Machine Learning Recap
(linear classification)

Wel Xu

(many slides from Greg Durrett)



Trivia Time

Q: what is the max/min of log probability?




Trivia Time

Q: what is the max/min of log probability?

l0g; (X)
In (x)

log (x)




Administrivia

» Course website: Instructor
https://cocoxu.github.io/CS7650 fall2025/
- homework release, slides, readings
» course policies

Wei Xu

Teaching Assistants

b Duong Minh Le
Q :33 \é

Jerry Zheng

» Plazza:
» for all class announcements, homework
discussion, and contacting teaching staff
» TA will start a mega-thread when release each
assignment, and post a sigh-up list for OH, etc

Joseph Thomas

» Gradescope:
» for homework submission and grading

Rohan Phadnis

Office Hours: Monday after class



Coursework Plan

» Four programming projects (25%)
- Implementation-oriented
» 1.5™2 weeks per assignment

» fairly substantial implementation effort except PO

» Three written assignments (20%) + in-class midterm exam (20%, close note)

- Mostly math and theoretical problems related to ML / NLP

» Final project (28%) + in-class presentation of a recent research paper (2%)

- Participation/Attendance (5%)



ML and structured
prediction for NLP

Deep Learning
(Neural Networks)

Language Models

Outline of the Course

Topic Projects Problem Sets
8/18/2025 Course Overview Proj. 0 Out PS0O Out
8/20/2025 Machine Learning Recap - Naive Bayes, MLE PS0 Due (8/21), PS1 C
8/25/2025 Machine Learning Recap - logistic regression, perceptron, SVM
8/27/2025 Machine Learning Recap - multi-class classification Proj. 0 Due (8/29)
9/1/2025 No class - Labor Day holiday PyTorch Tutorial
9/3/2025 Neural Networks - feedforward network, training, optimization Proj. 1 Out PS1 Due (9/5)

9/8/2025 Word Embeddings
9/10/2025 Sequence Labeling

9/15/2025 Conditional Random Fields Proj. 1 Due (9/19)

9/17/2025 Recurrent Neural Networks Proj. 2 Out

9/22/2025 Convolutional Neural Networks, Neural CRF

9/24/2025 Encoder-Decoder Instructions Out for 2-min presentation per ind
9/29/2025 Attention Instructions Out for a (lightweight) project prop
10/1/2025 Transformer Proj. 2 Due (10/3) PS2 Out

10/6/2025 No class - Fall Break
10/8/2025 Pretrained Language Models (part 1 - BERT), midterm review

10/13/2025 Pretrained Language Models (part 2 - BART/TS, GPT2/3, instruction tuning), Ethics PS2 Due (10/14)
10/15/2025 Pretrained Language Models (part 3 - Post-training of Language Models) Proj. 3 Out

10/20/2025 Pretrained Language Models (part 4 - Open-source Language Models) 2-min presentation Due (10/21)

10/22/2025 student in-class presentation Course Project Proposal Due (10/24)
10/27/2025 No class - reading day L1 10/25 withdraw deadlir

11/3/2025 Midterm
11/5/2025 student in-class presentation, Midterm
11/10/2025 student in-class presentation, Midterm Proj. 3 Due (11/11) - last homework to use flex
11/12/2025 student in-class presentation, Midterm
11/17/2025 student in-class presentation
11/19/2025 Guest Lecture
11/24/2025 Guest Lecture
11/26/2025 No class - school recess
12/1/2025 No class - reading day L.

12/5/2025 2:40pm Final Project (written report + oral presentations) Final Project Due - no late submission allowed

* Link to this Google spreadsheet on course website:
https://docs.google.com/spreadsheets/d/1CIc2FTHgTR IL71W40N3J01WVYgC51fxgsfYmn2pwtQ/edit?usp=sharing

tentative plan
(subject to change)



>

>

Course Requirements

Probability (e.g. conditional probabilities, conditional independence, Bayes Rule)

Linear Algebra (e.g., multiplying vectors and matrices, matrix inversion)

Multivariable Calculus (e.g., calculating gradients of functions with several variables)

Programming / Python experience (medium-to-large scale project, debug
PyTorch codes when there are no error messages)

Prior exposure to machine learning

There will be a lot of math and programming!



Background Test

» Problem Set 0 (math background) is released, due Thursday Jan 9.

> Project O (programming - logistic regression) is also released, due Friday Jan 17.

- Take CS 4641/7641 Machine Learning and (Math 2550 or Math 2551 or Math
2561 or Math 2401 or Math 24X1 or 2X51) before (not in the same semester)

this class.

~ If you want to understand the lectures better and complete homework with more
ease, taking also CS 4644/7643 Deep Learning before this class.



If you missed class on Monday
(8/18), please plan to stay after
today’s session so we can go over
some class logistics.



