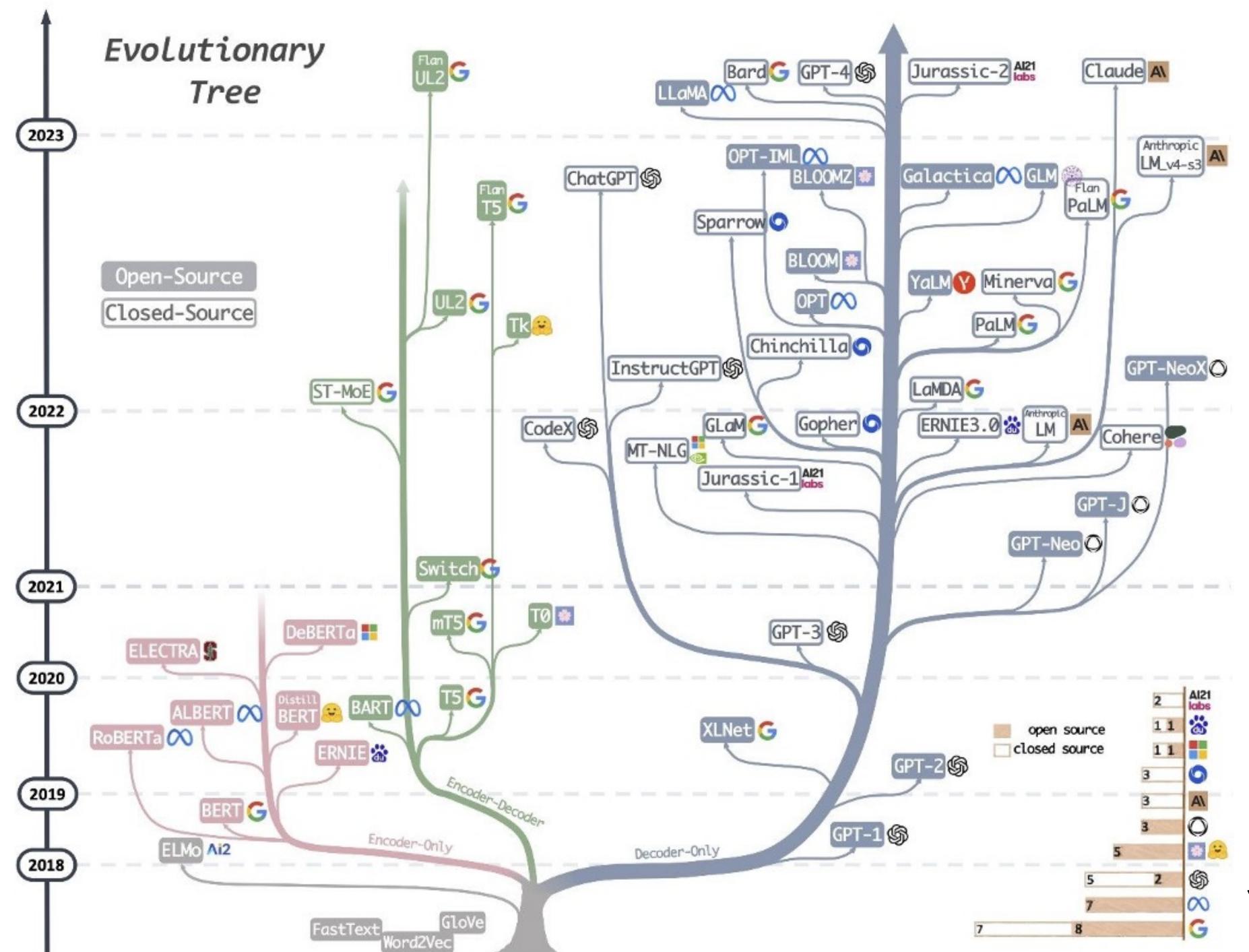
Large Language Models (part 4)

Wei Xu

(Many slides from Greg Durrett, Daniel Khashabi, Tatsunori Hashimoto)

Administrivia

- Practice Midterm is released
- ICE GPU cluster access is granted



Yang et al. (Apr. 2023)

Open-source Efforts

OPT: Open Pre-trained Transformer LMs

- GPT-3 models only released via API access.
- PALM not generally available outside Google
 - Doesn't support reproducible experiments.

OPT (125M-66B-175B; open-sourced), to roughly matches
 GPT-3, with parameters are shared with the research community

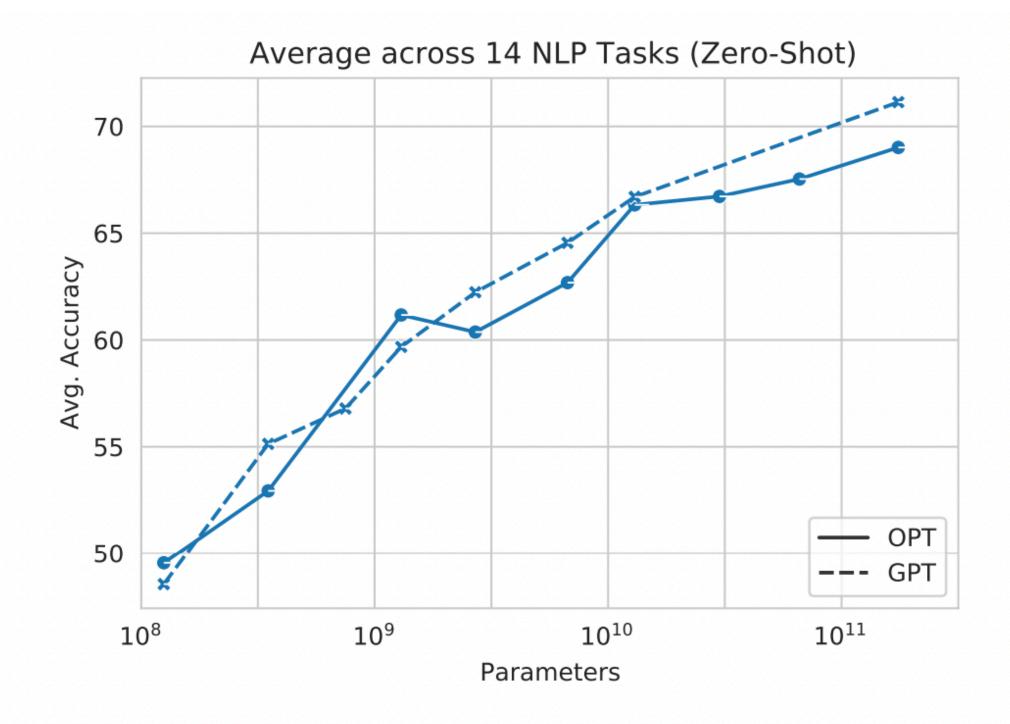


Figure 3: **Zero-shot NLP Evaluation Averages**. Across a variety of tasks and model sizes, OPT largely matches the reported averages of GPT-3. However, performance varies greatly per task: see Appendix A.

Zhang et al. (2022)

OPT: Open Pre-trained Transformer LMs

Includes 114 page logbook for training 175B model, interesting read

2021-11-16 11pm [Myle]: Run 12.08

- Previous run failed with mysterious error: "p2p_plugin.c:141 NCCL WARN NET/IB: Got async event: port error"
- New log file: /shared/home/namangoyal/checkpoints/175B/175B_run12.08.me_fp16.fsdp.gpf32.0.relu.transformer_l m_megatron.nlay96.emb12288.lrnpos.0emb_scale.bm_none.tps2048.gpt2.adam.b2_0.95.eps1e-08.cl1 .0.lr0.00012.endlr6e-06.wu2000.dr0.1.atdr0.1.0emb_dr.wd0.1.ms8.uf1.mu143052.s1.ngpu992/train.log

```
CKPT_DIR=/data/users/myleott/175B_run12.07.me_fp16.fsdp.gpf32.0.relu.transformer_lm_megatron.nlay96.emb12288.lrnp
os.0emb_scale.bm_none.tps2048.gpt2.adam.b2_0.95.eps1e-08.cl1.0.lr0.00012.endlr6e-06.wu2000.dr0.1.atdr0.1.0emb_dr.
wd0.1.ms8.uf1.mu143052.s1.ngpu992
BLOB_URL="<<<SCRUBBED FOR RELEASE>>>"
cd $CKPT_DIR
cp --recursive --include-pattern "checkpoint_5_13250*.pt" "$BLOB_URL" checkpoint_5_13250
export RESTORE_FILE=$CKPT_DIR/checkpoint_5_13250/checkpoint_5_13250.pt
export RUN_ID=175B_run12.08
INCLUDED_HOSTS=node-[1-38,40-89,91-94,96-119,121-128] \
   python -m fb_sweep.opt.sweep_opt_en_lm_175b \
    -n 124 -g 8 -t 1 \
    -p $RUN_ID \
     -checkpoints-dir /shared/home/namangoyal/checkpoints/175B/ \
    --restore-file $RESTORE_FILE
After Launch:
sudo scontrol update job=1394 TimeLimit=UNLIMITED
sudo scontrol update job=1394 MailUser=<scrubbed> MailType=ALL
```

