Neural Networks

Wel Xu

(many slides from Greg Durrett)

Linear Transformation (math review)

1 2 3 4 X1
-14 1
2 2
34+ 3
-4 + 4

Image adopted from Duane Q. Nykamp

This and Next Lectures

» Neural network history
» Neural network basics
» Feedforward neural networks

» Applications

> Training of neural networks - backpropagation, more optimization

» Implementing neural networks

A Bit of History

» The Mark | Perceptron machine was the first implementation of the
perceptron algorithm.

: N
S v N .‘\ P
“ o '*"I s W
BN AN
a0 Al

- Perceptron (Frank Rosenblatt, 1957) R AN

> Artificial Neuron (McCulloch & Pitts, 1943)

McCulloch Pitts Neuron
(assuming no inhibitory inputs)

1=0

i
=0 if Y ;<0
1=0

Perceptron
T
y=1 if» wi*x; >0
i=0

T
=) fz'.qu_'I- % 2; < 0
1=0

The IBM Automatic Sequence Controlled Calculator, called Mark | by Harvard University’s staff.
It was designed for image recognition: it had an array of 400 photocells, randomly connected to

the "neurons”. Weights were encoded in potentiometers, and weight updates during learning
were performed by electric motors.
https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_al&feature=emb_logo

https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_aI&feature=emb_logo

A Bit of History

- Adaline/Madeline - single and multi-layer “artificial neurons”
(Widrow and Hoff, 1960)

+|
dm
a,
Qo
d;
Quantizer
Inpuf a FE —
lines S E; 2 e H——*—-OOMpuf
—=1
N

a's are ad justable

A Bit of History

~ First time back-propagation became popular (Rumbelhart et al, 1986)

Learning representations
by back-propagating errors

David E. Rumelhart®, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedurel.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

t To whom correspondence should be addressed.

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,
¥i, of the units that are connected to j and of the weights, w;;,
on these connections

xj=ZYini (1)

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of thé
opposite sign. It can be treated just like the other weights.
A unit has a real-valued output, y;, which is a non-linear
function of its total input
1

T 1+e S

Vi (2)

© 1986 Nature Publishing Group

https://www.andrevkurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

History: NN “dark ages”

» ConvNets: applied to MNIST by LeCun in 1990s

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT

6@28x28
5232 - S2 1 ma Cs: layer 76 lay QUTPUT

6@14x Wy I— 120 er
I
‘ FuII conAectuon ‘ Gau35|an connections
Convolutions Subsampling Convolutions Subsampllng Full connection
net. S. =S, +gy'

» LSTMs: Hochreiter and Schmidhuber (1997) ¢ gy ()

% f >®»@ﬂ

w, f%x fd?x

» Henderson (2003): neural shift-reduce parser, not SOTA

A\ f"

s

https://www.youtube.com/watch?v=FwFduRA L6Q&feature=youtu.be

https://www.youtube.com/watch?v=FwFduRA_L6Q&feature=youtu.be

2008-2013: A glimmer of light...

Input Window e o e
Text cat sat on the mat

> Collobert and Weston 2011: “NLP (almost) from scratch” = muwer wiwi o ui

K ,.K K
Feature K wy; wy ... Wy

» Feedforward neural nets induce features for ¢
sequential CRFs (“neural CRF”)

LTywx AN\~

» 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

» Krizhevskey et al. (2012): AlexNet for vision

> Socher 2011-2014: tree-structured RNNs working okay

.. hot very good..
a b C

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(CNNs work for NLP?)

~ Sutskever et al. (2014) + Bahdanau et al. (2015) : seg2seq + attention for
neural MT (LSTMs work for NLP?)

» Chen and Manning (2014) transition-based dependency parser (even
feedforward networks work well for NLP?)

» 2015: explosion of neural nets for everything under the sun

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (AdaGrad / AdaDelta / Adam) work best out-of-the-box

» Regularization: dropout (2012) is pretty helpful

» Computers not big enough: can’t run for enough iterations
> Inputs: need word representations to have the right continuous semantics

> Libraries: TensorFlow (first released in Nov 2015), PyTorch (Sep 2016)

GPU server

Fk‘imloda
Yllercluster

’&§ r M/ i

- (.:\UT I ()N

CHEAYY BANE

! ¥AN DPEN/CLOSE
R ; \ v

Yy, —
i SEARCH OF INCREDIBLE
g

Neural Net Basics

Neural Networks: motivation

~ Linear classification: argmaxwaf(aj,y)
» How can we do nonlinear classification? Kernels are too slow...

