Encoder-Decoder (aka Seq2Seq)

Wei Xu

(many slides from Greg Durrett)

This Lecture

- Machine Translation
- Sequence-to-Sequence Model

Philipp Koehn

Neural Machine Translation

- Reading - Eisenstein 18.3-18.5

MT Basics

MT Basics

People’s Daily, August 30, 2017
Trump Pope family watch a hundred years a year in the White House balcony

MT Ideally

- I have a friend => ヨx friend (x,self) => J'ai un ami J'ai une amie
- May need information you didn't think about in your representation
- Hard for semantic representations to cover everything
- Everyone has a friend $=>\quad \exists x \forall y$ friend (x, y)) Tout le $\forall x \exists y$ friend (x, y) monde a unami
- Can often get away without doing all disambiguation - same ambiguities may exist in both languages

Levels of Transfer: Vauquois Triangle (1968)

History of MT

Parallel Training Corpus

facing with the swelling flow of through traffic zooming past their doors.

5 \#77501757	Weekend traffic bans and traffic jams are a curse to road transport	\#74765580
$6^{\# 79500725}$	Some people also want to recoup the cost of traffic jams from those who get stuck in them, according to the ' polluter pays ' principle .	\#76764676
$7^{\# 79500765}$	I think this is an excellent principle and I would like to see it applied in full, but not to traffic jams.	\#76764713
$8^{\# 79500768}$	Traffic jams are indicative of failed government policy on the infrastructure front, which is why the government itself, certainly in the Netherlands, must be regarded as the polluter .	\#76764747
9 \#81309716	This would increase traffic jams, weaken road safety and increase costs.	\#78586130
$10 \text { \#81997391 }$	In the previous legislature, Parliament gave its opinion on the Commission 's proposals on the simplification of vertical directives on sugar , honey, fruit juices, milk and jams .	\#79281114
$11 \text { \#81998167 }$	For jams, I personally reintroduced an amendment that was not accepted by the Committee on the Environment, Public Health and Consumer Policy, but which I hold to .	\#79281936
12 \#81998209	It concerns not accepting the general use of a chemical flavouring in jams and marmalades, that is vanillin .	\#79281966
$13{ }^{\# 82800065}$	This is highlighted particularly in towns where it is necessary to find ways of solving environmental problems and the difficulties caused by traffic jams.	\#80085988

que pasa por delante_de sus casas, que aumenta a_diario
Las prohibiciones de conducir los fines de semana y los embotellamientos asolan el transporte por carretera
Algunos son partidarios de que incluso los costes ocasionados por los atascos se carguen a el ciudadano que se encuentra atrapado en ellos, de conformidad con el principio de que "quien contamina paga ".
Me parece un principio acertado y estoy dispuesta a aplicarlo íntegramente, pero no sobre los atascos, ya_que éstos son un claro indicio de el fracaso de la política gubernamental en_materia_de infraestructuras .
Por eso es preciso subrayar que en estos casos quien contamina es el propio Gobierno, a el menos en los Paises_Bajos .

Esto aumentaría los atascos , mermaría la seguridad vial e incrementaría los costes En efecto, durante la precedente legislatura, el Parlamento se manifestó sobre las propuestas de la Comisión relativas a la simplificación de directivas verticales sobre el azúcar, la miel, los zumos de frutas, la leche y las confituras.
Para las confituras, yo personalmente volví a introducir una en
aceptada por la Comisión_de_Medio_Ambiente, Salud_Pública y Politica_de_el_Consumidor, , pero que es importante para mí.
Se trata de no aceptar la utilización generalizada de un aroma químico en las confituras y " marmalades " , a saber, la vainillina .
Esto se pone_de_relieve aún más en las ciudades, en las que hay que encontrar medios para eliminar los inconvenientes derivados de los problemas medioambientales y de la congestión de el tráfico .

Statistical Machine Translation Philipp Koehn

Phrase-Based MT

- Key idea: translation words better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext
- How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)

Word Alignment: IBM Model 1

- Each "Foreign" word is aligned to at most one English word

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i}\right)
$$

e Thank you , I shall do so gladly.