QA Time

DO YOU HAVE

ANY QUESTIONS?




This and next Lecture

» Linear classification fundamentals

>~ Naive Bayes, maximum likelihood estimation

» Three discriminative models: logistic regression, perceptron, SVM

- Different motivations but very similar update rules / inference!



INTRODUCTION TO

NATURAL
LANGUAGE
PROCESSING

JACOB EISENSTEIN

Chapter 2 & 4
(+ J&M ch 5)

Readings

Chapter 2

Linear text classification

We begin with the problem of text classification: given a text document, assign it a dis-
crete label y € ), where ) is the set of possible labels. Text classification has many ap-
plications, from spam filtering to the analysis of electronic health records. This chapter
describes some of the most well known and effective algorithms for text classification,
from a mathematical perspective that should help you understand what they do and why

thev work Text classification is also a h]”|d]ng block in_more elaborate natural |ang“age

processing tasks. For readers without a background in machine learning or statistics, the
material in this chapter will take more time to digest than most of the subsequent chap-
ters. But this investment will pay off as the mathematical principles behind these basic
classification algorithms reappear in other contexts throughout the book.

2.1 The bag of words

To perform text classification, the first question is how to represent each document, or
instance. A common approach is to use a column vector of word counts, e.g.,, * =
(0,1,1,0,0,2,0,1,13,0...]T, where z; is the count of word j. The length of z is V £ |V,
where V is the set of possible words in the vocabulary. In linear classification, the classi-
fication decision is based on a weighted sum of individual feature counts, such as word
counts.

The object x is a vector, but it is often called a bag of words, because it includes only
information about the count of each word, and not the order in which the words appear.
With the bag of words representation, we are ignoring grammar, sentence boundaries,
paragraphs — everything but the words. Yet the bag of words model is surprisingly
effective for text classification. If you see the word whale in a document, is it fiction or non-
fiction? What if you see the word molybdenum? For many labeling problems, individual
words can be strong predictors.

13

14 CHAPTER 2. LINEAR TEXT CLASSIFICATION

To predict a label from a bag-of-words, we can assign a score to each word in the vo-
cabulary, measuring the compatibility with the label. For example, for the label FICTION,
we might assign a positive score to the word whale, and a negative score to the word
molybdenum. These scores are called weights, and they are arranged in a column vector 6.

Suppose that you want a multiclass classifier, where K £ |))| > 2. For example, you
might want to classify news stories about sports, celebrities, music, and business. The goal
is to predict a label 7, given the bag of words «, using the weights 6. For each label y € ),
we compute a score V(x,y), which is a scalar measure of the compatibility between the
bag-of-words « and the label y. In a linear bag-of-words classifier, this score is the vector
inner product between the weights 6 and the output of a feature function f(z,y),

V(w,y) =0 f(@.y) =Y 0ifij(@.y). [2.1]
J

As the notation suggests, f is a function of two arguments, the word counts = and the
label y, and it returns a vector output. For example, given arguments « and y, element j
of this feature vector might be,

[2.2]

Tyhates 1f y = FICTION
fi(z,y) = .
0, otherwise

This function returns the count of the word whale if the label is FICTION, and it returns zero
otherwise. The index j depends on the position of whale in the vocabulary, and of FICTION
in the set of possible labels. The corresponding weight /; then scores the compatibility of
the word whale with the label FICTION.! A positive score means that this word makes the
label more likely.

The output of the feature function can be formalized as a vector:

flx,y=1)=[z;0;0;...;0] [2.3]
N——
(K—-1)xV
flx,y=2)=[0;0;...;0;2;0;0;...;0] [2.4]
Vv (K—2)xV
fle,y=K)=1[0;0;...;0;x], [2.5]
S
(K—1)xV
where [0;0;...;0] is a column vector of (K — 1) x V zeros, and the semicolon indicates
S

(K—1)xV
vertical concatenation. For each of the K possible labels, the feature function returns a

n practice, both f and 6 may be implemented as a dictionary rather than vectors, so that it is not
necessary to explicitly identify j. In such an implementation, the tuple (whale, FICTION) acts as a key in both
dictionaries; the values in f are feature counts, and the values in € are weights.

Jacob Eisenstein. Draft of November 13, 2018.



Classification



Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
- Pick a model / learning algorithm

> Train weights (i.e., model parameters) on data to get our classifier



Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

~ Very large vector space (size of vocabulary), sparse features

» Requires indexing the features



What are features?

» Don’t have to be just bag-of-words

count( “boring” )
count( “not boring”)
f (:L‘) __ | length of document
author of document

» More sophisticated feature mappings possible (tf-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, ...



