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This Lecture

‣ Vanishing gradient problem

‣ Recurrent neural networks

‣ LSTMs / GRUs

‣ Applications / visualizations



Readings

‣ Reading: RNNs

‣ Eisenstein 7.6

‣ Jurafsky and Martin, Chapter 9

‣ Goldberg 10, 11



RNN Basics



RNN Motivation
‣ Feedforward NNs isn’t the best to handle sentences with variable length, 

words with multiple senses, or same words appear at different positions

‣ Instead, we need to:

1) Process each word in a uniform way

the  movie  was   great that   was   great     !

2) …while still exploiting the context that that token occurs in

‣ These don’t look related (great is in two different orthogonal subspaces)



RNN Abstraction
‣ Cell that takes some input x, has some hidden state h, and updates that 

hidden state and produces output y (all vector-valued)

previous h next h

(previous c) (next c)

input x

output y



Elman Networks

input xt

prev 
hidden 
state ht-1 ht

output yt

‣ Computes output from hidden state

‣ Updates hidden state based on input 
and current hidden state

‣ Long history! (invented in the late 1980s)

yt = tanh(Uht + by)

Elman (1990)

ht = tanh(Wxt + V ht�1 + bh)



RNN Uses
‣ Transducer: make some prediction for each element in a sequence

‣ Encoder: encode a sequence into a fixed-sized vector and use that for 
some purpose

the  movie  was   great

predict sentiment (matmul + softmax)

translate

the  movie  was   great

DT      NN    VBD     JJ

paraphrase/compress

output y = score for each tag, then softmax



RNN Intuition

the  movie  was   great

predict sentiment

‣ RNN potentially needs to learn how to “remember” information for a 
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

‣ “Correct” parameter update is to do a better job of remembering the 
sentiment of favorite



Training RNNs

the  movie  was   great

‣ Loss = negative log likelihood of probability of gold label (softmax or 
use SVM or other loss)

P (y|x)

‣ “Backpropagation through time”: build the network as one big 
computation graph, some parameters are shared

‣ Example: sentiment analysis



Training RNNs

the  movie  was   great

‣ Loss = negative log likelihood of probability of gold predictions, 
summed over the tags

‣ Loss terms filter back through network

P (ti|x)

‣ Example: POS tagging, language modeling (predict next word given context)



Vanishing Gradient

‣ Gradient diminishes going through tanh; if 
not in [-2, 2], gradient is almost 0

<- gradient<- smaller gradient<- tiny gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs/GRUs



A Bit of History
‣ Long Short-term Memory (Hochreiter & Schmidhuber, 1997)



Gated Connections
‣ Designed to fix “vanishing gradient” problem using gates

‣ Vector-valued “forget gate” f computed 
based on input and previous hidden state

‣ Sigmoid: elements of f are in (0, 1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣  If f ≈ 1, we simply sum up a function of 
all inputs — gradient doesn’t vanish!



LSTMs

‣ “Cell” c in addition to hidden state h

‣ Vector-valued forget gate f depends on the h hidden state

‣ Basic communication flow: x -> c -> h -> output, each step of this 
process is gated in addition to gates from previous timesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)

‣ Long short-term memory network: hidden state as a “short-term” memory



LSTMs

xj

hjhj-1

cj-1

hj

Hochreiter & Schmidhuber (1997)

cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs

xj

hjhj-1

cj-1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control information flow

hj

Hochreiter & Schmidhuber (1997)

cj

f i o



LSTMs

xj

hjhj-1

cj-1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control information flow

hj

Hochreiter & Schmidhuber (1997)

cj

f i o

‣ g reflects the main computation of the cell



LSTMs
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‣ f, i, o are gates that control information flow

hj

Hochreiter & Schmidhuber (1997)

cj

f i og
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LSTMs

xj

hjhj-1

cj-1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control information flow

hj

Hochreiter & Schmidhuber (1997)

cj

f i og

‣ g reflects the main computation of the cell



LSTMs

xj

hjhj-1

cj-1

hj

cj

f i og

‣ Can we ignore the old value of c for this timestep?

‣ Can we ignore a particular input x?
‣ Can an LSTM sum up its inputs x?



LSTMs

xj

hjhj-1

cj-1

hj

cj

f i og

‣ Ignoring recurrent state entirely:

‣ Lets us discard stopwords

‣ Summing inputs:

‣ Lets us get feedforward layer over token

‣ Ignoring input:

‣ Lets us compute a bag-of-words 
representation



LSTMs

‣ Gradient still diminishes, but in a controlled way and generally by less — 
usually initialize forget gate = 1 to remember everything to start

<- gradientsimilar gradient <-

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
"A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation” Gang Chen (2018)



Gated Recurrent Units (GRUs)

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU: faster, a bit simpler‣ LSTM: more complex and 
slower, may work a bit better

X

hj

sj

σ X

+
1-z z

σ tanh
r

‣ Two gates: z (forget, mixes s and h) 
and r (mixes h and x)

xj

hj



GRUs
‣ Also solves the vanishing gradient problem, simpler than LSTM

‣ z controls mixing of hidden state h with new input x

ht = (1� z)� ht�1 + z� func(xt,hj�1)

z = �(Wxt + Uht�1)

