Recurrent Neural Networks

Wel Xu

(many slides from Greg Durrett)

This Lecture

» Recurrent neural networks

» Vanishing gradient problem
» LSTMs / GRUs

~ Applications / visualizations

Readings

» Reading: RNNs
» Eisenstein 7.6
» Jurafsky and Martin, Chapter 9
» Goldberg 10, 11

A Primer on Neural Network Models
for Natural Language Processing

Yoav Goldberg
Draft as of October 5, 2015.

The most up-to-date version of this manuscript is available at http://www.cs.biu.
ac.il/~yogo/nnlp.pdf. Major updates will be published on arxiv periodically.

I welcome any comments you may have regarding the content and presentation. If you
spot a missing reference or have relevant work you’d like to see mentioned, do let me know.
first.last@gmail

Abstract

Over the past few years, neural networks have re-emerged as powerful machine-learning
models, yielding state-of-the-art results in fields such as image recognition and speech
processing. More recently, neural network models started to be applied also to textual
natural language signals, again with very promising results. This tutorial surveys neural
network models from the perspective of natural language processing research, in an attempt
to bring natural-language researchers up to speed with the neural techniques. The tutorial
covers input encoding for natural language tasks, feed-forward networks, convolutional
networks, recurrent networks and recursive networks, as well as the computation graph
abstraction for automatic gradient computation.

RNN Basics

RNN Motivation

» Feedforward NNs isn’t the best to handle sentences with variable length,
words with multiple senses, or same words appear at different positions

m— e

the movie was great that was great !

» These don’t look related (great is in two different orthogonal subspaces)

» Instead, we need to:

1) Process each word in a uniform way

2) ...while still exploiting the context that that token occurs in

RNN Abstraction

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)

outputy
previous h next h
(previous c) (next c)

Input X

Elman Networks

output y; h; = tanh(Wx; + Vh;_1 + by)
Prev - Updates hidden state based on input
hidden and current hidden state
state hy.y — h:

Yi — tanh(Uht + by)

» Computes output from hidden state

Input Xi

» Long history! (invented in the late 1980s)
Elman (1990)

RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

» Encoder: encode a sequence into a fixed-sized vector and use that for

some purpose
predict sentiment (matmul + softmax)

;I_.QM< translate
paraphrase/compress

the movie was great

RNN Intuition

;I_»;IA’;I_’;I_’ predict sentiment

the movie was great

> RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

v

“Correct” parameter update is to do a better job of remembering the
sentiment of favorite

Training RNNSs

the movie was great

» Example: sentiment analysis

- Loss = negative log likelihood of probability of gold label (softmax or
use SVM or other loss)

» “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

Training RNNSs

the movie was great

- Example: POS tagging, language modeling (predict next word given context)

> Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

Vanishing Gradient
@ (h)
‘1r -

smaller gradient <- gradient L

<- tiny gradient

A

tanh

) ()

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs/GRUs

A Bit of History

» Long Short-term Memory (Hochreiter & Schmidhuber, 1997)

netc st=st+ gyinj

& Ti0L

ci y'“j

y
w, /] /I\r\netinj W, /1 /?,\netoutj

Figure 1: Architecture of memory cell c; (the box) and its gate units in;,out;. The self-recurrent
connection (with weight 1.0) indicates feedback with a delay of 1 time step. It builds the basis of

the “constant error carrousel” CEC. The gate units open and close access to CEC. See text and
appendixz A.1 for details.

y outj

y*
/
>
T

wic :
outj)

A\

Gated Connections

» Designed to fix “vanishing gradient” problem using gates

ht — ht—l ® f -+ fUIlC(Xt) ht — tanh(WXt

gated |] EIman

Vh;_ 1

1

» Vector-valued “forget gate” f computed
based on input and previous hidden state

l + e ¥

f =oc(W*x, + W' h,_1)
- Sigmoid: elements of f are in (O, 1)

- Iff=1, we simply sum up a function of
all inputs — gradient doesn’t vanish!

LSTMSs

Long short-term memory network: hidden state as a “short-term” memory

“Cell” ¢ in addition to hidden state h
Ct = C¢_1 © f -+ fU.IlC(Xt, ht—l)

Vector-valued forget gate f depends on the h hidden state

f =oc(W*x, + W' h,_;)

Basic communication flow: x -> ¢ -> h -> output, each step of this
process is gated in addition to gates from previous timesteps

LSTMSs

Hochreiter & Schmidhuber (1997)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMSs

f =0 (x;W*' + h;_; W)

1 :U(XjWXi -1 hj_lwhi)

O Z(T(XjWXO + hj_IWh°)

- f,1, 0 are gates that control information flow

Hochreiter & Schmidhuber (1997)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

v
&

O tanh

v
-

LSTMSs

f ZU(XjWXf + hj_Ith)
g = tanh(ijXg + hj_IWhg)