6 Considerations for Release

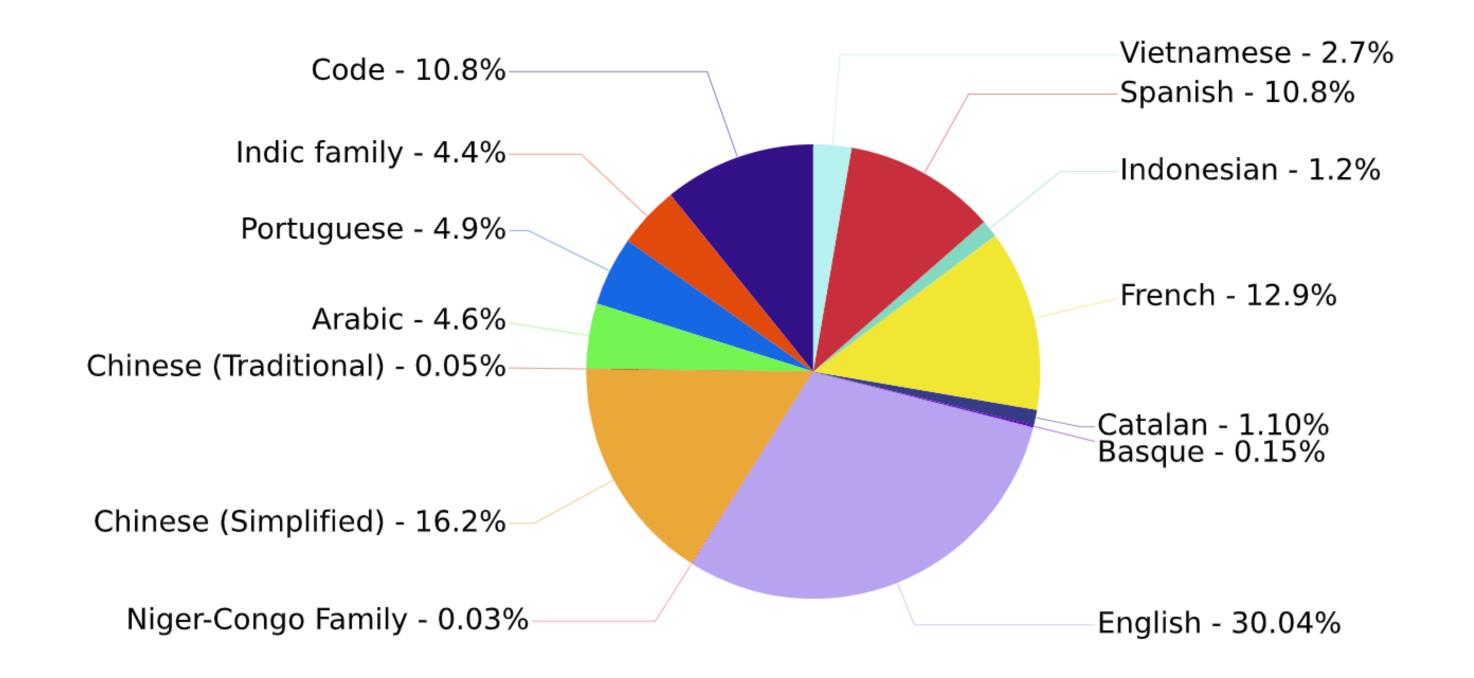
Following the recommendations for individual researchers generated by the Partnership for AI,⁷ along with the governance guidance outlined by NIST,⁸ we are disclosing all of the details involved in training OPT-175B through our logbook,⁹ our code, and providing researchers access to model weights for OPT-175B, along with a suite of smaller baselines mirroring the setup for OPT-175B. We aim to be fully accountable for the development lifecycle of OPT-175B, and only through increasing transparency around LLM development can we start understanding the limitations and risks of LLMs before broader deployment occurs.

By sharing a detailed account of our day-to-day training process, we disclose not only how much compute was used to train the current version of OPT-175B, but also the human overhead required when underlying infrastructure or the training process itself becomes unstable at scale. These details

Zhang et al. (2022)

Bloom

- A BigScience initiative, open-access, 176B parameter (GPT-2 architecture)
- 59 languages (46 natural language + 13 programming language)
- 1.6TB of pre-processed text



- Released by Meta Al on Feb 27, 2023
- Weights of all models are publicly available (non-commercial license)

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.

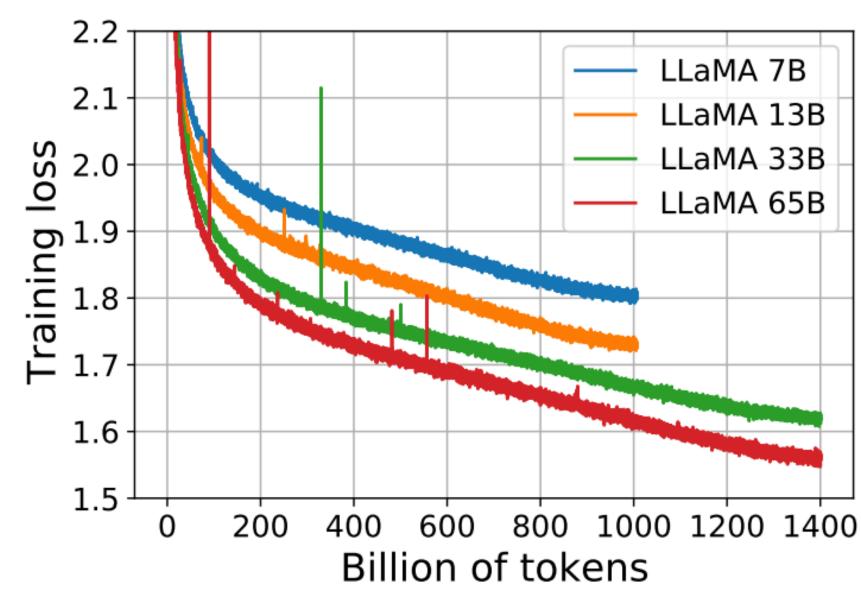


Figure 1: Training loss over train tokens for the 7B, 13B, 33B, and 65 models. LLaMA-33B and LLaMA-65B were trained on 1.4T tokens. The smaller models were trained on 1.0T tokens. All models are trained with a batch size of 4M tokens.

- Trained only on publicly available data:
 - English CommonCrawl
 - C4 (another CommonCrawl dataset)
 - GitHub (from Google BigQuery)
 - Wikipedia of 20 languages,
 - Gutenberg and Books3 (from ThePile)
 - ArXiv (latex files)
 - StackExchange.

Dataset	Sampling prop.	Epochs	Disk size
CommonCraw	1 67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	e 2.0%	1.03	78 GB

Table 1: **Pre-training data.** Data mixtures used for pre-training, for each subset we list the sampling proportion, number of epochs performed on the subset when training on 1.4T tokens, and disk size. The pre-training runs on 1T tokens have the same sampling proportion.

Split all numbers into individual digits, and fall back to bytes for unknown UTF-8 characters

LLaMA-13B matches and outperforms OPT and (old) GPT-3 for zero-shot and few-shot performance

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
LLaMA	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
LLawiA	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

		0-shot	1-shot	5-shot	64-shot
GPT-3	175B	14.6	23.0	-	29.9
Gopher	Gopher 280B		-	24.5	28.2
Chinchill	a 70B	16.6	-	31.5	35.5
	8B	8.4	10.6	-	14.6
PaLM	62B	18.1	26.5	-	27.6
	540B	21.2	29.3	-	39.6
	7B	16.8	18.7	22.0	26.1
LLaMA	13B	20.1	23.4	28.1	31.9
LLaWIA	33B	24.9	28.3	32.9	36.0
	65B	23.8	31.0	35.0	39.9

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

Table 4: NaturalQuestions. Exact match performance.

