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Summary: HMMs (Recap)
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> Training: maximum likelihood estimation (with smoothing)
P(y,x)
Y Bloer

- Viterbi: score; (s) = max P(s|y;—1)P(x;|s)score; 1 (y;—1)

. Andrew Viterbi, 1967
Yi—1

- Inference problem: argmax, P(y|x) = argmax




Viterbi Algorithm (Recap)
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slide credit? Vivek Srikumar



Viterbi Algorithm (Recap)

» “Think about™ all possible immediate
prior state values. Everything before
that has already been accounted for by
earlier stages.

» Compute scores for next step
(score of optimal tag sequence ending
with tag i at the t-th step/word).

I =1 I = 2 I = 3 I =4 =5
Fed raises interest rates 0.5 ... lide credit: Dan Kleir



Forward-Backward Algorithm (Recap)

- What did Viterbi compute? P(y, .. .Ix) = max P(y|x)
Y1, Yn

> In addition to finding the best path, we may want to compute
marginal probabilities of paths P(y; = s|x)

P(y; = s|x) = > P(y|x)

Yl1y-- o Yi—1Yi4 19+ Yn

» Can compute marginals with dynamic programming as well using an
algorithm called forward-backward



This Lecture

» Named entity recognition (NER)

» CRFs: model (+features for NER), inference, learning

» Reading: Eisenstein Chapter 7 & 8.3



Named Entity Recognition

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON ORG

» BIO tagset: begin, inside, outside
» Sequence of tags — should we use an HMM?
» Why might an HMM not do so well here?

» Lots of O’s, so tags aren’t as informative about context

> Insufficient features/capacity with multinomials (especially for unks)



CRFs



Where we're going

» Flexible discriminative model for tagging tasks that can use arbitrary
features of the input. Similar to logistic regression, but structured

B-PER |-PER

Barack Obama will travel to Hangzhou today for the G20 meeting .

Curr word=Barack & Label=B-PER

Next word=Obama & Label=B-PER

Curr word starts with capital=True & Label=B-PER
Posn in sentence=1st & Label=B-PER

Label=B-PER & Next-Label = I-PER
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Abstract

We present conditional random fields, a frame-
work for building probabilistic models to seg-
ment and label sequence data. Conditional ran-
dom fields offer several advantages over hid-
den Markov models and stochastic grammars
for such tasks, including the ability to relax
strong independence assumptions made in those
models. Conditional random fields also avoid
a fundamental limitation of maximum entropy
Markov models (MEMMs) and other discrimi-
native Markov models based on directed graph-

1iral mndele which can he hiaced tnwrarde ctatec

mize the joint likelihood of training examples. To define
a joint probability over observation and label sequences,
a generative model needs to enumerate all possible ob-
servation sequences, typically requiring a representation
in which observations are task-appropriate atomic entities,
such as words or nucleotides. In particular, it 1s not practi-
cal to represent multiple interacting features or long-range
dependencies of the observations, since the inference prob-
lem for such models is intractable.

This difficulty 1s one of the main motivations for looking at
conditional models as an alternative. A conditional model
specifies the probabilities of possible label sequences given

an nhcocarvatinn cennianca Therafare 1t dnec nnt avnend

(ICML 2001)



HMMs, Formally

- HMMs are expressible as Bayes nets (factor graphs)

OO @

» This reflects the following decomposition:

P(y,x) = P(y1)P(x1|y1)P(y2|y1) P(x2|y2) - ..

> Locally normalized model: each factor is a probability distribution that
normalizes



Conditional Random Fields

» HMMs: P(y,x) = P(y1)P(z1|y1) P (y2|y1) P(z2|y2) - - -

» CRFs: discriminative models with the following globally-normalized form:

1
P(ylx) = — [] exp(@u(x.¥)
normali;er . any real-valued scoring function of its arguments

» Special case: linear feature-based potentials ¢ (x,y) = wak (X,y)

1 - - » Looks like our single
P(ylx) = 7 P (Z w fr(X, Y)) weight vector multiclass

k=1 logistic regression model



HMMs vs. CRFs

n

P(y|x) = %exp > w' fr(xy)
k

=1

» Conditional model: x’s are observed

» Naive Bayes : logistic regression :: HMMs : CRFs
local vs. global normalization <-> generative vs. discriminative

(locally normalized discriminative models do exist (MEMMs))
N S

SEQUENCE

Naive Bayes HMMs

co@m co@m
do TR 4&4

L naistic fnession L inear-chain CRFs Sutton&McCallum: https://homepages.inf.ed.ac.ulk/csutton/publications/crftut-fnt.pdf