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

|[[contains not & contains good]

Neural Networks: XOR

» Let’s see how we can use neural nets

to learn a simple nonlinear function L2
1 0
>~ Inputs L1, T2
(generally x = (x1,...,2m)) . .
- OQutput g
(generally Y = (ylv cee 7yn)) L1 Lo Y =2 XOR L9

0 0

1 1
0 1
1 0

Neural Networks: XOR

L2 _ Y = a1T1 + a2 X
1 0 .~
e Y = a1T1 + a2 + as tanh(atl —+ .CIZ’Q) V
“Or”
+ 1 (looks like action
* potential in neuron)

1 ! }

L1 L2 L1 XOR L9

0 0 0 /
0 1 1 -2 -1 1 2
1 0 1 /
1 1 0

e . 1 Hyperbolic tangent:

sinh e? —e ¥ e 1

tanhx = = —
cosh x et +e* e2r 41

Activation Functions

—-10

0,

[
=

Sigmoid

RelLU

otherwise s

-10

10

10

Tanh
1.0
e’ —e
0.5 o(z)=—
e +eé
-10 -5 5 10

LeakyRelLU(a=0.2)

10-

LeakyReLU(z)= {

10

z,z>0

az.otherwise

Image Credit: Junxi Feng

Neural Networks: XOR
X

Y = a1xT1 + a2

0
y = a121 + az2x2 + ag tanh(xy + 22) &
Yy — —I1 — T2 -+ Ztanh(xl -+ .CIZ‘Q)
1 le N “OI’”
r1 XOR x5
0 L2

XOR

Neural Networks

Y = —22131 — Lo + Qtanh(azl -+ ZEQ)
\
\
$
\
\

Neural Networks

tanh

Linear model: Yy = W - X + b

yzg(W-X+b>
Wx+b

7NN

Nonlinear Warp Shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

...possible because
Linear classifier Neural network we transformed the

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Input

Deep Neural Networks

First
Layer

Second
Layer

output of first layer

“Feedforward” computation (not

recurrent)

Check: what happens if no nonlinearity?
More powerful than basic linear models?

z = V(Wx

b)

C

Adopted from Chris Dyer

Deep Neural Networks

0.5

0.5

" | s i s " |
0.5 1

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropagation

Recap: Multiclass Logistic Regression

exp (wa(a;‘, y))

>y exp(w' f(z,y))

/!
sum over output

space to normalize

Pu(ylr) =

too many drug trials, probabilities probabilities
too few patients must be >=0 must sum to 1
alth: 49 6()5 021 0g(0.21) = - 1.56 100
Sports: +3.1 0, i 222 i M g5y 0 MR 0.00
Science: -0.6 0.55 0.02 L(xf”y;):logp(y?'”fﬂé 0.00
W f(@,y) e robabilie bt

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability

>, exp(w’ f(x,y)) |
» Compute scores for all possible
P(y|x) = softmax ([wa(pg y)]yey) labels at once (returns vector)

P(ylx) =

exp(pi) » softmax: exps and normalizes a
softmax(p); = |
ny exp(pi’) given vector
P(y|x) = softmax(W f(x)) ~ Weight vector per class;

W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) > Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

num classes
d hidden units probs

H
9

d X n matrix nonlinearity = num classes x d
n features (tanh, relu, ...) matrix

We can think of a neural network classifier with one hidden layer as building a vector z which is a hidden layer representation
(i.e. latent features) of the input, and then running standard logistic regression on the features that the network develops in z.

Training Neural Networks

P(y|x) = softmax (W z) z = g(V f(x))
» Maximize log likelihood of training data

L(x,7") =log P(y = i"|x) = log (softmax(Wz) - e;«)

~ i*: index of the gold label
- ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

\

one-hot vector

Training Neural Networks

P(y|x) = softmax (W z) z = g(V f(x))
» Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - ¢;«)

~ i*: index of the gold label

- ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,7") =Wz-e; — log Z exp(Wz) - e,

J

Training Neural Networks

» Maximize log likelihood of training data

L(x,7") =log P(y = i"|x) = log (softmax(Wz) - e;«)

> i*: index of the gold label
~ ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

too many drug trials, probabilities probabilities one-hot
too few patients must be >=0 must sumtol vector
Health: 42 9 6()5 021 1
exp i normalize |

Sports: +3.1 —, + 222 { —— :0.77 i . {0} L=log0.21)
Science: -0.6 = 0.55 | 002 :i0;
Wz unnormalize softmax(Wz) €,

Computing Gradients

L(x,i") =Wz- e~ —log Z exp(Wz) - ¢; num_classes x d

] _~ matrix
index of W :
output space V J

\ i

- Gradient with respect to W

1 —Ply=1|x))z; ifi=i*
O vy = | P =)z,
Wi \ —P(y = Z|X)Zj otherwise
index of \
gold label index of vector z

» Looks like logistic regression with z as the features!