‣ Faster to train and sometimes work better (most times not) than LSTMs

Cho et al. (2014)

z = �(Wxt + Uht�1)

‣ Other variants of LSTMs: 

‣ multiplicative LSTMs, rotational unit of memory (RUM), …



Applications



What can LSTMs model?
‣ Sentence classification (e.g., sentiment)

‣ Translation/Generation

‣ Sequential tagging (e.g., POS/NER), or Language models

‣ Encode one sentence, predict

‣ Move left-to-right, per-token prediction 

‣ Encode sentence + then decode, use token predictions for attention 
weights (later in the course)

‣ Sentence pair classification (e.g., paraphrase identification, NLI)

‣ Encode two sentences, predict



What do RNNs produce?

‣ Encoding of each word — can pass this to another layer to make a 
prediction (can also pool these to get a different sentence encoding)

=

‣ Encoding of the sentence — can pass this a decoder or make a 
classification decision about the sentence

the  movie  was   great

‣ RNN can be viewed as a transformation of a sequence of vectors into a 
sequence of context-dependent vectors



Multilayer Bidirectional RNN

‣ Sentence classification 
based on concatenation 
of both final outputs

‣ Token classification based on 
concatenation of both directions’ 
token representations

the  movie  was   great the  movie  was   great



Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

An older and younger man smiling Two men are smiling and 
laughing at cats playing

A boy plays in the snow A boy is outsideentails

contradicts

neutral

‣ Long history of this task: “Recognizing Textual Entailment” challenge in 
2006 (Dagan, Glickman, Magnini)

‣ Early datasets: small (hundreds of pairs), very ambitious (lots of world 
knowledge, temporal reasoning, etc.)

Premise Hypothesis



SNLI Dataset

Bowman et al. (2015)

‣ Show people captions for (unseen) images and solicit entailed / neural / 
contradictory statements

‣ >500,000 sentence pairs

100D LSTM: 78% accuracy
300D LSTM: 80% accuracy 
                (Bowman et al., 2016)
300D BiLSTM: 83% accuracy

                (Liu et al., 2016)

‣ Encode each sentence and process

‣ Later: better models for this



Sentence Pair Classification

Wuwei Lan, Wei Xu. “Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering” (COLING 2018)  



RNN Language Modeling



Neural Language Models

Bengio (2003), Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

I visited New _____

FFNN
P (wi|wi�n, . . . , wi�1)

‣ Slow to train over lots of data!

‣ Still only look at a fixed window of information…can we use more?



RNN Language Modeling

I       saw    the    dog

hi
P (w|context) = softmax(Whi)

‣ W is a (vocab size) x (hidden size) matrix

word probs

=



Training RNNLMs

<s>       I       saw    the    dog

‣ Input is a sequence of words, output is those words shifted by one,

I       saw    the    dog  running

‣ Allows us to efficiently batch up training across time (one run of the RNN)



Training RNNLMs

I       saw    the    dog

‣ Total loss = sum of negative log likelihoods at each position

‣ Backpropagate through the network to simultaneously learn to 
predict next word given previous words at all positions

P(w|context)

loss = — log P(w*|context)



Batched LM Training
I saw the dog running in the park and it looked very excited to be there

<s>       I       saw    the    dog

I       saw    the    dog  running

<s>      in      the    park   and

in      the    park   and     it
batch dim

‣ Multiple sequences and multiple 
timestamps per sequence

looked very excited to be



Padding
‣ Prepending or appending zeros

‣ To create batches of equal length for faster training time



LM Evaluation
‣ Accuracy doesn’t make sense — predicting the next word is generally 

impossible so accuracy values would be very low

‣ Evaluate LMs on the likelihood of held-out data (averaged to 
normalize for length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity: exp(average negative log likelihood). Lower is better

‣ Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

‣ Avg NLL (base e) = 1.242     Perplexity = 3.464 geometric mean of  
denominators



Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on 

history) over two datasets: War and Peace and Linux kernel source code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on 

history) over two datasets: War and Peace and Linux kernel source code

‣ Counter: know when to generate \n
‣ Visualize activations of specific cells (components of c) to understand them

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Binary switch: tells us if we’re in a quote or not
‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Stack: activation based on indentation
‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Uninterpretable: probably doing double-duty, or only makes sense in the 
context of another activation

‣ Visualize activations of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Applications of Language Modeling

‣ All generation tasks: translation, dialogue, text simplification, 
paraphrasing, etc.

‣ Grammatical error correction

‣ Predictive text

‣ Pretraining!    (more later in the course)

‣ Language modeling involves predicting words given context. 

‣ Learning a neural network to do this induces useful representations 

for other tasks, similar to word2vec/GloVe.

‣ ELMo, BERT, RoBERTa, GPT-2, GPT-3, BART, T5 …



Takeaways
‣ RNNs can transduce inputs (produce one output for each input) or 

compress the whole input into a vector

‣ Useful for a range of tasks with sequential input: sentiment analysis, 
language modeling, natural language inference, machine translation

‣ Next time: CNNs and neural CRFs