1 =0'(ijVxl -+ hj_IW"‘)

O ZU(XjWXO + hj_1Wh°)

- f,1, 0 are gates that control information flow

- g reflects the main computation of the cell

Hochreiter & Schmidhuber (1997)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs
hi | ci =cC;j_1 Of +

f ZU(XjWXf + hj_Ith)

SN RN x
® ‘ g = tanh(x; W*€ + h;_; W"8)

(X)
(tanh>
@'Ea X 1 =0(x;W™ + hj_IW“‘)
' 0) an O hj
2 O ZU(XjWXO + hj_1Wh°)
X}

- f,1, 0 are gates that control information flow

- g reflects the main computation of the cell

Hochreiter & Schmidhuber (1997)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs
hi | ci =cC;j_1 Of +

f ZU(XjWXf + hj_Ith)

SN RN x
® ‘ g = tanh(x; W*€ + h;_; W"8)

(X
Gtanh>
@'Ea X 1 :(J'(ijVxl -+ hj_IW“‘)
N h; hj = ta,nh(cj) ® o0
2 O ZU(XjWXO + hj_1Wh°)
X;]

- f,1, 0 are gates that control information flow

- g reflects the main computation of the cell

Hochreiter & Schmidhuber (1997)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMSs

hj) C; =Cj—1 O +g 01
L f =0 (x; WX + hy_y WhY)
Ci h
0 €: T : g =tanh(x;W*® + h;_;W"8)
QE & 1 :(T(XjVVXl . hj_lwm)

N h; hj = tanh(cj) ® o0
1 O ZU(XjWXO -I- hj_1Wh°)
X;]

» Can we ignhore the old value of ¢ for this timestep?

> Can an LSTM sum up its inputs x?
» Can we ignore a particular input x?

LSTMSs

> lgnoring recurrent state entirely:

> Lets us get feedforward layer over token

|+ Ignoring input:

> Lets us discard stopwords

i| > Summing inputs:

> Lets us compute a bag-of-words
representation

SRR

similar gradient <- »

—
| L

) &)

» Gradient still dlmlnlshes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

"A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation” Gang Chen (2018)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

< gradient

A

Gated Recurrent Units (GRUSs)

oy
Q P ()
Q p—

' X
i

X}

» LSTM: more complex and
slower, may work a bit better

» GRU: faster, a bit simpler

- Two gates: z (forget, mixes s and h)
and r (mixes h and x)

GRUs

> Also solves the vanishing gradient problem, simpler than LSTM

h; = (1-2z)®h;_; + 206 func(xs, hy_;)
z =0(Wx; +Uh;_q)

» Z controls mixing of hidden state h with new input x

» Faster to train and sometimes work better (most times not) than LSTMs

» Other variants of LSTMSs:
» multiplicative LSTMs, rotational unit of memory (RUM), ...

Cho et al. (2014)

Applications

What can LSTMs model?

~ Sentence classification (e.g., sentiment)
» Encode one sentence, predict
» Sentence pair classification (e.g., paraphrase identification, NLI)
» Encode two sentences, predict
- Sequential tagging (e.g., POS/NER), or Language models
» Move left-to-right, per-token prediction
- Translation/Generation

» Encode sentence + then decode, use token predictions for attention
weights (later in the course)

What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

> RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors

Multilayer Bidirectional RNN

» Token classification based on
I:I concatenation of both directions’
I:I token representations

I —

» Sentence classification
based on concatenation
of both final outputs

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping
An older and younger man smiling neutral Two men are smiling and

laughing at cats playing

» Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

» Early datasets: small (hundreds of pairs), very ambitious (lots of world
knowledge, temporal reasoning, etc.)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs 3-way softmax classifier

A
200d tanh layer

» Encode each sentence and process :

100D LSTM: 78% accuracy 2004 ta‘fh ayet

300D LSTM: 80% accuracy ﬁ",‘“‘mh l,y\
(Bmean et al-, 2016) 100d premise 100d hypothesis

300D BILSTM 83% daCcurd Cy sentencI: model sentencI: model
(LlU et al., 2 016) with premise input with hypothesis input

> Later: better models for this Bowman et al. (2015)

Sentence Pair Classification

Type |: Sentence Encoding-based Models ~ Type ll: Word Interaction-based Models

Output Classification

Output Classification @'Way (PI, QAD C 3-Way (NLI)) (6-Way (STS))
(2-way (PI, @A) (3-Way (NLI)) ((6-Way (STS)) \I/'
u v % e €

< e Pairwise Word Interaction

AN S
/ \ 7 " N
u Sentence Embedding v /‘ P S \
I | | |

6‘0@
X

T T CContext Encoding) CContext Encoding)
CContext Encoding) (Context Encoding) T T
T T C Input Embedding) C Input Embedding)
Clnput Embedding) Clnput Embedding)
! ! Sentence 1 Sentence 2
Sentence 1 Sentence 2

e semantic relation between two sentences depends largely on aligned words/phrases

Wuwei Lan, Wei Xu. “Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering” (COLING 2018)

RNN Language Modeling

Neural Language Models

~ Early work: feedforward neural networks looking at context

] P(wilwimn,. -, wisn)

IFFNN

=

| visited New

» Slow to train over lots of data!

