Transformer

Wei Xu

(many slides from Greg Durrett)

Readings

"The Annotated Transformer" by Sasha Rush https://nlp.seas.harvard.edu/20I8/04/03/attention.html

- "The Illustrated Transformer" by Jay Lamar
http://jalammar.github.io/illustrated-transformer/

Transformers

Attention is All You Need

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit avaswani@google.com noam@google.com \quad nikip@google.com \quad usz@google.com

Llion Jones*
Google Research
Google Research

Aidan N. Gomez* \dagger
University of Toronto
aidan@cs. toronto.edu

Lukasz Kaiser
Google Brain
lukaszkaiser@google.com

```
Illia Polosukhin \({ }^{*} \ddagger\)
illia.polosukhin@gmail.com
```

Abstract
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishless time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

Sentence Encoders

- LSTM abstraction: maps each vector in a sentence to a new, context-aware vector

- CNNs do something similar with filters

- Attention can give us a third way to do this

Self-Attention

- Assume we're using GloVe/word2vec embeddings - what do we want our neural network to do?

The ballerina is very excited that she will dance in the show.

- Q: What words need to be contextualized here?

Self-Attention

- Assume we're using GloVe - what do we want our neural network to do?

The ballerina is very excited that she will dance in the show.

- What words need to be contextualized here?
- Pronouns need to look at antecedents
- Ambiguous words should look at context
- Words should look at syntactic parents/children
- Problem: LSTMs and CNNs don't do this

Self-Attention

- Want:

The ballerina is very excited that she will dance in the show.

- LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

- To appropriately contextualize embeddings, we need to pass information over long distances dynamically for each word

Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\begin{aligned}
& \alpha_{i, j}=\operatorname{softmax}\left(x_{i}^{\top} x_{j}\right) \quad \text { scalar } \\
& x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i, j} x_{j} \quad \text { vector }=\text { sum of scalar * vector }
\end{aligned}
$$

- Multiple "heads" analogous to different convolutional filters. Use parameters W_{k} and V_{k} to get different attention values + transform vectors
$\alpha_{k, i, j}=\operatorname{softmax}\left(x_{i}^{\top} W_{k} x_{j}\right) \quad x_{k, i}^{\prime}=\sum_{j=1}^{n} \alpha_{k, i, j} V_{k} x_{j}$

What can self-attention do?

The ballerina is very excited that she will dance in the show.

0	0.5	0	0	0.1	0.1	0	0.1	0.2	0	0	0
0	0.1	0	0	0	0	0	0	0.5	0	0.4	0

- Attend nearby + to semantically related terms
- Why multiple heads? Softmaxes end up being peaked, single distribution cannot easily put weight on multiple things

Visualization

Visualization

Visualization

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let $X=$ [sent len, embedding dim] be the input sentence
- Query $Q=W Q X$: these are like the decoder hidden state in attention
- Keys $K=W^{K} X$: these control what gets attended to, along with the query
- Values $V=W^{V} X$: these vectors get summed up to form the output

$$
\text { Attention }(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V \text { dim of keys }
$$

Multi-Head Self Attention

Input

Embedding

Queries

Keys

WQ

\mathbf{W}^{K}
Machines

Wv

Credit: Alammar, The Illustrated Transformer

Multi-Head Self Attention

Credit: Alammar, The Illustrated Transformer

Multi-Head Self Attention

Multi-Head Self Attention

sent len x sent len (attn for each word to each other)

Z is a weighted combination of V rows

Credit: Alammar, The Illustrated Transformer

Multi-Head Self Attention

1) This is our

 input sentence*2) We embed each word*

3) Split into 8 heads.

We multiply X or
R with weight matrices
4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

Thinking
Machines

* In all encoders other than \#0, we don't need embedding.
We start directly with the output of the encoder right below this one

W_{7} Q

Credit: Alammar, The Illustrated Transformer

Multi-Head Self Attention

1) This is our

 input sentence*2) We embed each word*

3) Split into 8 heads.