Tt-idf Weighting

word-doc co-occurrences

- TF*idf
As You Like It Twelfth Night Julius Caesar Henry V
- Tt: term frequency pattle 1 0 7 17
solider 2 80 62 89
t f = log;q(count(?, d) + 1) o * > | ’
clown 20 15 2 3

~ |df: inverse document frequency

Total number of docs

N / in collection

df;
™~ nhumber of docs that

have word i




Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"
but in this lecture f(z) and 4 are interchangeable

- Linear decision rule: " f(z) +b > 0

w' f(z) >0

> Can delete bias if we augment feature space:

f(x)=10.5,1.6,0.3]
'
0.5, 1.6, 0.3, 1]




+++ - - - -

Linear functions are powerful!

—
—
—
—
—
—
—
—
—
-_—
—
— -
—

++ + +




Linear functions are powerful!

X2
\VPPY

fix) = [x1, x2]

—
—
—
—
—
—
—
—
—
—
—
.

X1X2

o
—
—
—
—
—
—
—
—
—
—
— -
—
—

— 2 2
Y 4
f(X) [X1 X2, X14, X274, X1X2]

- “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n?) instead of O(n - (num feats))

http://ciml.info/dl/v0 99/ciml-v0 99-ch11.pdf
https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM



https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM
http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf

Naive Bayes



Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}
» Formulate a probabilistic model that places a distribution P(x,y)
» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y)P(x|y) Bayes’ Rule
P(x)

P(y|lx) =



Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y)P(x|y) Bayes’ Rule

P(y|lx) =

(“ - ) . .
N Nalve™ assumption:

P(CC) - _ constant: irrelevant
for finding the max
x P(y)P(x|y) 5

(%))

— P(y) Hp(xi‘y) conditional independence

argmax, P(y|r) = argmax, log P(y|r) = argmax

Yy

log P(y +ZlogP z;|y)




Why the log?

P(y])j;gew) — P(y) ﬁp(l’z"y)

1=1

P(y|r) =

» Multiplying together lots of probabilities

» Probabilities are numbers between 0 and 1

Q: What could go wrong here?



Why the log?

Plole) = D — pi) [T Plast

argmax, P(y|r) = argmax, log P(y|r) = argmax,, |log P(y) + Z log P(z;|y)
i=1

» Problem — floating point underflow

exponent fraction
sign (11 bit) (52 bit)
| |
O O O
63 52 0

(—1)%8" (1.bs1 bsg. . . by)g x 251023

» Solution: working with probabilities in log space

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

-16.118095651

-13.815511

-11.512925

-9.210340

-6.907755

-4.605170

-2.302585




Maximum Likelihood Estimation

- Data points (z;, y;) provided (j indexes over a total of m examples)
> Find values ofp( ), P(x;|y) that maximize data likelihood:

L P@sz) = 1 Py)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example




Maximum Likelihood Estimation

- Data points (z;, y;) provided (j indexes over a total of m examples)
> Find values ofp( ), P(x;|y) that maximize data likelihood:

L P@sz) = 1 Py)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example

» Equivalent to maximizing logarithm of data likelihood:

(4L

Zlog P(y;,z;) Z

71=1 71=1

log P(y;) ZlogP 5'732?17)]



> Observe (H, H, H, T) and maximize likelihood: H P(y;) = p° (1 — p)

j=1

- Easier: maximize log likelihood og likelihood
Z 10g P(yj) — 3 1ng -+ 1Og(1 _ p) P(H)E= 0.75
j=1 o i1 p

http://fooplot.com/



http://fooplot.com/

» Imagine a coin flip which is heads with probability p

> Observe (H, H, H, T) and maximize likelihood: H P(y;) = p° (1 — p)

j=1
- Easier: maximize log likelihood og likelihood
TN
Z 10g P(yj) — 3 1ng -+ 1Og(1 _ p) P(H).= 0.75
j=1 0 1 P
‘,/" h
- Maximum likelihood parameters for binomial/ /

multinomial = read counts off of the data + normalize

http://fooplot.com/



http://fooplot.com/

Nalve Bayes: Learning

------------------------------------------------

------------------------------------------------

» Learning = estimate the parameters of the model

> Prior probability — P(+) and P(-):
> fraction of + (or -) documents among all documents

» Word likelihood — P(wordi| +) and P(wordi| -):

- humber of + (or -) documents word; is observed, divide by the total
number of documents of + (or -) documents

This is for Bernoulli (binary features) document model!


https://cocoxu.github.io/CS7650_fall2025/slides/Shimodaira_note07.pdf

Maximum Likelihood for Naive Bayes

--------------------------------------------------------------------------------------

" this movie was great! would watch again 49 1

- o - P =35 ~_

. | liked it well enough for an action flick + X prior

| expected a great film and left happy + P(—) = 5 —

brilliant directing and stunning visuals + 1

that film was awful, I'll never watch again [— Plgreat|+) = 2 N\ word
i . - —% 1 likelihood
i | didn’t really like that movie . P(great|—) = - '

. dry and a bit distasteful, it misses the mark |— S & peeeeeeeeeeaaas :

great potential but ended up being a flop — P(y|x) o< P(y) HP(%'W)

--------------------------------------------------------------------------------------
------------------------------------------------

it was great —— P(y|z) [P(+)P(great+)°"]o<[l/4 ]
P(—)P(great|—)-.- .



