Word Embeddings

Wel Xu

(many slides from Greg Durrett)



This Lecture

» Word representations

- word2vec/GloVe

» Reading: Eisenstein 3.3.4, 14.5, 14.6, J+M 6, Goldberg 5



https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
http://u.cs.biu.ac.il/~yogo/nnlp.pdf

Recap: Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

num classes
d hidden units probs

H
9

d X n matrix nonlinearity = num classes x d
n features (tanh, relu, ...) matrix

We can think of a neural network classifier with one hidden layer as building a vector z which is a hidden layer representation
(i.e. latent features) of the input, and then running standard logistic regression on the features that the network develops in z.



Word Representations



Sentiment Analysis

- Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

[ [ ] //I\ -

Predator 1S a masterpiece

C1 C2 C3 C4 lyyer et al. (2015)



Word Embeddings

» Want a vector space where similar words have similar embeddings

the movie was great
great

good

the movie was good enjoyable

- Goal: come up with a way to dog
produce these embeddings

» For each word, want
“medium” dimensional vector  pgd
(50-300 dims) representing it. i



Word Representations

» Neural networks work very well at continuous data, but words are discrete

» Continuous model <-> expects continuous semantics from input

> “You shall know a word by the company it keeps” Firth (1957)

A bottle of tesguino is on the table
Everybody likes tesguino
Tesguino makes you drunk

We make tesguino out of corn.

John R. Firth o

slide credit: Dan Klein, Dan Jurafsky



Discrete Word Representations

» Brown clusters: hierarchical agglomerative hard clustering (each word has
one cluster, not some posterior distribution like in mixture models)

~ Input: a (large) text corpus

0 1
0 1 0 1
0 /\1 1 IS 0/\1
. go ovabl
cat fish great €Njoyanle
dog good

» Maximize P(wi‘wz’—l) — P(Ci‘C@'_l)P(wi‘Ci)

» Useful features for tasks like NER, not suitable for Neural Networks
Brown et al. (1992)



Discrete Word Representations

» Brown clusters: hierarchical agglomerative hard clustering
» Example clusters from Miller et al. 2004

mailman 1000001101P0111

salesman 1000001101/10000
bookkeeper 1000001101]100010
troubleshooter 1000001101/1000110
bouncer 1000001101/1000111
technician 1000001101/100100

janitor 1000001101100101
saleswoman 1000001101/100110

Nike 1011011100100101011100
Maytag 10110111001001010111010
Generali 1011011100100101p111011
Gap 1011011100100101p11110
Harley-Davidson |10110111001001010111110
Enfield 101101110010010101111110
genus 1011011100100101p1111111
Microsoft 1011011100100101{1000
Ventritex 101101110010010110010
Tractebel 1011011100100101100110
Synopsys 1011011100100101100111
WordPerfect 1011011100100101(101000
John 101110010000000000 , , ,
Consuelo 1011100100000000D1 word cluster features (bit string prefix)
Jeffrey 1011100100000000(10
Kenneth 10111001000000001100
Phillip 101110010000000011010
WILLIAM 101110010000000011011
Timothy 10111001000000001110




Discrete Word Representations

» Brown clusters: hierarchical agglomerative hard clustering
» We give a very brief sketch of the algorithm here:

k: a hyper-parameter, sort words by frequency
Take the top k most frequent words, put each of them in its own cluster ¢, ¢,, ¢3, ...C;,

Fori = (k+1)...|V]
Create a new cluster ¢, ; (we have k + 1 clusters)

Choose two clusters from k + 1 clusters based on quality(C) and merge (back to k clusters)

n k k v
Quality(C) = Zlog e(w, | Cw )g(Cw) I C(w,,)) = Z Z p(c,c)log pfc(;;i 3 3

. . mutual information entropy of
Carry out k — 1 f'lnal mel"ges (fuu h]eral"Chy) between adjacent clusters the word distribution

Running time O< ‘ V‘ k% + n) , n=#words in corpus

Learn more: Percy Liang’s phd thesis - Semi-Supervised Learning for Natural Language



Word Representations

» Count-based: tf*idf, PPMI, ...