Transformer variations that have been used in different LLMs

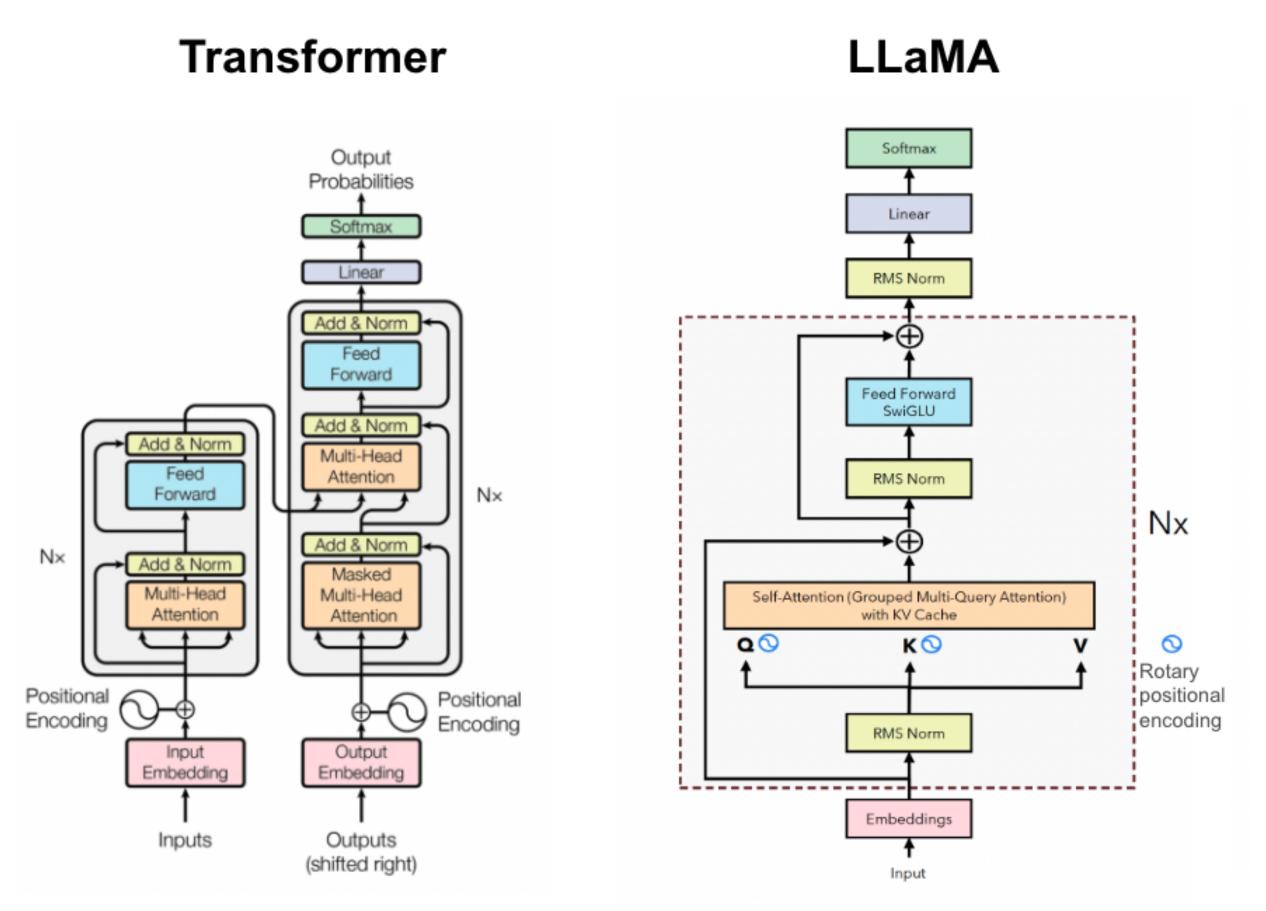


Image Credit: Rajesh Kavadiki

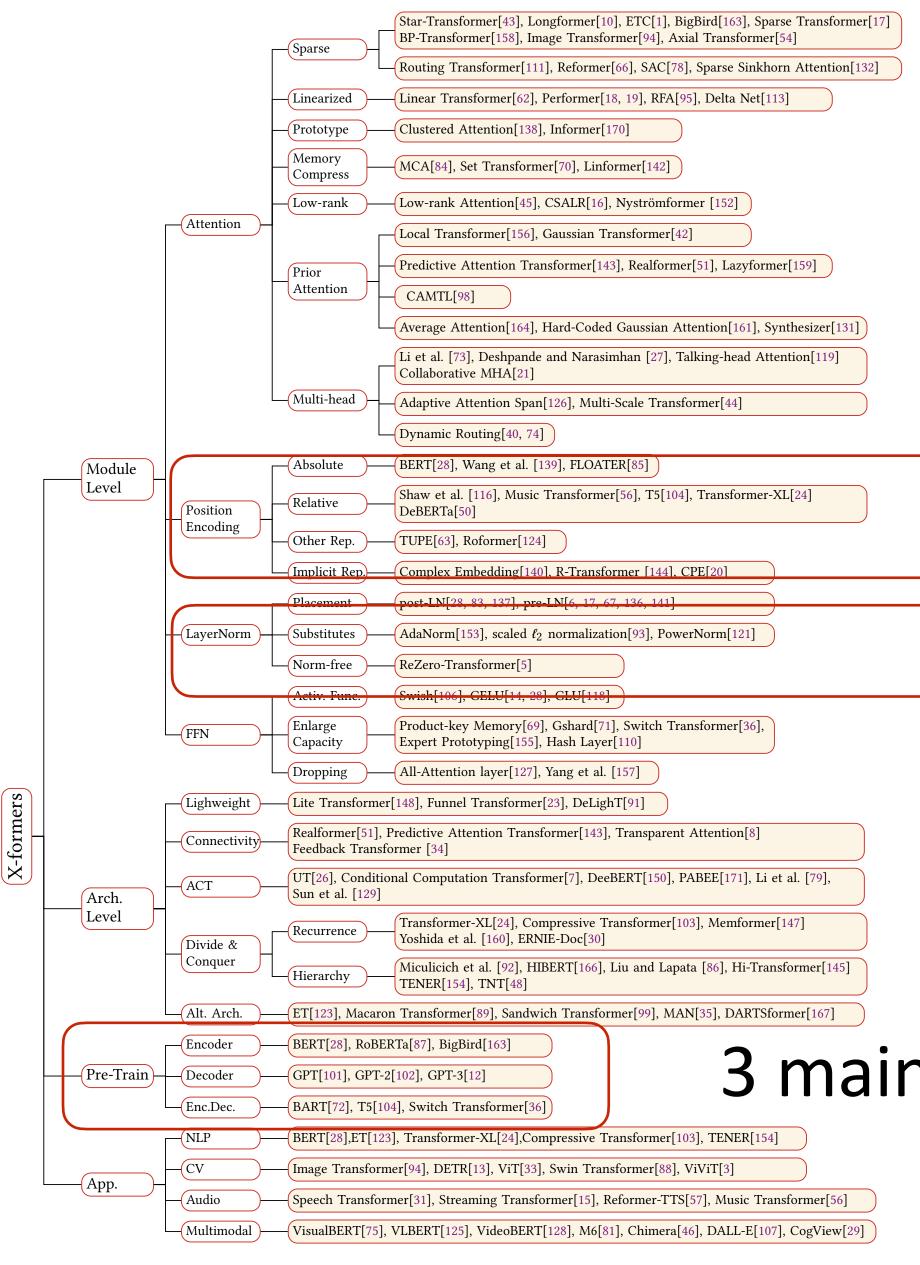
Transformer variations that have been used in different LLMs

- Pre-normalization layer using RMSNorm
- SwiGLU activation function combines Swish and Gated Linear Unit (GLU), also used in Google's PaLM model

Rotary positional embeddings (RoPE)

AdamW Optimizer

Transformer Variants



Positional Embeddings

LayerNorm

3 main types: encoder, decoder, enc-dec

Fig. 3. Taxonomy of Transformers

Lin et al. (2021)

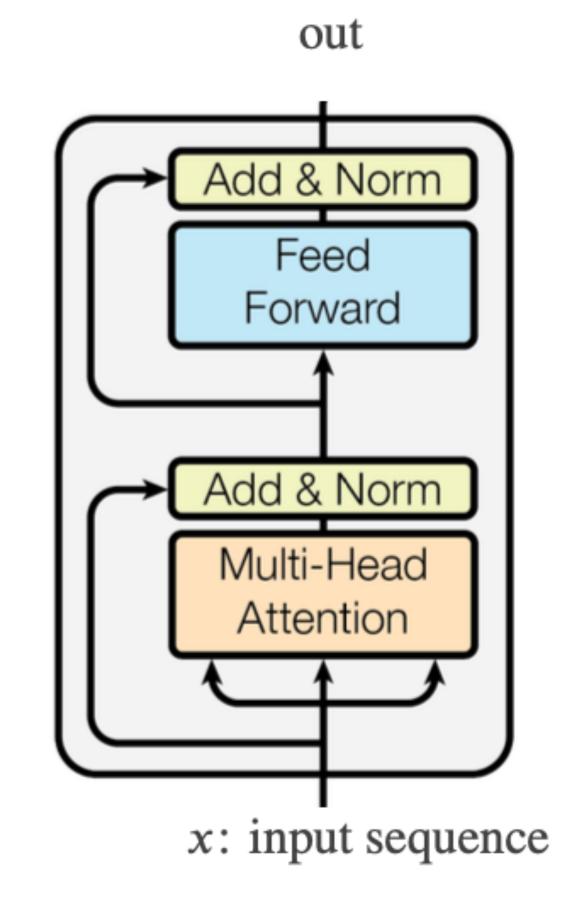
Normalization

Original Transformer — "Add" before "Norm", or "Norm" before "Add"?