Naive Bayes

» Bernoulli document model:
» A document is represented by binary features

» Feature value be 1 if the corresponding word is represent in
the document and O if not

» Multinominal document model:
» A document is represented by integer elements
~ Feature value is the frequency of that word in the document
» See textbook and lecture note by Hiroshi Shimodaira linked below

for more details \



Naive Bayes

Text Classification using Naive Bayes

Hiroshi Shimodaira*

10 February 2015

Text classification is the task of classifying documents by their content: that is, by the words of which
they are comprised. Perhaps the best-known current text classification problem is email spam filtering:
classifying email messages into spam and non-spam (ham).

1 Document models

Text classifiers often don’t use any kind of deep representation about language: often a document is
represented as a bag of words. (A bag is like a set that allows repeating elements.) This is an extremely
simple representation: it only knows which words are included in the document (and how many times
each word occurs), and throws away the word order!

Consider a document D, whose class is given by C. In the case of email spam filtering there are two
classes C =S (spam) and C = H (ham). We classify D as the class which has the highest posterior
probability P(C|D), which can be re-expressed using Bayes’ Theorem:

P(D|C)P(C)

P(C|D) = T P(D|C) P(C). (1)

We shall look at two probabilistic models of documents, both of which represent documents as a bag
of words, using the Naive Bayes assumption. Both models represent documents using feature vectors
whose components correspond to word types. If we have a vocabulary V, containing |V| word types,
then the feature vector dimension d=|V/|.

Bernoulli document model: a document is represented by a feature vector with binary elements
taking value 1 if the corresponding word is present in the document and 0 if the word is not
present.

Multinomial document model: a document is represented by a feature vector with integer elements
whose value is the frequency of that word in the document.

Example: Consider the vocabulary:
V = {blue, red, dog, cat, biscuit,apple} .

In this case |V|=d =6. Now consider the (short) document “the blue dog ate a blue biscuit”. If d®
is the Bernoulli feature vector for this document, and d¥ is the multinomial feature vector, then we

“Heavily based on notes inherited from Steve Renals and Iain Murray.

1

would have:

d® = (1,0,1,0,1,0)7
d" = (2,0,1,0,1,0)"

To classify a document we use equation (1), which requires estimating the likelihoods of the document
given the class, P(D|C) and the class prior probabilities P(C). To estimate the likelihood, P(D|C), we
use the Naive Bayes assumption applied to whichever of the two document models we are using.

2 The Bernoulli document model

As mentioned above, in the Bernoulli model a document is represented by a binary vector, which
represents a point in the space of words. If we have a vocabulary V containing a set of |V| words, then
the ¢ th dimension of a document vector corresponds to word w; in the vocabulary. Let b; be the feature
vector for the i th document D;; then the 7 th element of b;, written b;, is either O or 1 representing the
absence or presence of word w, in the i th document.

Let P(w,|C) be the probability of word w, occurring in a document of class C; the probability of w, not
occurring in a document of this class is given by (1 — P(w,|C)). If we make the naive Bayes assumption,
that the probability of each word occurring in the document is independent of the occurrences of the
other words, then we can write the document likelihood P(D; | C) in terms of the individual word
likelihoods P(w,|C):

\4
P(D;|C) ~ P(b;|C) = l_[ [biP(w;|C) + (1 = bir)(1 = P(w,|C))] . 2

=1

This product goes over all words in the vocabulary. If word w; is present, then b;, =1 and the required
probability is P(w,|C); if word w, is not present, then b;, =0 and the required probability is 1 — P(w,|C).
We can imagine this as a model for generating document feature vectors of class C, in which the
document feature vector is modelled as a collection of |V| weighted coin tosses, the ¢th having a
probability of success equal to P(w;|C).

The parameters of the likelihoods are the probabilities of each word given the document class P(w;|C);
the model is also parameterised by the prior probabilities, P(C). We can learn (estimate) these
parameters from a training set of documents labelled with class C =k. Let n,(w,) be the number of
documents of class C =k in which w; is observed; and let N; be the total number of documents of that
class. Then we can estimate the parameters of the word likelihoods as,

n(wy)

P(w, | C=k) = N
k

3
the relative frequency of documents of class C = k that contain word w,. If there are N documents

in total in the training set, then the prior probability of class C =k may be estimated as the relative
frequency of documents of class C =k:

Ny

B(C=k) = v @

Thus given a training set of documents (each labelled with a class), and a set of K classes, we can
estimate a Bernoulli text classification model as follows:

2

https://cocoxu.github.io/CS7650 fall2025/slides/Shimodaira noteQ7.pdf




Zero Probability Problem

» What if we have seen no training document with the word “fantastic”
and classified in the topic positive?