We multiply X or
R with weight matrices

4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

Credit: Alammar, The Illustrated Transformer

Properties of Self-Attention

Layer Type

Complexity per Layer Sequential Maximum Path Length Operations

Self-Attention
Recurrent
Convolutional
Self-Attention (restricted)
$O\left(n^{2} \cdot d\right)$ $O\left(n \cdot d^{2}\right)$
$O\left(k \cdot n \cdot d^{2}\right)$
$O(r \cdot n \cdot d)$
$O(1)$
$O(n)$
$O(1)$
$O(1)$

$O(1)$
$O(n)$
$O\left(\log _{k}(n)\right)$
$O(n / r)$

 (n)
 \(O(n / r)\)
 - $n=$ sentence length, $d=$ hidden $\operatorname{dim}, k=$ kernel size, $r=$ restricted neighborhood size
- Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other

Transformers for MT: Complete Model

Transformers

- Alternate multi-head self-attention layers and feedforward layers
- Residual connections let the model "skip" each layer - these are particularly useful for training deep networks

in

Residual Connections

- allow gradients to flow through a network directly, without passing through non-linear activation functions

Layer Normalization

- subtract mean, divide by variance

Batch Normalization

Layer Normalization

batch				
,				
	1	3	6	
	2	2	2	
	0	1	5	
	4	6	1	
	5	2	3	
		0	1	
mean	2	3	3	Same for all feature dimensions
std	2	2	2	

Transformers: Position Sensitivity

The ballerina is very excited that she will dance in the show.

- If this is in a longer context, we want words to attend locally
- But transformers have no notion of position by default

Transformers

- Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points $=$ higher dot products
- Works essentially as well as just encoding position as a one-hot vector

Transformers

- Adam optimizer with varied learning rate over the course of training
- Linearly increase for warmup, then decay proportionally to the inverse square root of the step number
- This part is very important!

Transformers for MT: Complete Model

- Many other details to get it to work: residual connections, layer normalization, positional encoding, optimizer with learning rate schedule, label smoothing

Transformers

Model	BLEU	
	EN-DE	EN-FR
ByteNet [18]	23.75	
Deep-Att + PosUnk [39]	24.6	39.2
GNMT + RL [38]	25.16	40.92
ConvS2S [9]	26.03	40.56
MoE [32]		40.4
Deep-Att + PosUnk Ensemble [39]	26.30	41.16
GNMT + RL Ensemble [38]	26.36	$\mathbf{4 1 . 2 9}$
ConvS2S Ensemble [9]	27.3	38.1
Transformer (base model)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 8}$

- big $=6$ layers, 1000 dim for each token, 16 heads, base $=6$ layers + other params halved

Useful Resources

nn.Transformer:

```
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
```


nn.TransformerEncoder:

```
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
```


Other Transformer Variations

- Multilayer transformer networks consist of interleaved self-attention and feedforward sublayers.
- Could ordering the sublayers in a different pattern lead to better performance?

$\mathbf{s} \mathbf{f} \mathbf{s} \mathbf{f} \mathbf{f} \mathbf{s} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{s} \mathbf{f} \mathbf{s} \mathbf{f} \mathbf{s} \mathbf{f} \mathbf{s} \mathbf{f} \mathbf{s} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f}$

(a) Interleaved Transformer

(b) Sandwich Transformer

Figure 1: A transformer model (a) is composed of interleaved self-attention (green) and feedforward (purple) sublayers. Our sandwich transformer (b), a reordering of the transformer sublayers, performs better on language modeling. Input flows from left to right.

Other Transformer Variations

- Mixture of Expert (MoE) Transformer, e.g., used in massively multilingual MT

(b) MoE Transformer

Figure 16: Illustration of a Transformer encoder with MoE layers inserted at a
$1: f_{\mathrm{MoE}}$ frequency. Each MoE layer has E experts and a gating network responsible for
dispatching tokens.
Eigen el al. (2013), Shazeer et al. (2017), NLLB (2022)

Summary: Transformer Uses

- Supervised: transformer can replace LSTM as encoder, decoder, or both; such as in machine translation and natural language generation tasks.

- Encoder and decoder are both transformers
- Decoder consumes the previous generated token (and attends to input), but has no recurrent state

Summary: Transformer Uses

- Unsupervised: transformers work better than LSTM for unsupervised pre-training of embeddings - predict word given context words
- BERT (Bidirectional Encoder Representations from Transformers): pretraining transformer language models similar to ELMo (based on LSTM)
- Stronger than similar methods, SOTA on ~11 tasks (including NER - 92.8 F1)

