
Introduction to PyTorch

Jingfeng Yang (Part of tutorials and slides are
made by Nihal Singh)

Outline

● Pytorch
○ Introduction

○ Basics

○ Examples

Introduction to PyTorch

What is PyTorch?

● Open source machine learning library
● Developed by Facebook's AI Research lab
● It leverages the power of GPUs
● Automatic computation of gradients
● Makes it easier to test and develop new ideas.

Other libraries?

Why PyTorch?

● It is pythonic - concise, close to Python conventions
● Strong GPU support
● Autograd - automatic differentiation
● Many algorithms and components are already

implemented
● Similar to NumPy

Why PyTorch?

Getting Started with PyTorch
Installation

Via Anaconda/Miniconda:
conda install pytorch

Via pip:
pip3 install torch

PyTorch Basics

iPython Notebook Tutorial

bit.ly/pytorchbasics

http://bit.ly/pytorchbasics

Tensors

Tensors are similar to NumPy’s ndarrays, with the addition being that
Tensors can also be used on a GPU to accelerate computing.

Common operations for creation and manipulation of these Tensors are
similar to those for ndarrays in NumPy. (rand, ones, zeros, indexing,
slicing, reshape, transpose, cross product, matrix product, element wise
multiplication)

Tensors
Attributes of a tensor 't':

● t= torch.randn(1)

requires_grad- making a trainable parameter

● By default False
● Turn on:

○ t.requires_grad_()or
○ t = torch.randn(1, requires_grad=True)

● Accessing tensor value:
○ t.data

● Accessingtensor gradient
○ t.grad

grad_fn- history of operations for autograd

● t.grad_fn

Loading Data, Devices and CUDA
Numpy arrays to PyTorch tensors

● torch.from_numpy(x_train)
● Returns a cpu tensor!

PyTorch tensor to numpy

● t.numpy()

Using GPU acceleration

● t.to()
● Sends to whatever device (cuda or cpu)

Fallback to cpu if gpu is unavailable:

● torch.cuda.is_available()

Check cpu/gpu tensor OR numpy array ?

● type(t)or t.type()returns
○ numpy.ndarray
○ torch.Tensor

■ CPU - torch.cpu.FloatTensor
■ GPU - torch.cuda.FloatTensor

Autograd
● Automatic Differentiation Package

● Don’t need to worry about partial differentiation,
chain rule etc.

○ backward()does that

● Gradients are accumulated for each step by default:
○ Need to zero out gradients after each update
○ tensor.grad_zero()

Optimizer and Loss
Optimizer

● Adam, SGD etc.
● An optimizer takes the parameters

we want to update, the learning rate
we want to use along with other
hyper-parameters and performs the
updates

Loss

● Various predefined loss functions to
choose from

● L1, MSE, Cross Entropy

Model
In PyTorch, a model is represented by a regular Python class that inherits from the Module class.

● Two components
○ __init__(self): it defines the parts that make up the model- in our case, two

parameters, a and b
○ forward(self, x) : it performs the actual computation, that is, it outputs a prediction,

given the inputx

PyTorch Example
(neural bag-of-words (ngrams) text classification)

bit.ly/pytorchexample

http://bit.ly/pytorchexample

Overview

Sentence

Softmax

Cross
Entropy

Embedding
Layer

Linear
Layer

Prediction

EvaluationTraining

Design Model

● Initilaize modules.
● Use linear layer here.
● Can change it to RNN,

CNN, Transformer etc.

● Foward pass

● Randomly initilaize
parameters

Preprocess

● Build and preprocess dataset

● Build vocabulary

Preprocess

● Create batch (Used in SGD)
● Choose pad or not (Using [PAD])

● One example of dataset:

Training each epoch

Iterable batches
Before each optimization, make
previous gradients zeros

Backforward propagation to
compute gradients and update
parameters

Forward pass to compute loss

After each epoch, do learning
rate decay (optional)

Test process
Do not need back propagation or parameter update !

The whole training process

Print information to monitor
the training process

● Use CrossEntropyLoss()
as the criterion. The
input is the output of the
model. First do
logsoftmax, then
compute cross-entropy
loss.

● Use SGD as optimizer.
● Use exponential decay

to decrease learning rate

Evaluation with test dataset or random news

