
schedule, label smoothing ….



Transformers

Vaswani et al. (2017)

‣ big = 6 layers, 1000 dim for each token, 16 heads, 
base = 6 layers + other params halved



Useful Resources



Other Transformer Varia?ons

Press et al. (2020)

‣ Mul?layer transformer networks consist of interleaved self-a>en?on and 
feedforward sublayers. 

‣ Could ordering the sublayers in a different pa>ern lead to be>er 
performance?



Other Transformer Varia?ons
‣ Mixture of Expert (MoE) Transformer, e.g., used in massively mul?lingual MT

Eigen el al. (2013), Shazeer et al. (2017), NLLB (2022)



34

Transformer	Uses

‣ Supervised:	transformer	can	replace	LSTM	as	encoder,	decoder,	or	both;	
will	revisit	this	when	we	discuss	MT

‣ Unsupervised:	transformers	work	be8er	than	LSTM	for	unsupervised	
pre-training	of	embeddings:	predict	word	given	context	words

‣ BERT	(BidirecPonal	Encoder	
RepresentaPons	from	Transformers):	
pretraining	transformer	language	models	
similar	to	ELMo

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)

such as in machine transla?on and natural language genera?on tasks. 

Vaswani et al. (2017)

‣ Encoder and decoder are both transformers

‣ Decoder consumes the previous generated 
token (and a>ends to input), but has no 
recurrent state

Summary: Transformer Uses



Summary: Transformer Uses

‣ Unsupervised: transformers work be>er than LSTM for unsupervised 
pre-training of embeddings — predict word given context words

‣ BERT (Bidirec?onal Encoder 
Representa?ons from Transformers): 
pretraining transformer language models 
similar to ELMo (based on LSTM)

‣ Stronger than similar methods, SOTA on ~11 
tasks (including NER — 92.8 F1)