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

» Gradient w.r.t. W: looks like logistic
regression with z as the features!

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

err(z)

- Can forget everything after z, treat N
it as the output and keep backpropping

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

; Activations at

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1") Oz
oVi: | 0z |0V
w‘e math...]

err(root) = e;« — P(y|x) OL(x, 7"
dim = num classes

hidden layer

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

Activations at

g hidden layer

» Gradient with respect to V: apply the chain rule

0z Ogla)j da | V£ (x)
V;'j oa 6’1/;3

> First term: gradient of nonlinear activation function at a (depends on
current value)

OL(x,*) O0L(x,1")
ov.. 0z

» Second term: gradient of linear function

» Straightforward computation once we have err(z)

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

0L(x,i") O0L(x,i*) Oz OL(x.i%)
8‘/7;3' N 8Z (9‘/;] 11 0Z7

— err(z) = W' err(root)

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

- Step 1: compute err(root) = e;« — P(y|x) (vector)

- Step 2: compute derivatives of W using err(root) (matrix)

- Step 3: compute 5’£(§<,Z) _ err(z) = W
Z
- Step 4: compute derivatives of V using err(z) (matrix)

err(root) (vector)

> Step 5+: continue backpropagation (if there are more hidden layers ...)

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

> Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

> Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs

previous word
> Word embeddings for each word form input

curr word
» ~1000 features here — smaller feature vector

than in sparse models, but every feature fires on
every example next word

)
3
2
I
2
A
g
Z
)
3
=2
S-
~
™
P
)
n
=
D
=
=2
I
Q
~
g
Z

» Weight matrix learns position-dependent
processing of the words

other words, feats, etc. L_

Botha et al. (2017)

NLP with Feedforward Networks

COe00 Py

QOO0 OOOOO0Q) hi

R E L Ao -

D D
! |

T s
- L -

V| —ma;

eu I

Ebl:l

igrams

at E trigrams

no queue at

» Hidden layer mixes these
different signals and learns
feature conjunctions

Botha et al. (2017)

NLP with Feedforward Networks

» Multilingual POS tagging results:

Model Acc. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k - 6.63m
Small FF 9476 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.31m

2 Dim. 95.39 143k 0.7 0.18m

> Gillick used LSTMs: this is smaller, faster, and better

Botha et al. (2017)

Sentiment Analysis

- Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

[[] //I\ -

Predator 1S a masterpiece

C1 C2 C3 C4 lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
fine bin (S)
DAN-ROOT — 46.9 85.7 — 31
DAN-RAND 773 454 83.2 88.8 136
DAN 80.3 47.7 863 894 136| lyyer et al. (2015)
NBOW-RAND 76.2 423 814 88.9 01
Bao-of-words NBOW 790 436 836 8.0 91
5 BiNB — 419 83.1 — — Wang and
NBSVM-b1 79.4 — — 01.2 — :
Manning (2012)
RecNN™ 7177 432 824 — —
RecNTN™ — 457 854 — —
Tree RNNs / DRecNN — 498 86.6 — 431
TreeLSTM — 50.6 86.9 — —
CNNS / LSTMS DCNN* _ 485 869 894 —
PVEC™ — 48.77 &7.8 92.6 — :
CNN-MC 811 474 881 — 245 Kim (2014)

WRRBM* — — — 89.2 —

Coreference Resolution

» Feedforward networks identify coreference arcs

President Obama signed... Input Layer ho [ReLU(Wiho + b)
[OO - 00|00 |OO - 00|00 (O O]
? Candidate Candidate Mention Mention Pair and
Antecedent Antecedent Embeddings Features Document
Embeddings Features Features

He later gave a speech...

» Mention features include: type of mention (pronoun, nominal, proper),
the mention’s position in the article, length of the mention in words ...