$$LayerNorm(x + SubLayer(x))$$

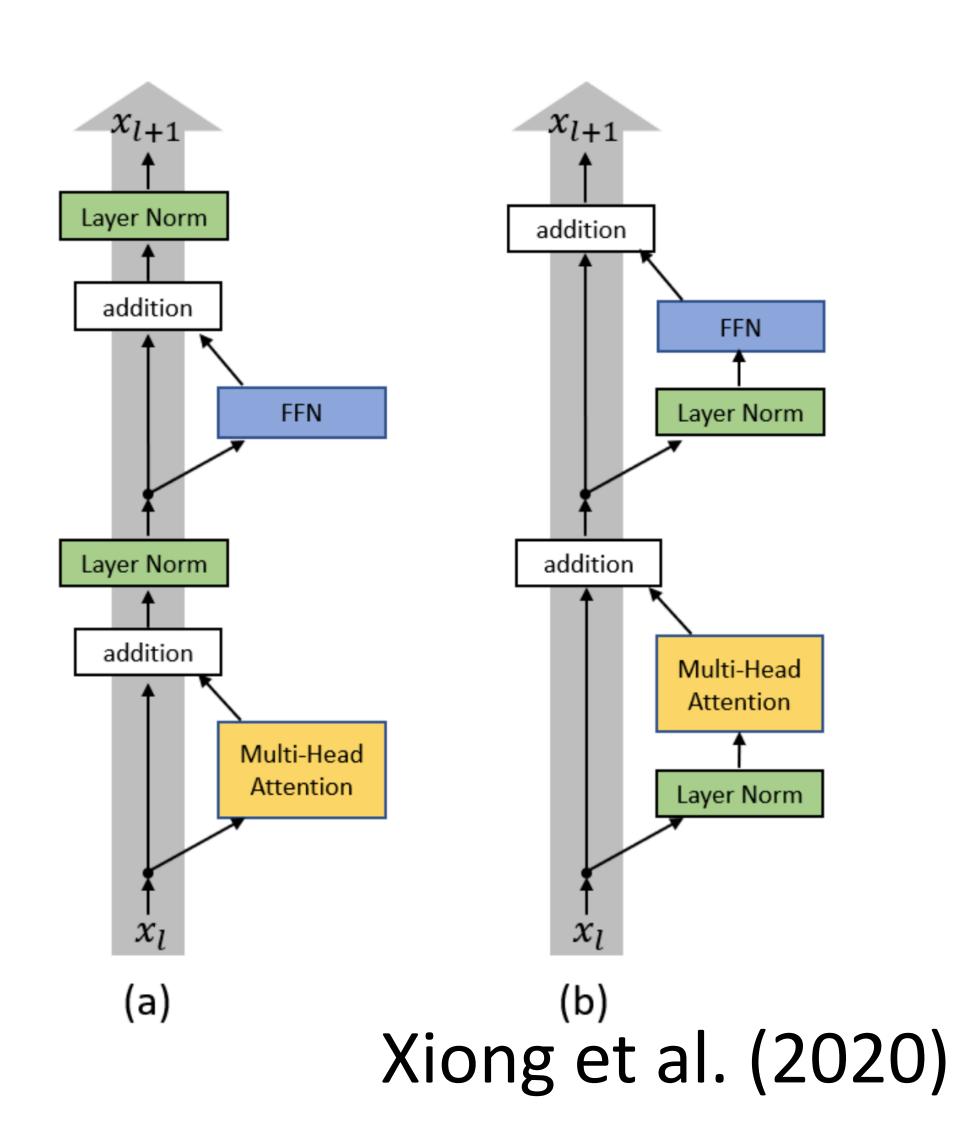
or

$$x + SubLayer(LayerNorm(x))$$

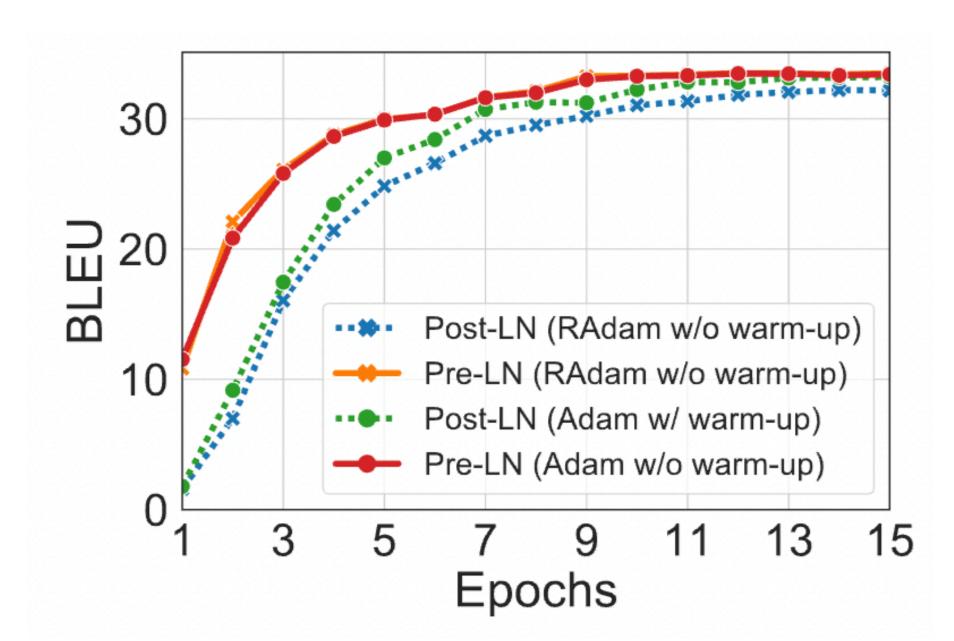


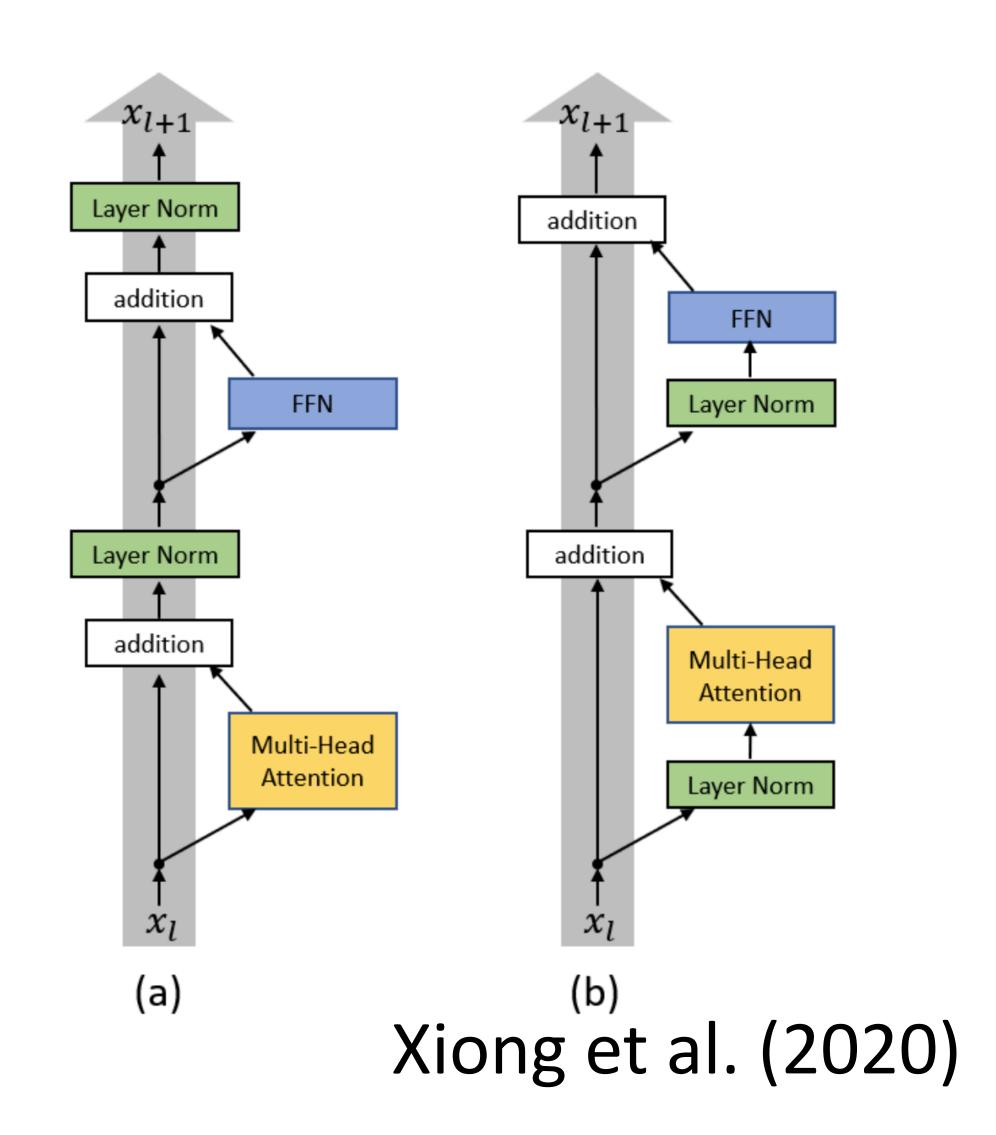
(Baevski & Auli, 2018; Child et al., 2019; Wang et al., 2019)