------------------------------------------------

> Laplace (add-1) Smoothing
» Word likelihood — P(word;| +) and P(word;| -):
> frequency of word; is observed plus 1



Nalve Bayes: Summary

» Model @

mn

P(z,y) = P(y) | | P(xily) (@)

1=1

- Inference
argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

- Alternatively: 10 P(y = +]2) — log P(y = —|z) > 0

----------------------------------

Linear model!

Ply =+) ilogp(miy:ﬂ >0 §  w! (x)>0§

Py = —)
- Learning: maximize P(x,y) by reading counts off the data

& log




Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring |—

P(Zpbeautiful|+) = 0.1  P(xpeautitul] —) = 0.01
P(Zstunning|+) = 0.1 P(Zstunning| —) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

- Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

> Discriminative models model P(y|x) directly (SVMs, most neural networks, ...)



QA Time

DO YOU HAVE

ANY QUESTIONS?




Machine Learning Recap
(linear classification - cont’)

Wel Xu

(many slides from Greg Durrett)



Dot Product (math review)

MATH REVIEW | DOT PRODUCTS

Given two vectors u# and v their dot product u - v is ) ;u, 0. The dot product
grows large and positive when u and v point in same direction, grows large
and negative when u# and v point in opposite directions, and is zero when

their are perpendicular. A useful geometric interpretation of dot products is
projection. Suppose ||u|| = 1, so that u# is a unit vector. We can think of any
other vector v as consisting of two components: (a) a component in the di-
rection of # and (b) a component that’s perpendicular to u. This is depicted b
(0.37,0.73). We

can think of v as the sum of two vectors, a and b, where a is parallel to # and b is perpendicular. The

geometrically to the right: Here, # = (0.8,0.6) and v

length of b is exactly u - v = 0.734, which is why you can think of dot products as projections: the dot
product between u and v is the “projection of v onto u.”

Credit: Hal Daumeé Il



Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"
but in this lecture f(z) and 4 are interchangeable

- Linear decision rule: " f(z) +b > 0

w' f(z) >0

> Can delete bias if we augment feature space:

f(x)=10.5,1.6,0.3]
'
0.5, 1.6, 0.3, 1]




Logistic Regression



Logistic Regression

-

P(y = +|z) = logistic(w ' x) )= T

Ply 1) - P wi) /
14+ exp(> ., wiz;) e

- Decisionrule: P(y=+|z) >05<w'z>0

> To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +lz;)

— szmﬂ log (1 + exp (Z wzxﬂ))
— i=1

sum over features



Gradient Decent

» Gradient decent (or ascent) is an iterative optimization algorithm for finding
the minimum (or maximum) of a function.

Repeat until convergence {
1 Initial "

~__— Gradient

/
/
/
]

w = w — Ozaﬁ(w)

/« ow

Clobal i } learning rate (step size)




------------------------------------------------

of 0fdg 9f(g) dg(x)
O0r 0OgOx  Og O

------------------------------------------------

maximize!

ﬁ(mﬁ Yj = _|_) —

0L(xj,y;)
8?1]7;




Logistic Regression

> Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example — ;,;jz.(l _ P(yj — Hg;j))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;j;, which will increase P(+)

- Gradient of w; on negative example — rii(—P(y; = +|x;))

If P(+) is close to 0, make very little update
Otherwise make w; look less like x;, which will decrease P(+)

- Can combine these gradients as aﬁ(;i’ i) _ zi(y; — P(y; = 1|z;))




Gradient Decent

log likelihood of data P(y|x) data points ()

N /
3£(§£yj) =z;(y; — P(y; = 1|z;))

» Can combine these gradients as

1
- Training set log-likelihood: L(w) = o Zﬁ(%’ayj)

» Gradient vector: =

Ogguw) (8£ 0L | 8£>



Learning Rate

Too low Just right Too high

J(6) J(0) J(6)

/

E
0 0 0
A sm.all learning rate The opt.lg:al Iear:mgh Too large of a learning rate
requires many updates fate swittly reacnes the causes drastic updates
befqre reach!ng the minimum point which lead to divergent
minimum point ‘behaviors

Credit: Jeremy Jordan



Regularization

» Regularizing an objective can mean many things, including an Lo
L2-norm penalty to the weights: m /

> Llesas) = Ml \)'

- Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
~ Early stopping
> Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping



Data to be classified

2..
1-
0-
-1
o
-2-
1 T ] N T
-2 1 0 1 2
X1

Regularization

Decision Boundary for Logistic Regression

2 -
o o %
o.. ’: e " o
e r‘ o L L ) L o a
11 o o '.~'
P : ® L o 0®
- 4 .t .3
o &} ® L YL
e .. o. &o 0‘ ‘. - ‘o}
o’ o‘ 10 % e { . ‘s
®e “"’b’o" : . .
® o e P e, * ° .0.
(;<' O .‘ o & : o * o o ®
{ o * AN e o %
® a % o'.: a ..‘o: o °®
. N
& ® o e e N o o % Lo %°
o e o %, * % o0 ?
.‘ .... ) 4 o .‘..
* o ° .
1 o. . o - ¢ °® ;f
.... ..: @ o
® e* P
.‘.ﬁ\f 0 *%9% %0 *0*
o * ™ o0 ®
.
2
2 1 0 1
X1

Regularization

f(x) = [x1, x2, x12, X22, X1X2, .. ]

https://towardsdatascience.com/understanding-regularization-in-machine-learning-5a0369ac/73b9

Decision Boundary for Logistic Regression

) ®e %
: ...‘.... o °
o o - )
®e
’o:' o® :3.
? o8 . of Ll
e’ e S, b D, { - Y
.. K ‘. & ‘~ o, ° ° ..
o.:O ®y oo ° :..: ® - o g
.‘ : & : o * ..0.
‘ @ e @ o %
~ N ) .;.; o.o.‘.. P 2°*
{ * o oo N o o ® Lo .
... e ° ‘
K 4 ®o 0 ¢ .o ° . ® 0 ‘.
0‘ ®e® ¢ o .O.
-14 o. .0. %o ] e * ¢ f.
0 0% ° S
o “. ° -.. ®
.“.\f 0 %% %0 0 0*
° .‘ J. ..‘.
-
24
2 1 0 1
x1




Optimization s

1440

\
&
\ 3-D VIEW
== OF LANDMARK

- Gradient descent OL(w)
w = W —
Ow

Q: What if loss changes quickly in one direction and slowly in another direction?

contour plot

Credit: Stanford CS231n



Feature Scaling




Optimization s

1440

N\
&
= OF LANDMARK

- Gradient descent OL(w)
Wwi=w—«
ow

Q: What if loss changes quickly in one direction and slowly in another direction?

contour plot

-

=

Solution: feature scaling! Credit: Stanford CS231n




Optimization

» Gradient descent 0
W +— W — Qgq, L

. g =
- Very simple to code up ow

» “First-order” technique: only relies on having gradient

» Newton’s method 5?2 —1
W 4— W — ( ﬁ) g

» Second-order technique 2

» Optimizes quadratic instantly / |
Inverse Hessian: n X n mat, expensive!

» Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian



Logistic Regression: Summary

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference
argmaxyP(y\x) fundamentally same as Naive Bayes

Ply=1lz) >05<w' 2 >0

» Learning: gradient ascent on the (regularized) discriminative log-likelihood



Perceptron/SVM



History |edit]

: l
¥ w=T =t =1 el we) i
¥ =l =i w=l W=l -

¥y ow
—

. —~eee LR R ————
o ¥

Wi ¥ W ¥ meed M= i wped Ml Seed

i B e
'

k
!
:
4
i
.
I
i
:
v
I
I
i
!
|
B

Ty
W

Mark | Perceptron machine, the first =
implementation of the perceptron
algorithm. It was connected to a
camera with 20x20 cadmium sulfide
photocells to make a 400-pixel image.
The main visible feature is a patch
panel that set different combinations of
input features. To the right, arrays of
potentiometers that implemented the
adaptive weights.[?1213

original text are shown and corrected.

Perceptron

See also: History of artificial intelligence § Perceptrons and the attack on connectionism, and Al winter § The
abandonment of connectionism in 1969

The perceptron algorithm was invented in 1958 at the Cornell Aeronautical Laboratory by Frank Rosenblatt,®! funded by the United States Office of Naval Research.[*!

The perceptron was intended to be a machine, rather than a program, and while its first implementation was in software for the IBM 704, it was subsequently
implemented in custom-built hardware as the "Mark 1 perceptron". This machine was designed for image recognition: it had an array of 400 photocells, randomly
connected to the "neurons". Weights were encoded in potentiometers, and weight updates during learning were performed by electric motors.[21193

In a 1958 press conference organized by the US Navy, Rosenblatt made statements about the perceptron that caused a heated controversy among the fledgling Al
community; based on Rosenblatt's statements, The New York Times reported the perceptron to be "the embryo of an electronic computer that [the Navy] expects will
be able to walk, talk, see, write, reproduce itself and be conscious of its existence."*]

Although the perceptron initially seemed promising, it was quickly proved that perceptrons could not be trained to recognise many classes of patterns. This caused the
field of neural network research to stagnate for many years, before it was recognised that a feedforward neural network with two or more layers (also called a multilayer
perceptron) had greater processing power than perceptrons with one layer (also called a single layer perceptron).