» Class-based: Brown Clusters, ...

» Distributed prediction-based embeddings: Word2vec (2013), GloVe (2014),
FastText, ...

» Distributed contextual embeddings: ELMo (2018), BERT (2019), GPT, ...

> + many more variants: multi-sense embeddings, syntactic embeddings, ...



Neural Probabilistic Language Model

i-th output = P(w;, = i| context)

sofimax
’ / . \
/ / most | computation here \
/ / \
/ / \
/ I \

' ' b+ Wx+ Utanh(d + Hx)

/ !
tanh .

Table
look—up
in C

shared parameters
across words

index for wy_,.1 index for w;_» index for w,_,;

Figure 1: Neural architecture: f(i,w;_1, - ,Wi_p+1) = 2(i,C(w;_1), -+ ,C(W;_n+1)) Where g is the
neural network and C(i) is the i-th word feature vector. Be ng| o et al. (2003)



word2vec/GloVe



word2vec: Continuous Bag-of-Words

» Predict word from context

d-dimensional

dog I word embeddings
gold label = bit,

no manual labeling
D
I sized size |V| xd
the
P(wlw_1,ws1) = softmax (W (c(w_1) + c(wy1)))

» Parameters: d x |V| (one d-length context vector per voc word),
V| x d output parameters (W) Mikolov et al. (2013)



word2vec: Skip-Gram

» Predict one word of context from word : L
the:dog:bit the man

d-dimensional
word embeddings

| gold label = dog
I . P(w'|w) = softmax(We(w))

size |[V| xd

~ Another training example: bit -> the

» Parameters: d x |V| vectors, |V]| x d output parameters (W) (also

usable as vectors!) Mikolov et al. (2013)



Hierarchical Softmax

P(w|w_1,w41) = softmax (W (c(w_1) + c(wy1))) P(w'|w) = softmax(We(w))

> Matmul + softmax over |V] is very slow to compute for CBOW and SG

] E| - Huffman encode
vocabulary, use binary
—] - classifiers to decide
which branch to take
’;he > log(|V|) binary decisions
» Standard softmax: » Hierarchical softmax:

O(|V]) dot products of sized  O(log(|V])) dot products of size d,
- per tralning instance per

context word Mikolov et al. (2013)


http://building-babylon.net/2017/08/01/hierarchical-softmax/

Skip-Gram with Negative Sampling

III

- Take (word, context) pairs and classify them as “real” or not. Create
random negative examples by sampling from unigram distribution

(bit, dog) => +1

| theidogi pit the man
(bit, cat) => -1 L - words in similar
(bit, a) => -1 Py = 1|w. c) = e’ " contexts select for
(bit, fish) => -1 J = S ewe 1] similar ¢ vectors

- d x |V] vectors, d x |V ]| context vectors (same # of params as before)
k /sampled
- Objective = log P(y = 1|w,c) + Zlog P(y = O|lw;, ¢

=1
Z Mikolov et al. (2013)



Connections with Matrix Factorization

» Skip-gram model looks at word-word co-occurrences and produces two

types of vectors

V]

word pair

counts

knife
dog
sword

love

like

Two words are

knife dog
0 1
1 0
6 5
5 5
5 5

sword

love like
5 5
5 5
5 5
0 5
5 2

“similar” in meaning if their context vectors are similar. Similarity == relatedness

Levy et al. (2014)



Connections with Matrix Factorization

» Skip-gram model looks at word-word co-occurrences and produces two
types of vectors

V| d V]
d
word pair | _ V| word
counts Vecs

 Looks almost like a matrix factorization...can we interpret it this way?