HMMs vs. CRFs

n

P(y|x) = %exp > w' fr(xy)
k=1

» Conditional model: x’s are observed

» Naive Bayes : logistic regression :: HMMs : CRFs

local vs. global normalization <-> generative vs. discriminative
(locally normalized discriminative models do exist (MEMMs))

» HMMs: in the standard setup, emissions consider one word at a time

» CRFs: features over many words simultaneously, non-independent features
(e.g., suffixes and prefixes), doesn’t have to be a generative model



Problem with CRFs

P(y|x) = %exp (Z wak(X,y))

k—

» Normalizing constant

7 = Zexp (Z wak(X,y'))

» Inference: Ypest = argmax,,, exp (Z wak(nyl))
k=1

» If y consists of 5 variables with 30 values each, how expensive are these?

» Need to constrain the form of our CRFs to make it tractable



SequenﬁaICRFs

- HMMs: P(x1|y1)P(y2|y1)P(z2]y2) - . .

: o

: : qboD_...
- CRFs: de [ B a
P(y|x) o< | | exp(ér(x,y)) @ @ @

T

P(ylx) o< exp(¢o(y1)) | | exp(@e(yi-1,9:)) | | exp(@e(zi, i)



Sequential CRFs

n

P(ylx) o< exp(¢o(y1)) | | exp(¢e(yi-1, i) W
1=2 -

- We condition on X, so every factor can eXp (de(vi,i,%))
depend on all of x (including transitions, i1 Va
but we won’t do this) token index — lets us

. y can’t depend arbitrarily on x in a generative model |00k at current wora



Sequential CRFs

Pe | B

» Notation: omit x from the factor graph entirely (implicit)

» Don’t include initial distribution, can bake into other factors



Features for NER



Feature Functions

n n ¢t
P(ylx) = 5 [T exp(@i(i 1, 5) ] exp(6e i, %) (s HH( 92 EI-@
1=2 1—=1 ¢€ . .

» Phis can be almost anything! Here we use linear functions of sparse features

%(ymi,X) — wae(yq;,i,X) th(yq:—layz‘) — w—rft(yi—layi)

(Y|X ocexpw th Yi—1,Yi _|_Zfe y@,Z,X

> Looks like our single weight vector multiclass logistic regression model



Basic Features for NER

(Y|X O(GXP?U th Yi—1,Yi _|_Zfe y@,Z,X

O: B-LOC
Transitions: f, (y; _1,y;) = Ind[yz 1 & ;| = 1[0 — B-LOC]

Emissions:  f_(yg,6,x) = I[B-LOC & Current word = Hangzhou]
|[B-LOC & Prev word = to]



Emission Features for NER

10C e (Yiy1,X)

Leicestershire is a nice place to visit... PER

Leonardo DiCaprio won an award...
LOC

| took a vacation to Boston

ORG

Apple released a new version...

LOC PER
lexas governor Greg Abbott said

ORG

According to the/New York Times...



Features for NER

» Word features (can use in HMM) Leicestershire
» Capitalization
P Boston
» Word shape
» Prefixes/suffixes

. Lexical indicators Apple released a new version...

. Context features (can’t use in HMM!)  According to the New York Times...
~ Words before/after
- POS Tags before/after (if we run a POS tagger first)

~ Word clusters

» Gazetteers



Inference and Learning in CRFs



Linear-chain CRFs Outline

T T

» Model: P(y‘X) — %Hexp(¢t(yi_1,yi)) HeXp(¢e(yz’,i,X))

1=2 1—=1

(Y|X O(GXp”LU th Yi—1,Yi _|_Zfe y@,Z,X

» Inference

> Learning



Computing (arg)maxes

n n ¢t
P(ylx) = 5 [T exp(@i(i 1, 5) ] exp(6e i, %) (s HH( 92 EI-@
1=2 1—=1 ¢€ . .