- Set P(a) uniformly (no prior over good alignments) = 1 / (\#words in e + 1)
- $P\left(f_{i} \mid e_{a_{i}}\right)$: word translation probability. Learn with EM (Eisenstein ch 18.2.2) Brown et al. (1993)

Word Alignment

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
de assister à la runion et \|\| to attend the meeting and assister à la runion ||| attend the meeting la runion and ||| the meeting and nous ||| we
- Lots of phrases possible, count across all sentences and score by frequency

Phrase-Based MT

- Goal: translate from Foreign language to English

```
cat ||| chat ||| 0.9
the cat ||| le chat I|| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison \|| 0.9
language ||| langue ||| 0.9
```

Phrase table $P(f \mid e)$

$$
P(e \mid f) \propto P(f \mid e) P(e)
$$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

MT Evaluation

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

Papineni et al. (2002)

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\begin{aligned}
& \mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) \\
& \text { - Typically } N=4, w_{i}=1 / 4 \\
& \mathrm{BP}=\left\{\begin{array}{lll}
1 & \text { if } c>r & , r=\text { length of reference } \\
e^{(1-r / c)} & \text { if } c \leq r & \mathrm{c}=\text { length of system output }
\end{array}\right.
\end{aligned}
$$

- Does this capture fluency and adequacy?

Appraise - Human Evaluation Interface

For the pair of sentences below: Read the text and state how much you agree that:
The black text adequately expresses the meaning of the gray text in German (deutsch).
North Korea says 'no way' will disarm unilaterally without trust

- Source text

Nordkorea sagt, Sprünge ohne Vertrauen entwaffnen ohne Vertrauen .

- Candidate translation

(9) This is the GitHub version \#wnt19dev of the Appraise evaluation system. Some rights reserved. 24 Developed and maintained by Christian Federmann.

Figure 3: Screen shot of segment-rating portion of document-level direct assessment in the Appraise interface for an example English to German assessment from the human evaluation campaign. The annotator is presented with the machine translation output segment randomly selected from competing systems (anonymized) and is asked to rate the translation on a sliding scale.

BLEU Score

- Better methods with human-in-the-loop
- HTER: human-assisted translation error rate
- If you're building real MT systems, you do user studies. In academia, you mostly use BLEU, COMET, etc.

Human Judgments

Other MT Evaluation Metrics

- BLEU (2002): n-gram overlap
- METEOR (2005): also take into consideration of synonyms
- HTER (2009): human-assisted translation error rate
- BERTScore (2019): embedding-based
- BLEURT (2020) and COMET (2020): trained neural network model using human evaluation data
- and many more ...

COMET - Learnt Metric

- Regression Metric (left): trained on a regression task using source, MT and reference; Ranking Metric (middle): optimize to encode good translations closer to the anchors (source, reference) while pushing bad translations away; Reference-less Metric (right): does not use the reference translation.

Seq2Seq Models

Recall: CNNs vs. LSTMs

\square

the movie was good
$O(n) \times c$
c filters, mxkeach nxk

$\mathrm{n} \times 2 \mathrm{c}$
BiLSTM with hidden size c
$n \times k$

- Both LSTMs and convolutional layers transform the input using context
- LSTM: "globally" looks at the entire sentence (but local for many problems)
- CNN: local depending on filter width + number of layers

Encoder-Decoder

- Encode a sequence into a fixed-sized vector

- Now use that vector to produce a series of tokens as output from a separate LSTM decoder
- Machine translation, NLG, summarization, dialog, and many other tasks (e.g., semantic parsing, syntactic parsing) can be done using this framework.

Model

- Generate next word conditioned on previous word as well as hidden state
- W size is |vocab| x |hidden state|, softmax over entire vocabulary

$$
P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}(W \bar{h})
$$

$P(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{n} P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)$
Decoder has separate
parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)

Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state
- Decoder is advanced one state at a time until [STOP] is reached

Training

- Objective: maximize $\sum_{(\mathbf{x}, \mathbf{y})} \sum_{i=1}^{n} \log P\left(y_{i}^{*} \mid \mathbf{x}, y_{1}^{*}, \ldots, y_{i-1}^{*}\right)$
- One loss term for each target-sentence word, feed the correct word regardless of model's prediction (called "teacher forcing")

Training: Scheduled Sampling

- Model needs to do the right thing even with its own predictions

- Scheduled sampling: with probability p, take the gold (human) translation as input, else take the model's prediction
- Starting with $p=1$ and decaying it works best

Implementing seq2seq Models

- Encoder: consumes sequence of tokens, produces a vector. Analogous to encoders for classification/tagging tasks
- Decoder: separate module, single cell. Takes two inputs: hidden state (vector h or tuple (h, c)) and previous token. Outputs token + new state

Implementation Details

- Sentence lengths vary for both encoder and decoder:
- Typically pad everything to the right length
- Encoder: Can be a CNN/LSTM/Transformer...
- Batching is a bit tricky:
- encoder should use pack_padded_sequence to handle different lengths.
- The decoder should pad everything to the same length and use a mask to only accumulate "valid" loss terms
- Label vectors may look like [num timesteps x batch size x num labels]