 Pre-normalization Transformer (b) to have better-behaved gradients at initialization than in the original Transformer (a)

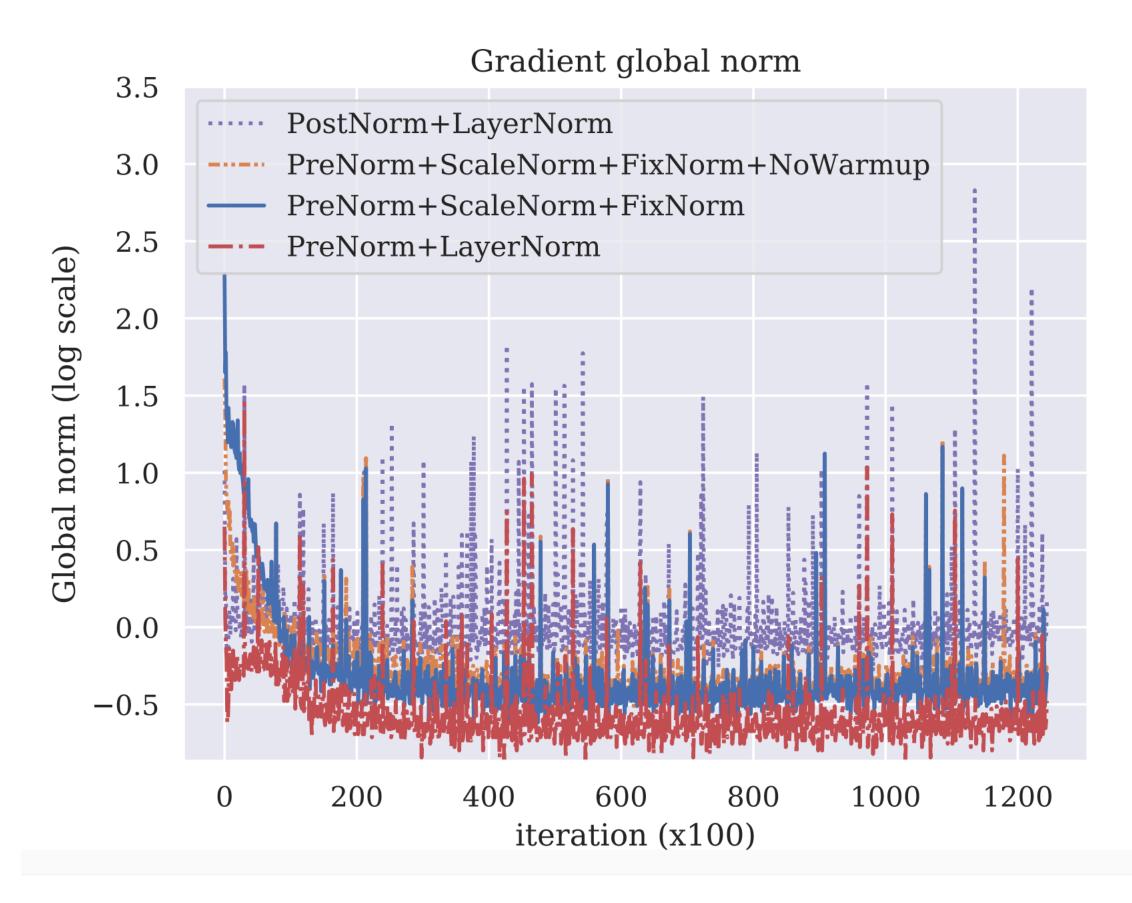


- Pre-normalization Transformer (b) to have better-behaved gradients at initialization than in the original Transformer (a)
- In (b), LayerNorm does not disrupt residual

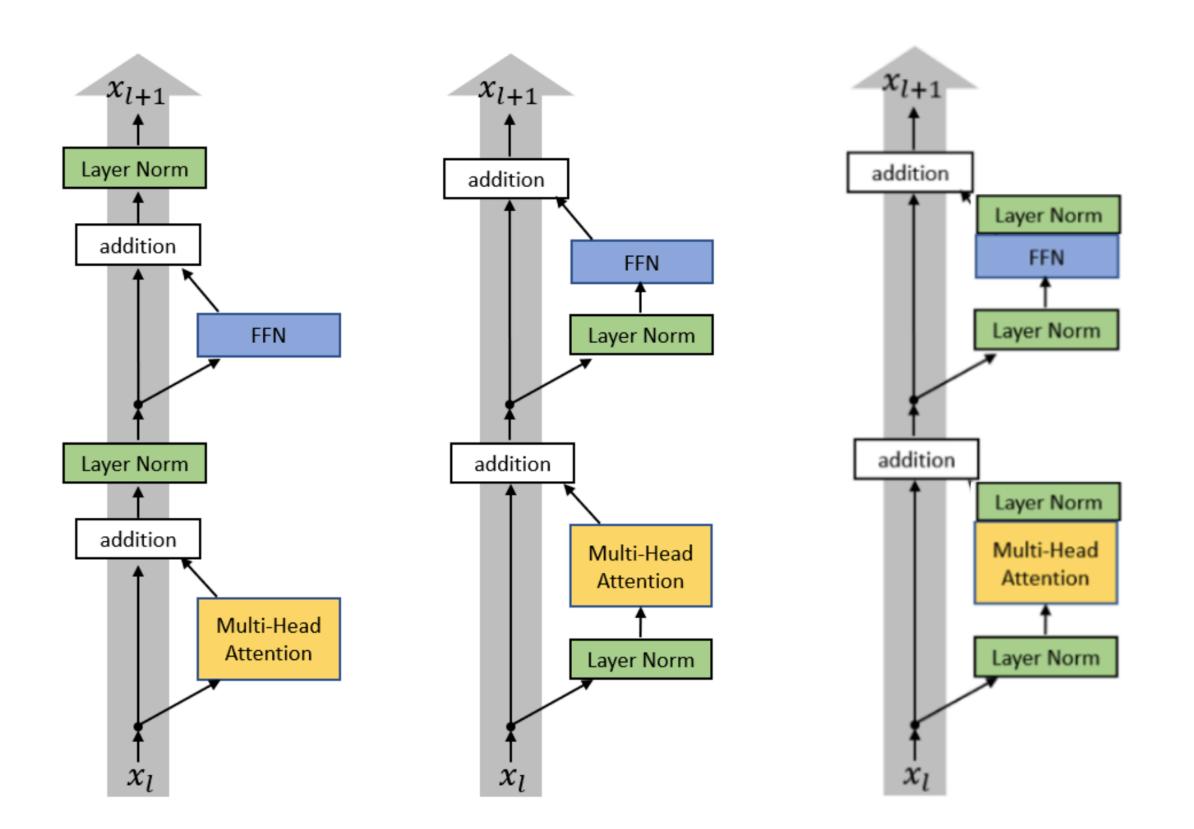




- Post-norm produces noisy gradients with many tall spikes, needs warm up
- Pre-norm has fewer noisy gradients with smaller sizes, even without warmup



- Today, almost all LLMs use pre-norm for stability and larger learning rates for training large networks.
- Gemma 2/3 used both pre-norm and post-norm.



- Today, almost all LLMs use pre-norm for stability and larger learning rates for training large networks.
- Gemma 2/3 used both pre-norm and post-norm.

```
class Gemma3DecoderLayer(GradientCheckpointingLayer):

def __init__(self, config: Gemma3TextConfig, layer_idx: int):
    super().__init__()
    self.config = config
    self.hidden_size = config.hidden_size
    self.layer_idx = layer_idx
    self.attention_type = config.layer_types[layer_idx]
    self.self_attn = Gemma3Attention(config=config, layer_idx=layer_idx)
    self.mlp = Gemma3MLP(config)
    self.input_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
    self.post_attention_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
    self.pre_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
    self.post_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
```

QK-Norm

Gemma 2/3 also adopted QK-Norm.