- argmax, P(y|x): can use Viterbi exactly as in HMM case

max eqbt (yn—layn)€¢e(ynan;)€) o eqbe(yQ,Z,x) €¢t (y1,y2)€¢e(y1,1,x)

Yi,---HYn
11X €¢t (yn—17yn)€¢€ (y’nvnax) ¢ o o 6¢6 (y2727x) max €¢t (ylay2)€¢e (yl,].,X)

yz ,...,yn y]_ ) 4
Y3geeey Yn (9 Y1
*

- exp(de(yi—1,v;))and exp(¢.(v;, i, x)) Play the role of the Ps now,
same dynamic program



Inference in General CRFs

o
- Can do inference in any tree-structured CRF @ B @ B ﬂ-@
Pe | B

» Max-product algorithm: generalization of Viterbi to arbitrary tree-
structured graphs (sum-product is generalization of forward-backward)

Linear-chain CRFs GRAPHS General CRFs



CRFs Outline

T T

» Model: P(Y‘X) — %HGXP(@(%—LM)) Hexp(Qbe(yi,i,X))
i—9 1=1

(Y|X O(GXp”LU th Yi—1,Yi _|_Zfe y@,Z,X

» Inference: argmax P(y|x) from Viterbi

> Learning



P(y|x) < expw '

Training CRFs

th Yi—1, Y _|_Zfe ?/zﬂuX

- Logistic regression: P(y|x) oc exp wa(CL‘, Y)

» Maximize £(y*’x)

= log P(y™|x)

» Gradient is completely analogous to logistic regression:

0

ﬁwﬁ

= filyi,ur) + ) felyr i, x)
1 =2 i=1

intractable! =~

> fiyic,y) + > fe(yirix)
=2 i=1 _
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Training CRFs

__ K

Yy

C Ly %) = 3 f +Zfe (4711, %)

th Vi1, Vi +Zfe i, i, X)

> Let’s focus on emission feature expectation

Ty Zfewi,z',x)
=1

yeY

= 2 PP (D Feloi )| = D D Py felyin i)

=1 ye)y

—ZZP i = s|x) fe(s,,x)

1—=1 s



Forward-Backward Algorithm

- How do we compute these marginals P(y, = s|x)?

P(y; = s|x) = > P(y|x)

Yi1y,---yYi—1Yi+1,4---, Un

- What did Viterbi compute? P(y, .. Ix) = max P(y|x)
Yi,--->Yn

» Can compute marginals with dynamic programming as well using the
forward-backward algorithm



Forward-Backward Algorithm

Lo

P(ys = 2|x) =

sum of all paths through state 2 at time 3

sum of all paths

slide credit: Dan Klein



Forward-Backward Algorithm

P(ys = 2|x) =

sum of all paths through state 2 at time 3

sum of all paths

> Easiest and most flexible to do one
pass to compute and one to

f =3 t=4  t=5 compute

slide credit: Dan Klein



Forward-Backward Algorithm

» Initial:

a1(s) = exp(de(s,1,x))
» Recurrence:
a(se) = Z ar—1(5t—1) exp(Pe(st, T, X))
S exp(p¢(St—1,S¢t))

» Same as Viterbi but summing
instead of maxing!

» These quantities get very small!

P=d i=d =S Store everything as log probabilities



Forward-Backward Algorithm

Lo

» Initial:
Bn(s) =1
» Recurrence:

Be(s¢) = Z Bt+1(St+1) €xp(Pe(st+1,t + 1,%))

S exp(¢t(st, 3t+1))

~ Big differences: count emission for
the next timestep (not current one)

@ v v v 9




Forward-Backward Algorithm

o1 (s) = exp(@e(s, 1,x))
— Z Ozt_1(3t—1) exp(¢e(5tv L, X))
St—1 exp( @+ (St—1,St))
Bn(s) =
B (5¢) Z Bit1(st41) exp(@e(se41,t + 1,x))
St+1 eXp(¢t(St 5t+1))

P(Sg __ 2|X) _ ()43(2)53(2) _ F Y

Zi 3 (Z)ﬁl’» (Z)

- What is the denominator here?



Computing Marginals

n n ¢t
P(ylx) = 5 [T exp(@i(i 1, 5) ] exp(6e i, %) (s HH( 92 EI-@
1=2 1—=1 ¢€ . .

n

- Normalizing constant 7 — Z H exp (¢ (Vi—1,v;)) H exp(@e(Yi, 1, X))

y 1=2 1=1

- Analogous to P(x) for HMMs

- For both HMMs and CRFs: Z for CRFs,
forward; (s)backward;(s) P(x) for HMMs
P(y: = slx) = | ,
> . forward,;(s")backward;(s’)



Training CRFs

» For emission features:

8 T
S Ly x) =) fe(yi i, ZZP = s[x) fe(s,1.%)
1=1

gold features — expected features under model

- Transition features: need to compute P(y; = 51,Yit1 = 52|%)
using forward-backward as well

> ... but, you can build a pretty good system without learned transition
features (e.g., use heuristic weights, or just enforce constraints like
B-PER -> I-ORG is illegal)