Implementation Details (cont’)

- Decoder: execute one step of computation at a time, so computation graph is formulated as taking one input + hidden state.
- Test time: do this until you generate the [STOP] token
- Training time: do this until you reach the gold stopping point
- Beam search: can help with lookahead. Finds the (approximate) highest scoring sequence:

$$
\operatorname{argmax}_{\mathbf{y}} \prod_{i=1}^{n} P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)
$$

Decoding Strategies

Greedy Decoding

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state. This is greedy decoding

$$
\begin{aligned}
& P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}(W \bar{h}) \\
& y_{\text {pred }}=\operatorname{argmax}_{y} P\left(y \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)
\end{aligned}
$$

Beam Search

- Maintain decoder state, token history in beam
film: 0.4

- NMT usually use beam <=5
le
- Keep both film states! Hidden state vectors are different

Problems with Greedy Decoding

- Only returns one solution, and it may not be optimal
- Can address this with beam search, which usually works better...but even beam search may not find the correct answer! (max probability sequence)

Model	Beam-10	
	BLEU	\#Search err.
LSTM *	28.6	58.4%
SliceNet *	28.8	46.0%
Transformer-Base	30.3	57.7%
Transformer-Big*	31.7	32.1%

A sentence is classified as search error if the decoder does not find the global best model score.

Stahlberg and Byrne (2019)

"Problems" with Beam Decoding

- For machine translation, the highest probability sequence is often the empty string, i.e.. a single </s> token! (>50\% of the time)

Search	BLEU	Ratio	\#Search errors	\#Empty
Greedy	29.3	1.02	73.6%	0.0%
Beam-10	30.3	1.00	57.7%	0.0%
Exact	2.1	0.06	0.0%	51.8%

- Beam search results in fortuitous search errors that avoid these bad solutions. NMT usually use beam $<=5$.
- Exact inference uses depth-first search, but cut off branches that fall below a lower bound.

Sampling

- Beam search may give many similar sequences, and these actually may be too close to the optimal. Can sample instead:

$$
\begin{aligned}
& P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}(W \bar{h}) \\
& y_{\text {sampled }} \sim P\left(y \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)
\end{aligned}
$$

- Greedy solution can be uninteresting / vacuous for various reasons (so called text degeneration). Sampling can help - especially for some text generation tasks.

Beam Search vs. Sampling

- These are samples from an unconditioned language model GPT-2 (not seq2seq model)

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32:
"The study, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), was conducted by researchers from the Universidad Nacional Autónoma de México (UNAM) and the Universidad Nacional Autónoma de México
(UNAM/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de ..."

Pure Sampling:

They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town, and they speak huge, beautiful, paradisiacal Bolivian linguistic thing. They say, 'Lunch, marge.' They don't tell what the lunch is," director Professor Chuperas Omwell told Sky News. "They've only been talking to scientists, like we're being interviewed by TV reporters. We don't even stick around to be interviewed by TV reporters. Maybe that's how they figured out that they're cosplaying as the Bolivian Cavalleros.

- Sampling is better but sometimes draws too far from the tail of the distribution (relatively low prob. over thousands of candidate tokens).

Beam Search vs. Sampling

Beam Search Text is Less Surprising

Holtzman et al. (2019)

Decoding Strategies

- Greedy
- Beam search
- Sampling (e.g., top-k or Nucleus sampling)
- Top-k: take the top k most likely words ($k=5$), sample from those
- Nucleus: take the top p\% (95\%) of the distribution, sample from within that

Other Applications of Seq2Seq

Generation Tasks

- There are a range of seq2seq modeling tasks we will address
- For more constrained problems: greedy/beam decoding are usually best
- For less constrained problems: nucleus sampling introduces favorable variation in the output

Less constrained
More constrained

Unconditioned sampling/ e.g., story generation	Dialogue	Translation	Text-to-code
		Summarization Data-to-text	Text-to-text

Text-to-Text Generation

- Text Simplification (with readability constraints)

Regex Prediction

- Seq2seq models can be used for many other tasks!
- Predict regex from text

Natural Language Encoder

- Problem: requires a lot of data: 10,000 examples needed to get ~60\% accuracy on pretty simple regexes

Semantic Parsing as Translation

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation; using copy mechanism
- No need to have an explicit grammar, simplifies algorithms
- Might not produce well-formed logical forms, might require lots of data

SQL Generation

- Convert natural language description into a SQL query against some DB

Question:

How many CFL teams are from York College?

SQL:

```
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"
```

- How to ensure that wellformed SQL is generated?
- Three components
- How to capture column names + constants?
- Pointer mechanisms

Zhong et al. (2017)