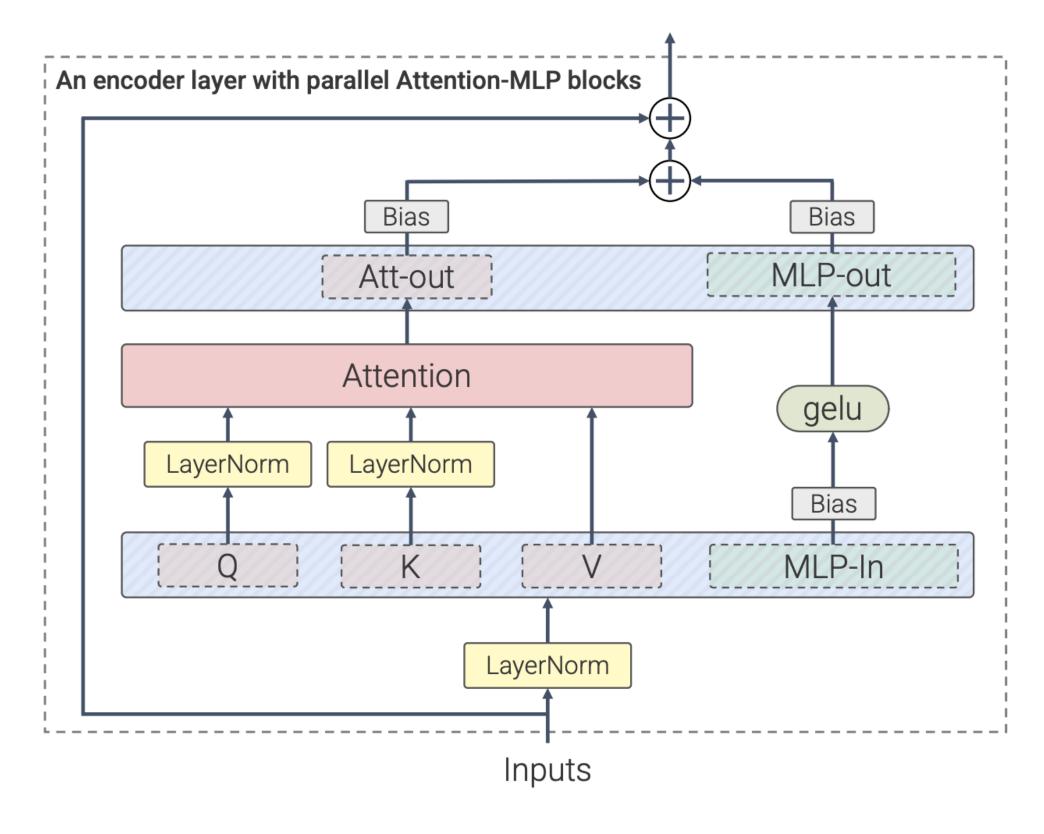


Figure 2: Parallel ViT-22B layer with QK normalization.

Image from Dehghani et al. (2023)

RMSNorm (a) instead of standard LayerNorm (b)

$$ar{a}_i = rac{a_i}{ ext{RMS(a)}} g_i, \quad ext{where RMS(a)} = \sqrt{rac{1}{n} \sum_{i=1}^n a_i^2}. \qquad ar{a}_i = rac{a_i}{a_i}$$

$$ar{a}_i=rac{a_i-\mu}{\sigma}g_i$$
 variance (b) $\mu=rac{1}{n}\sum_{i=1}^n a_i, \quad \sigma=\sqrt{rac{1}{n}\sum_{i=1}^n (a_i-\mu)^2}.$

(used in LLaMA1/2/3, PaLM, T5 ...)
Zhang and Sennrich (2019)

(used in GPT1/2/3, OPT ...)

Ba et al. (2016)

LayerNorm

- LayerNorm re-centers and re-scales input a.
- g: "gain" parameter of LayerNorm, a learnable vector, which helps to adaptively determine the optimal scale

$$ar{a}_i = rac{a_i - \mu}{\sigma} g_i$$
 variance

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i, \quad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i - \mu)^2}.$$

Ba et al. (2016)

RMSNorm (a) instead of standard LayerNorm (b)

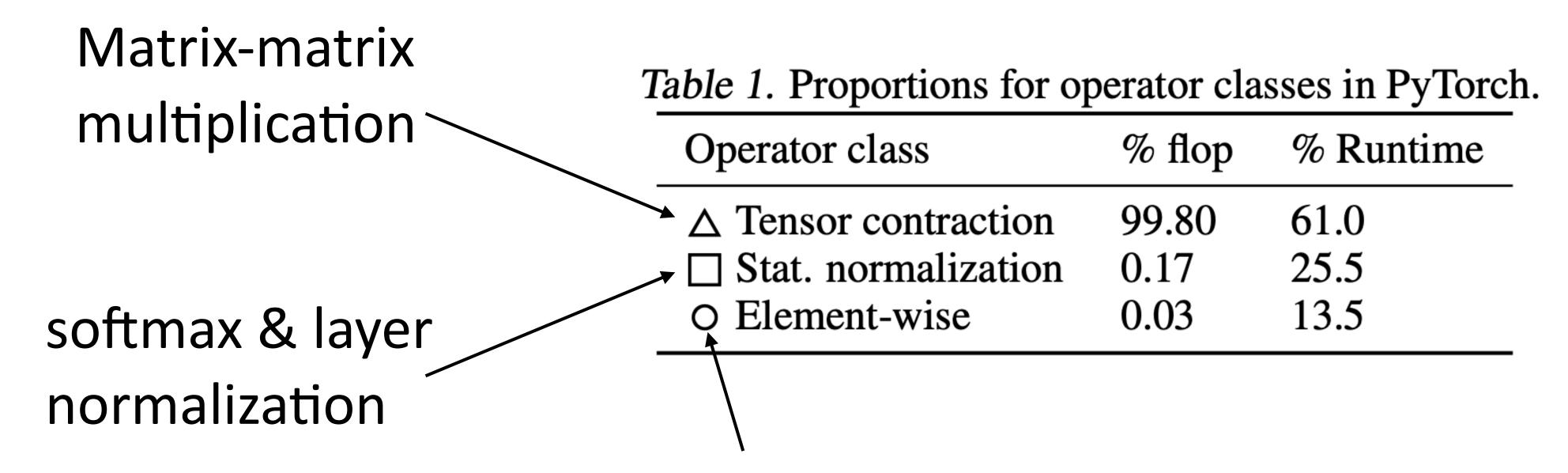
root mean square
$$ar{a}_i=rac{a_i}{ ext{RMS(a)}}g_i, \quad ext{where } ext{RMS(a)}=\sqrt{rac{1}{n}\sum_{i=1}^n a_i^2}. \qquad ar{a}_i=rac{a_i-\mu}{\sigma}g_i$$
 (b)

only re-scaling invariance, skip re-centering more computationally efficient

$$ar{a}_i=rac{a_i-\mu}{\sigma}g_i$$
 variance (b) $\mu=rac{1}{n}\sum_{i=1}^n a_i, \quad \sigma=\sqrt{rac{1}{n}\sum_{i=1}^n (a_i-\mu)^2}.$

Zhang and Sennrich (2019)

- Matrix multiplications make up the majority of GPU FLOPs (and memory)
- Below is runtime analysis of the encoder layer of (Transformer-based) BERT



biases, dropout, activations, and residual connections

Yet, RMSNorm runtime gains have been observed in papers

Model	Params	\mathbf{Ops}	Step/s	Early loss	Final loss	SGLUE	XSum	\mathbf{WebQ}	WMT EnDe
Vanilla Transformer	223M	11.1T	3.50	2.182 ± 0.005	1.838	71.66	17.78	23.02	26.62
RMS Norm	223M	11.1T	3.68	2.167 ± 0.008	1.821	75.45	17.94	24.07	27.14