CRFs Outline

T T

» Model: P(Y‘X) — %HGXP(@(%—LM)) Hexp(Qbe(yi,i,X))
=2 1=1

(Y|X O(GXp”LU th Yi—1,Yi _|_Zfe y@,Z,X

» Inference: argmax P(y|x) from Viterbi

» Learning: run forward-backward to compute posterior probabilities; then

8 mn
S oLy x) =) felyiix ZZP = 5[x) fe(s,4, %)
1=1




Pseudocode

for each epoch
for each example
- extract features on each emission and transition (look up in cache)

- compute potentials phi based on features + weights
- compute marginal probabilities with forward-backward
- accumulate gradient over all emissions and transitions

- apply the gradient update



Implementation Tips for CRFs

» Caching is your friend! Cache feature vectors especially, and reduce
redundant computation

» Exploit sparsity in feature vectors where possible, especially in feature
vectors and gradients

» Do all dynamic program computation in log space to avoid underflow

- If things are too slow, run a profiler and see where time is being spent.
Forward-backward should take most of the time



Debugging Tips for CRFs

» Hard to know whether inference, learning, or the model is broken!

» Compute the objective — is optimization working?
- Inference: check gradient computation (most likely place for bugs)

> Is ) forward, (s)backward;(s) the same for all j?

- Do probabilities normalize correctly + look “reasonable”? (Nearly
uniform when untrained, then slowly converging to the right thing)

» Learning: is the objective going down? Can you fit a small training set
(of 1 or 10 examples)? Are you applying the gradient correctly?

> If objective is going down but model performance is bad:

> Inference: check performance if you decode the training set



Application in NER



Harmonic Mean (Math Review)

> Arithmetic Mean=(P+F) /2

The level curve with score .5 for each function
\

w— Minimum

- Geometric Mean = 4/P x F — Geometric ean

- Arithmetic Mean

- Harmonic Mean=2xP xF/ (P + F)

Prec
N

Image credit: Greg Gandenberger



Evaluating NER

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON ORG

> Prediction of all Os still gets 66% accuracy on this example!

~ What we really want to know: how many named entity chunk
predictions did we get right?

> Precision: of the ones we predicted, how many are right?

» Recall: of the gold named entities, how many did we find?

» F-measure: harmonic mean of these two



NER Results

» CRF with lexical features can get around 85 F1 on CoNLL 2003:
4 classes (PER, ORG, LOC, MISC) on newswire data

» What else do we need to capture?

» World knowledge:

The delegation met the president at the airport,/Tanjug said.

/

Tanjug (/tanjog/) (Serbian Cyrillic: TaHjyr) is a Serbian state news agency based in Belgrade.!?!

Tanjug

From Wikipedia, the free encyclopedia



Nonlocal Features

The news agencyTanjug reported on the outcome of the meeting.

ORG?
PER?

The delegation met the president at the airport, Tanjug said.
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» More complex factor graph structures can let you capture this, or just
decode sentences in order and use features on previous sentences

Finkel and Manning (2008), Ratinov and Roth (2009)



Semi-Markov CRF Models

Barack Obama will travel to Hangzhou today for the G20 meeting .

-—_— T —— — ) —— —
PER O LOC O ORG O

>~ Chunk-level (n-gram) prediction rather than token-level BIO

>y is a set of touching spans of the sentence

> Pros: features can look at whole span at once

» Cons: there’s an extra factor of n in the dynamic programs

Sarawagi and Cohen (2004)



How well do NER systems do?

Lample et al. (2016)

System Resources Used F

LBJ-NER Wikipedia, Nonlocal Fea- | 90.80
tures, Word-class Model

(Suzuki and | Semi-supervised on 1G- | 89.92

Isozaki, 2008) word unlabeled data

(Ando and | Semi-supervised on 27M- | 89.31

Zhang, 2005) word unlabeled data

(Kazama and | Wikipedia 38.02

Torisawa, 2007a)

(Krishnan and | Non-local Features 87.24

Manning, 2006)

(Kazama and | Non-local Features 87.17

Torisawa, 2007b)

(Finkel et al., | Non-local Features 86.86

2005)

Ratinov and Roth (2009)

LSTM-CRF (no char)
LSTM-CRF

S-LSTM (no char)
S-LSTM

BILSTM-CRF + ELMo
Peters et al. (2018)

Fine-tuning approach
BERT ARGE
BERTgASE

Devlin et al. (2019)

96.6
96.4

790.20

90.94
87.96
90.33

92.2

Dev F1 Test F1

92.8
92.4



Ultra-fine Entity Typing
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Next Up

» More sequential models

» Recurrent Neural Network

> Neural CRF model