~ Still only look at a fixed window of information...can we use more?

Bengio (2003), Mnih and Hinton (2003)

RNN Language Modeling

word probs
P(w|context) = softmax (W h;)
h; .
\|:| » W is a (vocab size) x (hidden size) matrix

| saw the dog

Training RNNLMs

| saw the dog running

I |
<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one,

 Allows us to efficiently batch up training across time (one run of the RNN)

Training RNNLMs

1 P(w/]context)

) 3
——— N
) 3
5

—— ~
— “loss

I s B o
I | | |
| saw the dog

= — log P(w™ | context)

 Total loss = sum of negative log likelihoods at each position

» Backpropagate through the network to simultaneously learn to
predict next word given previous words at all positions

Batched LM Training

batch dim / (looked very excited to be)

| saw the dog running\
I
I | |
k<s> | saw the dog

J

~ in the park and it N
I | |
I | |
\<S> in the park and JJ

» Multiple sequences and multiple
timestamps per sequence

Padding

» Prepending or appending zeros

» To create batches of equal length for faster training time

» Padding for character-level LSTM

Adylov[2 7 13 8 10 12] Adylov[2 7 13 8 10 12]
Sloan [4 8 10 5 9] . Sloan [0 4 810 5 9]
Harb [3 5 11 6] Harb [0 O 3 5 11 6]

San [4 5 9] San 0 0O 0 4 5 9]

LM Evaluation

» Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

- Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)

1 (4’
- Zlog P(w;|wy, ..., w;_1)
1—=1
- Perplexity: exp(average negative log likelihood). Lower is better

» Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

- Avg NLL (base e) = 1.242 Perplexity = 3.464 < 8eometric mean of
denominators

Visualizing LSTMs

~ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

target chars: “e” “I” F o ¥
1.0 0.5 0.1 0.2
2.2 0.3 0.5 =15
tput |
OTPILIAYET . 1.0 1.9 0.1
4.1 12 -1.1 22
I T
0.3 1.0 0.1 |w hnhl -0.3
hidden layer | .01 — 0.3 —| -05 ——| 0.9
0.9 0.1 -0.3 -7
| T | [
1 0 0 0
: 0 1 0 0
tl
input layer 0 0 1 1
0 0 0 0
input chars: “h” “@” I I

An example BRNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the
RNN assigns for the next character (vocabulary is "h,e,l,0"); We want the green numbers to be high and red numbers to be low.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Visualizing LSTMs

~ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

> Visualize activations of specific cells (components of ¢) to understand them

>~ Counter: know when to generate \n

The Sole importance of the crossing of the Berezina lies 1n the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled

at a continually i1ncreasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block 1ts path. This was shown not so much by the arrangements 1it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
Who were with the French transport, all--carried on by wvis 1inertiae- -
pressed forward into boats and into the i1ice-covered water and did not,
surrender.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Visualizing LSTMs

~ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

> Visualize activations of specific cells to see what they track

» Binary switch: tells us if we’re in a quote or not

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Visualizing LSTMs

~ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

> Visualize activations of specific cells to see what they track

» Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 "mask)
{
o I T - (-
i Elasseslclassl) #

fior (2 = @2 1 < AUDET _BITHNASKEESIEEDHET)

iT (maskiil] & slassesiclass]ixn)

"eturn 6

return 1;

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Visualizing LSTMs

~ Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

> Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

3 ko lter fileld'sistring repres@ntacion from Wser:-space
u en
{.har a1t pack_string(velid **bufp, size_t Xremain, size_t 1len)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Applications of Language Modeling

~ All generation tasks: translation, dialogue, text simplification,
paraphrasing, etc.

» Grammatical error correction

» Predictive text

 Pretraining! (more later in the course)
» Language modeling involves predicting words given context.

» Learning a neural network to do this induces useful representations
for other tasks, similar to word2vec/GloVe.

- ELMo, BERT, RoBERTa, GPT-2, GPT-3, BART, T5 ...

Takeaways

» RNNs can transduce inputs (produce one output for each input) or
compress the whole input into a vector

» Useful for a range of tasks with sequential input: sentiment analysis,
language modeling, natural language inference, machine translation

» Next time: CNNs and neural CRFs