Single layer perceptrons are only capable of learning linearly separable patterns. For a classification task with some step activation function a single node will have a
single line dividing the data points forming the patterns. More nodes can create more dividing lines, but those lines must somehow be combined to form more complex
classifications. A second layer of perceptrons, or even linear nodes, are sufficient to solve a lot of otherwise non-separable problems.

In 1969 a famous book entitled Perceptrons by Marvin Minsky and Seymour Papert showed that it was impossible for these classes of network to learn an XOR
function. It is often believed (incorrectly) that they also conjectured that a similar result would hold for a multi-layer perceptron network. However, this is not true, as
both Minsky and Papert already knew that multi-layer perceptrons were capable of producing an XOR function. (See the page on Perceptrons (book) for more
information.) Nevertheless, the often-miscited Minsky/Papert text caused a significant decline in interest and funding of neural network research. It took ten more years
until neural network research experienced a resurgence in the 1980s. This text was reprinted in 1987 as "Perceptrons - Expanded Edition" where some errors in the

The kernel perceptron algorithm was already introduced in 1964 by Aizerman et al.[’! Margin bounds guarantees were given for the Perceptron algorithm in the general non-separable case first by Freund and
Schapire (1998),!'] and more recently by Mohri and Rostamizadeh (2013) who extend previous results and give new L1 bounds.!®!

The perceptron is a simplified model of a biological neuron. While the complexity of biological neuron models is often required to fully understand neural behavior, research suggests a perceptron-like linear
model can produce some behavior seen in real neurons.’!

PhD 1956 from Cornell



A Bit of History

» The Mark | Perceptron machine was the first implementation of the
perceptron algorithm.

» Perceptron (Frank Rosenblatt, 1957)

> Artificial Neuron (McCulloch & Pitts, 1943)

. - . _
1 .. ’. ‘
' ~| ‘ . . : X . ..
: BEA 'R
'. = » y
- : <l > .
: 3
_ -5 1| &
1 -
. -4 :
» ..3 -
‘ i
. N, * ,
3
;
N b: ‘
+ 43

McCulloch Pitts Neuron

) e _ Perceptron
(assuming no inhibitory inputs)
T T
y=1 j.fZg;,iZ() y =1 fz'.fz'u_','*:z:iZO
T T
—0 z‘,fZg;,i<0 =0 fz'.fz'u_'l-*ati<0

The IBM Automatic Sequence Controlled Calculator, called Mark | by Harvard University’s staff.

It was designed for image recognition: it had an array of 400 photocells, randomly connected to

the "neurons". Weights were encoded in potentiometers, and weight updates during learning

were performed by electric motors. The first program was run on Mark | in 1944,
https://www.youtube.com/watch?v=SaFQAoYV1Nw

https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_al&feature=emb_logo


https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_aI&feature=emb_logo

Perceptron - artificial neuron

Aktm

SOma

«lr

’OADQ"M' e @

Figure from https://jontysinai.github.io/jekyll/update/2017/1 1/1 |/the-perceptron.html



Perceptron

» Simple error-driven learning approach similar to logistic regression

- Decisionrule: ¢p' 2 > () Logistic Regression
- If incorrect: if positive, 1y «— w + o w4 w+z(1 — Py = 1|z))
ifnegative,w%w_g; w%w—azP(yzl\aj)

~ Algorithm is very similar to logistic regression

» Perceptron guaranteed to eventually separate the data if the data are
separable


http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Perceptron

» Separating hyperplane

Two vectors have a zero dot product if and only if they are perpendicular



Linear Separability

> In general, two groups are linearly separable in n-dimensional space,
if they can be separated by an (n-1)-dimensional hyperplane.

o o
ooo () © o I
°© 0 o © o\l ale
i © o o e®\ ope o/
O o® o / © © OO\ e © Q 0
e ©_ ¢ o, o/
O / (%) @ =49
® o o oooo
i |V 4
oo°° (&) -
© ©
c0 © & o
o o°°o ”
o d%




What does “converge” mean?

> It means that it can make an entire pass through the training data
without making any more updates.

> In other words, Perceptron has correctly classified every training
example.

» Geometrically, this means that it was found some hyperplane that
correctly segregates the data into positive and negative examples


http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Support Vector Machines

» Many separating hyperplanes — is there a best one?