Clark and Manning (2015, 2016), Wiseman et al. (2015)

Coreference Resolution

» Feedforward networks identify coreference arcs

Mention-Pair Representation 7,

President Obama signed... [OOOOOOOOOOOOOOO]
Hidden Layer h, TRGLU(Wth + bs)
5 (cle]ele]ele]olo]olololo]0l0)e)
| Hidden Layer h; TRGLU(thl + by)
He later gave a speech... [OOOOOOOOOOOOQOOJ
Input Layer hg ReLU(Wlho + b)
|OO - 00|00 |OO - 00|00 (O O]
Candidate Candidate Mention Mention Pair and
Antecedent Antecedent Embeddings Features Document
Embeddings Features Features

Clark and Manning (2015, 2016), Wiseman et al. (2015)

Coreference Resolution

Input Layer. For each mention, the model ex-
tracts various words and groups of words that
are fed into the neural network. Each word
is represented by a vector w; € R%. Each
group of words 1s represented by the average
of the vectors of each word in the group. For
each mention and pair of mentions, a small
number of binary features and distance fea-
tures are also extracted. Distances and men-
tion lengths are binned into one of the buck-
ets [0,1,2,3,4,5-7,8-15,16-31, 32-63, 64+| and
then encoded in a one-hot vector in addition to be-
ing included as continuous features. The full set
of features is as follows:

Embedding Features: Word embeddings of the
head word, dependency parent, first word, last
word, two preceding words, and two following
words of the mention. Averaged word embed-
dings of the five preceding words, five following

Clark and Manning (2015, 2016), Wiseman et al. (2015)

words, all words in the mention, all words in the
mention’s sentence, and all words in the mention’s
document.

Additional Mention Features: The type of the
mention (pronoun, nominal, proper, or list), the
mention’s position (index of the mention divided
by the number of mentions in the document),
whether the mentions is contained in another men-
tion, and the length of the mention in words.

Document Genre: The genre of the mention’s doc-
ument (broadcast news, newswire, web data, etc.).

Distance Features: The distance between the men-
tions 1n sentences, the distance between the men-
tions in intervening mentions, and whether the
mentions overlap.

Speaker Features: Whether the mentions have the
same speaker and whether one mention 1s the other
mention’s speaker as determined by string match-
ing rules from Raghunathan et al. (2010).

String Matching Features: Head match, exact
string match, and partial string match.

The vectors for all of these features are concate-
nated to produce an /-dimensional vector hg, the
input to the neural network. If a = NA, the fea-

Training Tips

Tralning Basics

» Basic formula: compute gradients on batch, use first-order optimization
method (SGD, Adagrad, etc.)

» How to initialize? How to regularize? What optimizer to use?

» This lecture: some practical tricks. Take deep learning or optimization
courses to understand this further

How does initialization affect learning?

P(y|x) = softmax(Wgqg(V f(x)))
d hidden units

H
9

d x n matrix nonlinearity m x d matrix
n features (tanh, relu, ...)

» How do we initialize V and W? What consequences does this have?

» Non-convex problem, so initialization matters!

How does initialization affect learning?

» Nonlinear model...how does this affect things?

» Tanh: If cell activations are too large in absolute value, gradients are small

» RelLU: larger dynamic range (all positive numbers), but can produce big

values, and can break down if everything is too negative (“dead” RelLU)
Krizhevsky et al. (2012)

http://cs231n.github.io/neural-networks-1/

Initialization
1) Can’t use zeroes for parameters to produce hidden layers: all values in that

hidden layer are always the same (O if tanh) and have same gradients (O if
tanh), and can’t break symmetry (or never change)

2) Initialize too large and cells are saturated

> Can do random uniform / normal initialization with appropriate scale

- Xavier initializer: 7 _\/ 6 +\/ 0
fan-in + fan-out’ fan-in + fan-out

» Want variance of inputs and gradients for each layer to be the same

N : : Mean & Standard Deviation

p=2t md =222 Glorot & Bengio (2010)

V12

0 a b X https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init

Maverick Meerkat’s answer - https://stats.stackexchange.com/questions/27 | | 2/danger-of-setting-all-initial-weights-to-zero-in-backpropagation

Batch Normalization

» Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale
each mini-batch (i.e., inputs to activation function) to have mean 0 and
variance 1 over a batch (useful if net is deep)

o E—

https://medium.com/@shiyan/xavier-initialization-and-batch-normalization-my-understanding-b5b91268c25¢

Regularization: Dropout

» Probabilistically zero out parts of the network during training to prevent
overfitting, use whole network at test time

» Form of stochastic
regularization

» Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it
has redundancy

(a) Standard Neural Net (b) After applying dropout.

> One line in Pytorch/Tensorflow Srivastava et al. (2014)

Optimization

» Gradient descent
- Batch update for logistic regression

» Each update is based on a computation over the entire dataset

Multiclass Logistic Regression N
L(w) Initial ! _— Gradient

/
/
/
]

exp (w' f(z,y))

Zy/ey exp (w' f(z,y’))

7
sum over output

space to normalize

Py (y|z) =

i.e. minimize negative log likelihood
/ or cross-entropy loss

» Training: maximize £(x,y) Zlo P(y}|z;)

index of
data points (j)

Optimization

» Stochastic gradient descent 0
w4~ w—ag, = 8w£

~ Approx. gradient is computed on a single instance

» What if the loss function has a local minima or saddle point?