Levy et al. (2014)



Skip-Gram as Matrix Factorization

V] num negative samples

vil | g Mz’j — PMI(?UZ',C]') — 10g/{7

P(wi7 Cj)
P(w;)P(c;)

PMI(U}Z, Cj) —

Skip-gram objective exactly corresponds to factoring this matrix:

- If we sample negative examples from the unigram distribution over words

- ...and it’s a weighted factorization problem (weighted by word freq)

Levy et al. (2014)



GloVe (Global Vectors)
| V]

~ Also operates on counts matrix, weighted
regression on the log co-occurrence matrix V| word pair

counts

- Objective = Z f (count(w;, c;)) (chj + a; + b; — log count(w;, Cj)))2

;
2]
» Constant in the dataset size (just need counts), quadratic in voc size

> By far the most common non-contextual word vectors used today

(30000+ citations)
Pennington et al. (2014)



Using Word Embeddings

~ Approach 1 (from scratch): learn embeddings as parameters from your data

» Often works pretty well

- Approach 2 (freeze): initialize using GloVe/word2vec/ELMo, keep fixed
~ Faster because no need to update these parameters

- Approach 3 (fine-tune): initialize using GloVe/BERT, fine-tune on your data

» Works best for some tasks, not used for ELMo, often used for BERT



NER In Twitter

System FinlODev Ritll Frol4 | Avg
Brown cl Lﬁ? 'S Word2vec CoNLL 273 27.1 295 | 28.0
~ + Brown 384 394 425 |40.1
Bot h + Vector 40.8 404 429 | 414
2mMm 2ma Z2mar 2mara 2maro 2marrow 2mor 2mora T~~~ +Reps 424 422 462 | 43.6
2MOro 2morow 2maorr 2morro 2morrow 2moz 2mr Finl0 36.7 290 304 | 320
2Mro 2mrrw 2mrw 2mw tmmrw tmo tmoro tmorrow + 1\3;0:”“ g?-z 22-3 ggi 22;

+ VECIOr . . . .
tmoz tmr tmro tmrow tmrrow tmrrw tmrw tmrww tmw + Reps 640 25 0o | 609

tomaro tomarow tomarro tomarrow tomm tommarow CoNLL+Finl0 447 309 442 | 420

fommarrow tommoro tommorow tommaorrow + Brown 549 520 585 |554
tommorw tommrow tomo tomolo tomoro tomorow + Vector 589 552 599 |58.0
tomorro tomorrw tomoz tomrw tomz + Reps 58.9 564 61.8 | 59.0

+ Weights | 644  59.6 633 | 624

Table 5: Impact of our components on Twitter NER performance, as measured by F1, under 3 data scenarios.

Ritter et al. (2011) Cherry & Guo (2015)



Visualization

9aY 005

4 o lesbian
uneducate
gay,@/’ y 975 h/mosexual
talkative G nggj
healthy religious
courageous _ | transgender
philanthropist o :
courteous adolescents
gay1goo statesman9@Y® ¢ g g
dapper L ransgendere
cheerful illiterate hispanic
sublimely sorcerers g
profligate artisans
unembarrassed metonymy

apparitional

Figure 1: A 2-dimensional projection of the latent seman-
tic space captured by our algorithm. Notice the semantic
trajectory of the word gay transitioning meaning in the space.

Kulkarni et al. (2015)



Takeaways

» Word vectors: learning word -> context mappings has given way to
matrix factorization approaches (constant in dataset size)

» Lots of pretrained embeddings work well in practice, they capture some
desirable properties

- Even better: context-sensitive word embeddings (ELMo/BERT/etc.) —
will talk later in the semester

» Next time: sequence modeling, HMM, ...



Preview: Context-dependent Embeddings

» How to handle different word senses? One vector for balls

B N N I B B

pi i e e s e

they dance at balls they hit the  balls

» Train a neural language model to predict the next word given previous
words in the sentence, use its internal representations as word vectors

» Context-sensitive word embeddings: depend on rest of the sentence

» Huge improvements across nearly all NLP tasks over word2vec & GloVe
Peters et al. (2018)