\ +
T~ \ + .|.
-~ o+
-~ _ \ +
~ IS \
~ ~
~ = QA
\\ \\\
~ <
\\ \ \\\
=~ o \ =~ <
\\ \ \\\
\\ \ =~
- h\ \ \\\
- ~ ~
- _\\\
- v T
- - \ S




Support Vector Machines

» Many separating hyperplanes — is there a best one?

~
~
~
~
~
~§
~

~~~~
~ Sl
~ Sl
~ .. I
~ S e
~ +
~ ..
~ ~..
~ ~ ~ @
~ ~
~s ~
~ ..
~ Sa
~
~~~ ~
~~~~ -~ ~
~~~ ~ ~.
~ S
.. ~ RIS
.. ~ RS
~ ~ g
< ..
~ ..
~ ..
~ el
- ~
~~~ ~
- Say ~
~a ~

§~~
~

» The hyperplane lies exactly halfway between
the nearest positive and negative example.



~
~
~
~
~
~§
~

Support Vector Machines

» Many separating hyperplanes — is there a best one?

~
~
~
~
~
~§
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~§
|

4
~
~
~
~
~
~
~
~
~
~
~
~
~§
~

\\\j\g@v?\w\e sl e Q_)SIOLQX‘(‘J) Mkﬁj)wﬁ
hekween the  Nasvest \)O g \)Om—k—
Ok NOONRER ne ok v e QOQ\F\ |

~§
~§
~

~§
~
~
~§
~

~
~
~
~
~
~§
~

e T I T T

Mortyin w2
pTH = (%) i INNAY
IR ot om LoXs b = |
f\ N WX- th = = |
~~~~~~~~~~~~ o \ \ (
R 2 —_ e \)\.)\ W
Mar i, - My - i “1“\? f
3 W)



Support Vector Machines
» Constraint formulation: find w via following quadratic program:

Minimize ||w||§ minimizing norm with

stV w'z; >1ify;, =1 fixed margin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!



N-Slack SVMs

Tr
Minimize ) ||qpl|2 +- Zgﬂ'
j=1

Image credit: Lang Van Tran

http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf




N-Slack SVMs

Tr
Minimize ) |lqp]|2 + Z@'
j=1

UV 2y — D)(w' zj) > 1§ Vi & =0

- The ¢, are a "fudge factor” to make all constraints satisfied
» Take the gradient of the objective (flip for maximizing):

Y . 0 |

» Looks like the perceptron! But updates more frequently

http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf




LR, Perceptron, SVM

B o exp (D wimg)
y = 1jz) = (1 +exp (3o wiz;))

Decisionrule:  py, = 1]2) > 05 < w' 'z >0

- Logistic regression: P(

Gradient (unregularized): z(y — P(y = 1|x))

» Logistic regression, perceptron, and SVM are closely related

~ All gradient updates: “make it look more like the right thing and less like the
wrong thing”



LR, Perceptron, SVM

> Gradients on Positive Examples

Logistic regression

x(l — logistic(w ' z))

Perceptron

:c if w'z <0, else 0

SVM (ignoring regularizer)

a: if w' 'z <1, else 0

*these gradients are for maximizing things, which is why they are flipped

http://ciml.info/dl/v0 99/ciml-v0 99-chQ7.pdf




LR, Perceptron, SVM

> Loss on Positive Examples

Hinge Loss

max (0,1 — 2)

‘(IHinge (SVM)

1
0 1|)_' ‘(ILogistic
Perceptron |, = !
g > p 0 1 , 3

http://ciml.info/dl/v0 99/ciml-v0 99-chQ7.pdf




Optimization — more later ...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better), e.g., Newton’s method,
Quasi-Newton methods (LBFGS), Adagrad, Adadelta, etc.

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective



Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Features # of | frequency or [[ NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [ 806 | 808 ] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Method RT-s MPQA

MNB-uni 779  85.3

MNB-bi 79.0  86.3| «—— Naive Bayes is doing well!
SVM-uni 762  86.1

SVM-bi 777  86.7

NBSVM-uni | 78.1  85.3

NBSVM_bi 104 863 Ng and Jordan (2002) — NB
RAE 76.8 857 can be better for small data

RAE-pretrain | [77.7  86.4

Voting-w/Rev. | 63.1 81.7
Rule 629  81.8
BoF-noDic. 757  81.8 Recursive Auto-encoder. Before

BoF-w/Rev. | 764  84.1 neural nets had taken off —
Tree-CRF 77.3 86.1

BoWSVM _ _ results weren’t that great
Kim (2014) CNNs 81.5 39. Wang and Manning (2012)




Summary

> Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

- All gradient updates: “make it look more like the right thing and less
like the wrong thing”



QA Time

DO YOU HAVE

ANY QUESTIONS?