Convex Non-Convex
R |
Saddle point
s 4
@
Local min
. 4
Minimizer ® Global min

Dauphin et al. (2014)
Image credit: Pawet Cislo

Optimization

» Stochastic gradient descent

~ Approx. gradient is computed on a single instance

W 4— W — Qg,

0

gzé’wﬁ

» “First-order” technique: only relies on having gradient

Loss

w1

Loss

\

w1

>

Image credit: Stanford CS231N

Momentum

» Gradients come from a single instance or a mini-batch can be noisy

» Use “velocity” to accumulates the gradients from the past steps

Standard SGD SGD with Momentum

dx = compute_gradient(x)
X += learning_rate * dx

while True:
dx = compute_gradient(Xx)
VX = rho * vx + dX
X += learning_rate * vX

Polyak (1964), Sutskever et al. (2013)
Image credit: Stanford CS231N

AdaGrad

- Optimized for problems with sparse features

- Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

grad_squared = 0

whlile True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sgrt(grad_squared) + le-7)

-

et

| i !W. >>
Z@E >> Duchi et al. (2011)

Image credit: Stanford CS231N

AdaGrad

- Optimized for problems with sparse features

- Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

1

\/€ 1 Zt g2 .gti (smoothed) sum of squared
T gradients from all updates

W, < W; + &

» Generally more robust than SGD, requires less tuning of learning rate

Duchi et al. (2011)

Optimizer

_IMDB BoW feature Logistic Regression

MNIST Logistic Regression

» Adam (Kingma and Ba, ICLR 2015): IS . ‘y«wau,j B
. . . PR TN SO - S .f,..Aq.;.am.. — 0'45'"""T'*"%;“')i”“‘" SGDNesterov+dropout |’
very widely used. Adaptive step size q%"‘."‘“t'”'x.,, e fae e

UL S S — AR WON == LN SIS 8
+ momentum s T S . Al |
c c /
o : : : : : : : : ‘©
“ 0.4+t S b

0.30F M.
W

I N N S U SV SO SO NS SO A |
_,ler\:;v-\“’t: rA —‘ . 0.25F - oooivi A AR AR A
e S = s 0205540 60 80 100 120 140 160
° I I . d ° iterations over entire dataset iterations over entire dataset
» Wilson et al. NIPS 2017: adaptive
6.0 , . . . 6.0 ——— , . .
methods can actually perform 2|
. .. >5.6 x >.8 \\\Adam (Default): 5.47+:0.02 '
badly at test time (Adam is in 354 e 1\ Lo 5355001
p| N k’ SG D N blaCk) gs,o. “2’5_4, ../ RMSProp: 5.28+0.00 |
© 4.8 = Y
= a6l g 5.2} HB: 5.13:0.01

) A

20 40 60 80 100 ' 20 40 60 80 100
Epoch Epoch

» One more trick: gradient clipping
(set a max value for your gradients)

(e) Generative Parsing (Training Set) (f) Generative Parsing (Development Set)

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

y =X *x =% (y,dy) = (X * X, 2 * x * dX)
codegen

» Computation is now something we need to reason about symbolically

> Use a library like PyTorch or TensorFlow. This class: PyTorch

Computation Graphs in Pytorch

» Define forward pass for P(y|X) — SoftmaX(Wg(Vf(X)))

class FFNN(nn.Module):
def 1nit (self, inp, hid, out):
super (FFNN, self). 1init ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self .W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

Computation Graphs in Pytorch

EX ~-h f
P(ylx) = softmax(Wg(VF(x))) G100 (e qv 10, 1, 01)

ffnn = FFNN(1in d, hi d, out d)
optimizer = optim.Adam(ffnn.paraméters(), 1lr=0.01)
def make update(input, gold label):

ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

loss.backward()

optimizer.step()

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - ;)

Training a Model

Define a computation graph

For each epoch:
For each batch of data:

Compute loss on batch

Autograd to compute gradients and take step

Check performance on dev set periodically to identify overfitting

Batching (aka, mini-batch)
~ Batching data gives speedups due to more efficient matrix operations

> Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

Four Elements of NNs

» Model: feedforward, RNNs, CNNs can be defined in a uniform framework

4

- Objective: many loss functions look
similar, just changes the last layer of the
neural network

2 |

1.5 F

> Inference: define the network, your 1
library of choice takes care of it (mostly...) °| SN

-3 -2 -1 0 1 2 3

» Training: lots of choices for optimization/hyperparameters

Next Up

» Word representations

- word2vec/GloVe