Model	Params	Ops	Step/s	Early loss	Final loss	SGLUE	XSum	WebQ	WMT EnDe
Vanilla Transformer	223M	11.1T	3.50	2.182 ± 0.005	1.838	71.66	17.78	23.02	26.62
GeLU	223M	11.1T	3.58	2.179 ± 0.003	1.838	75.79	17.86	25.13	26.47
Swish	223M	11.1T	3.62	2.186 ± 0.003	1.847	73.77	17.74	24.34	26.75
ELU	223M	11.1T	3.56	2.270 ± 0.007	1.932	67.83	16.73	23.02	26.08
GLU	223M	11.1T	3.59	2.174 ± 0.003	1.814	74.20	17.42	24.34	27.12
GeGLU	223M	11.1T	3.55	2.130 ± 0.006	1.792	75.96	18.27	24.87	26.87
ReGLU	223M	11.1T	3.57	2.145 ± 0.004	1.803	76.17	18.36	24.87	$\boldsymbol{27.02}$
SeLU	223M	11.1T	3.55	2.315 ± 0.004	1.948	68.76	16.76	22.75	25.99
SwiGLU	223M	11.1T	3.53	2.127 ± 0.003	1.789	76.00	18.20	24.34	27.02
LiGLU	223M	11.1T	3.59	2.149 ± 0.005	1.798	75.34	17.97	24.34	26.53
Sigmoid	223M	11.1T	3.63	2.291 ± 0.019	1.867	$\boldsymbol{74.31}$	17.51	23.02	26.30
Softplus	223M	11.1T	3.47	2.207 ± 0.011	1.850	72.45	17.65	24.34	26.89
RMS Norm	223M	11.1T	3.68	2.167 ± 0.008	1.821	75.45	17.94	24.07	27.14
Rezero	223M	11.1T	3.51	2.262 ± 0.003	1.939	61.69	15.64	20.90	26.37
Rezero + LayerNorm	223M	11.1T $11.1T$	3.26	2.232 ± 0.006 2.223 ± 0.006	1.858	70.42	17.58	23.02	26.29
Rezero + RMS Norm	223M	11.1T $11.1T$	3.34	2.223 ± 0.003 2.221 ± 0.009	1.875	70.33	17.32	23.02	26.19
Fixup	223M	11.1T $11.1T$	2.95	2.382 ± 0.012	2.067	58.56	14.42	23.02	26.31
$\frac{1}{24 \text{ layers}}, d_{\text{ff}} = 1536, H = 6$	224M	11.1 <i>T</i>	3.33	2.200 ± 0.007	1.843	74.89	17.75	25.13	26.89
18 layers, $d_{\rm ff} = 2048, H = 8$	223M	11.1T $11.1T$	3.38	2.185 ± 0.005	1.831	76.45	16.83	24.34	27.10
8 layers, $d_{\rm ff} = 4608, H = 18$	223M	11.1T $11.1T$	3.69	2.190 ± 0.005 2.190 ± 0.005	1.847	74.58	17.69	23.28	26.85
6 layers, $d_{\rm ff} = 4008, H = 16$	223M	11.1T $11.1T$	3.70	2.201 ± 0.000	1.857	73.55	17.59	24.60	26.66
									·
Block sharing	65M	11.1T	3.91	2.497 ± 0.037	2.164	64.50	14.53	21.96	25.48
+ Factorized embeddings	45M	9.4T	4.21	2.631 ± 0.305	2.183	60.84	14.00	19.84	25.27
+ Factorized & shared em- oeddings	20M	9.1T	4.37	2.907 ± 0.313	2.385	53.95	11.37	19.84	25.19
Encoder only block sharing	170M	11.1T	3.68	2.298 ± 0.023	1.929	69.60	16.23	23.02	26.23
Decoder only block sharing	144M	11.1T	3.70	2.352 ± 0.029	2.082	67.93	16.13	23.81	26.08
Factorized Embedding	227M	9.4T	3.80	2.208 ± 0.006	1.855	70.41	15.92	22.75	26.50
Factorized & shared embed- lings	202M	9.1T	3.92	2.320 ± 0.010	1.952	68.69	16.33	22.22	26.44
Γied encoder/decoder in- put embeddings	248M	11.1T	3.55	2.192 ± 0.002	1.840	71.70	17.72	24.34	26.49
Γied decoder input and output embeddings	248M	11.1T	3.57	2.187 ± 0.007	1.827	74.86	17.74	24.87	26.67
Untied embeddings	273M	11.1T	3.53	2.195 ± 0.005	1.834	72.99	17.58	23.28	26.48
Adaptive input embeddings	204M	9.2T	3.55	2.250 ± 0.002	1.899	66.57	16.21	24.07	26.66
Adaptive softmax	204M	9.2T	3.60	2.364 ± 0.005	1.982	72.91	16.67	21.16	25.56
Adaptive softmax without projection	223M	10.8T	3.43	2.229 ± 0.009	1.914	71.82	17.10	23.02	25.72
Mixture of softmaxes	232M	16.3T	2.24	2.227 ± 0.017	1.821	76.77	17.62	22.75	26.82
Transparent attention	223M	11.1T	3.33	2.181 ± 0.014	1.874	54.31	10.40	21.16	26.80
Dynamic convolution	257M	11.8T	2.65	2.403 ± 0.009	2.047	58.30	12.67	21.16	17.03
Lightweight convolution	224M	10.4T	4.07	2.370 ± 0.010	1.989	63.07	14.86	23.02	24.73
Evolved Transformer	217M	9.9T	3.09	2.220 ± 0.003	1.863	73.67	10.76	24.07	26.58
Synthesizer (dense)	211M $224M$	$\frac{3.31}{11.4T}$	3.47	2.334 ± 0.021	1.962	61.03	14.27	16.14	26.63
Synthesizer (dense plus)	243M	11.4T $12.6T$	$\frac{3.47}{3.22}$	2.191 ± 0.010	1.840	73.98	14.27 16.96	23.81	26.71
Synthesizer (dense plus al-	243M $243M$	12.6T $12.6T$	3.01	2.191 ± 0.010 2.180 ± 0.007	1.828	73.98 74.25	17.02	23.28	26.61
pha)	00=3=	4.0	2 - 1	0.043		00 ==	a =		~ - · ·
Synthesizer (factorized)	207M	10.1T	3.94	2.341 ± 0.017	1.968	62.78	15.39	23.55	26.42
Synthesizer (random)	254M	10.1T	4.08	2.326 ± 0.012	2.009	54.27	10.35	19.56	26.44
Synthesizer (random plus)	292M	12.0T	3.63	2.189 ± 0.004	1.842	73.32	17.04	24.87	26.43
Synthesizer (random plus alpha)	292M	12.0T	3.42	2.186 ± 0.007	1.828	75.24	17.08	24.08	26.39
Universal Transformer	84M	40.0T	0.88	2.406 ± 0.036	2.053	70.13	14.09	19.05	23.91
Mixture of experts	648M	11.7T	3.20	2.148 ± 0.006	1.785	74.55	18.13	24.08	26.94
Switch Transformer	1100M	11.7T	3.18	2.135 ± 0.007	1.758	75.38	18.02	26.19	26.81
Funnel Transformer	223M	1.9T	4.30	2.288 ± 0.008	1.918	67.34	16.26	22.75	23.20
	280M	71.0T	0.59	2.378 ± 0.021	1.989	69.04	16.98	23.02	26.30
Weighted Transformer	2001VI	11.01	0.00	2.010 ± 0.021	1.000	05.04	10.50	20.02	20.00

Table 1: Results for all architecture variants. The baseline model is the vanilla Transformer with relative attention. The early loss represents the mean and standard deviation of perplexity at 65,536 steps. The final perplexity is reported at the end of pre-training (524,288 steps). SGLUE refers to SuperGLUE and WebQ refers to WebQuestions dataset. We report average, ROUGE-2, accuracy, and BLEU score for SuperGLUE, XSum, WebQuestions, and WMT EnDe, respectively, on the validation sets. **Note:** Results on WMT English to German are reported **without any pre-training**. The scores which outperform the vanilla Transformer are highlighted in **boldface**.

Narang et al. (2021)

Bias Term

Standard feedforward network layer:

$$FFN(x, W_1, W_2, b_1, b_2) = f(xW_1 + b_1)W_2 + b_2$$

Original Transformer uses ReLU as activation function

$$FFN(x, W_1, W_2, b_1, b_2) = \max(0, xW_1 + b_1)W_2 + b_2$$

Many implementations (if they are not gated), e.g. T5, PaLM, DALL-E-mini ...

$$FFN_{ReLU}(x, W_1, W_2) = \max(xW_1, 0)W_2$$

Geiping & Goldstein (2022)

Recap so far ...

- Basically everyone does pre-norm
 - Intuition: keep the good parts of residual connections
 - Observations: nicer gradient propagation, fewer spike

- Most people do RMSnorm
 - In practice, works as well as LayerNorm
 - But, has fewer parameters to move around, saves on wallclock time
- People more generally drop bias terms
 - since the compute/param tradeoffs are not great.
 - without compromising performance

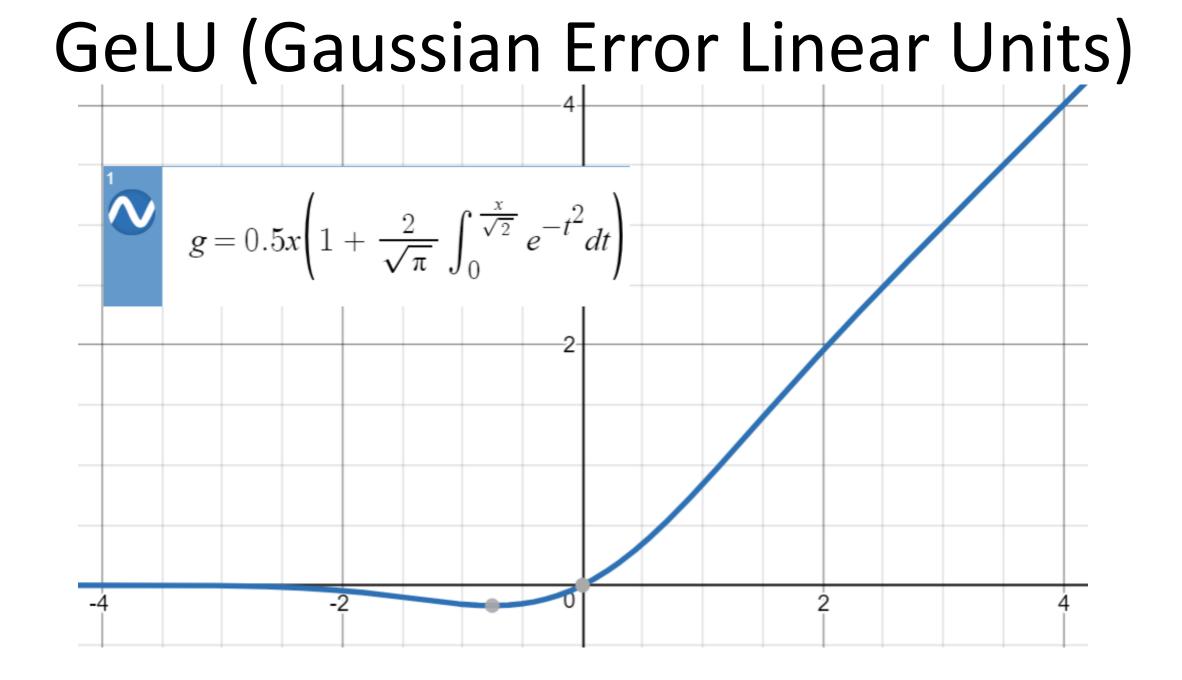
Activation Function

Activation Functions

A lot different ones used in training LLMs:

ReLU, GeLU, Swish, ELU, GLU, GeGLU, ReGLU, SeLU, SwiGLU, LiGLU, ...

Not much consensus ...



Hendrycks & Gimpel (2016)

SwiGLU in LLaMA

- SwiGLU activation function combines Swish and Gated Linear Unit (GLU), also used in Google's PaLM model
- ► Feedforward layer in the Transformer using ReLU (with no bias shown here):

$$FFN_{ReLU}(x, W_1, W_2) = \max(xW_1, 0)W_2$$

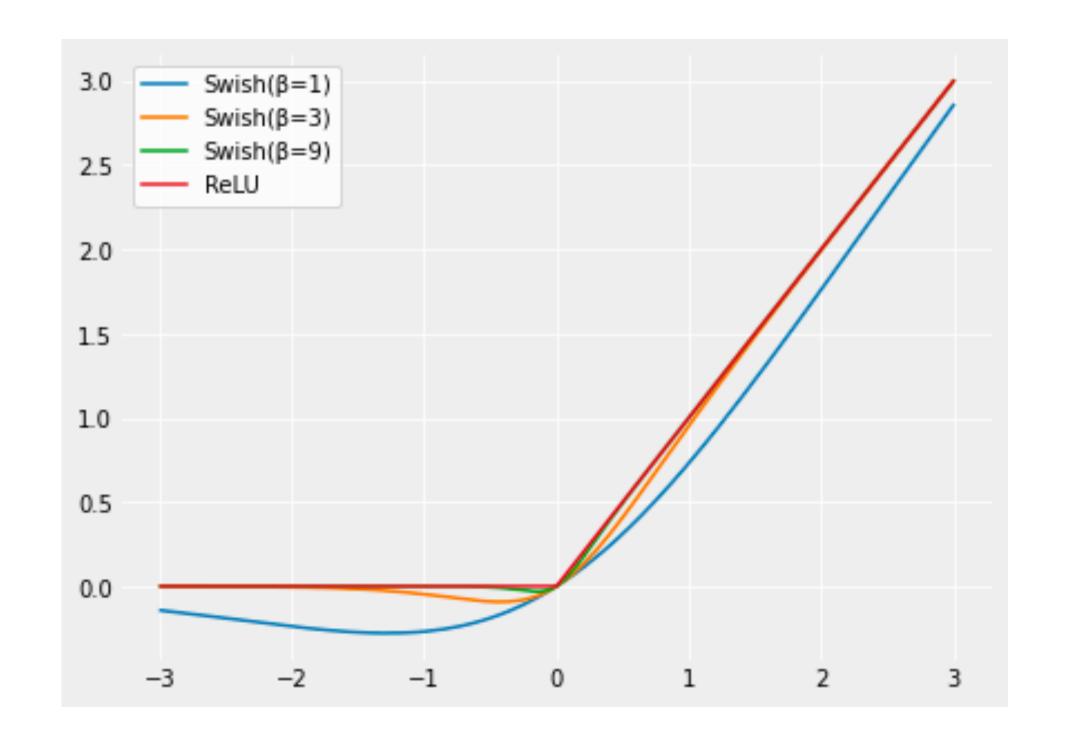
Replace ReLU by Swish:

$$FFN_{Swish}(x, W_1, W_2) = Swish_1(xW_1)W_2$$

Shazeer (2020)

Swish Activation

Swish can be loosely viewed as a smooth function which nonlinearly interpolates between the linear function and ReLU

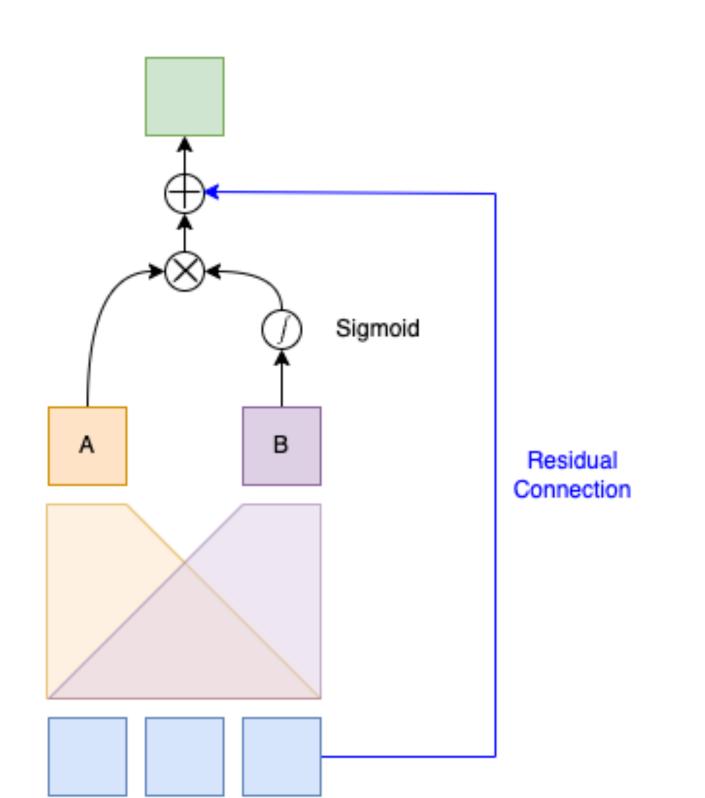


$$Swish_{eta}(x) = x * \stackrel{\overline{sigmoid}(eta x)}{sigmoid} = rac{x}{1 + e^{-eta x}}$$

Ramachandran et al. (2017)

Gated Linear Unit (GLU)

- Similar to the gating mechanism in LSTM.
- Element-wise product of two linear transformations of the input, one is sigmoid-activated.



$$GLU(x, W, V, b, c) = \sigma(xW + b) \otimes (xV + c)$$

$$SwiGLU(x, W, V, b, c, \beta) = Swish_{\beta}(xW + b) \otimes (xV + c)$$

Dauphin et al. (2017)

Sigmoid of a Vector

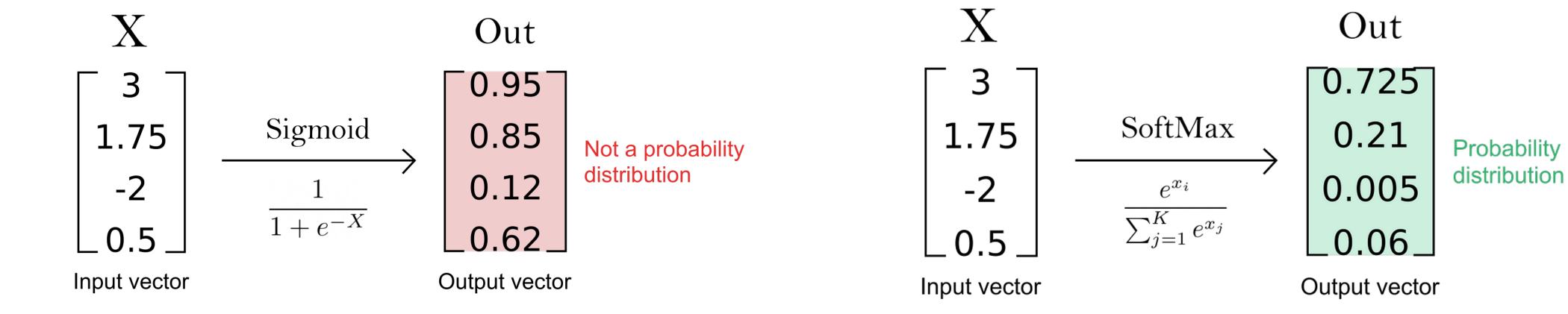
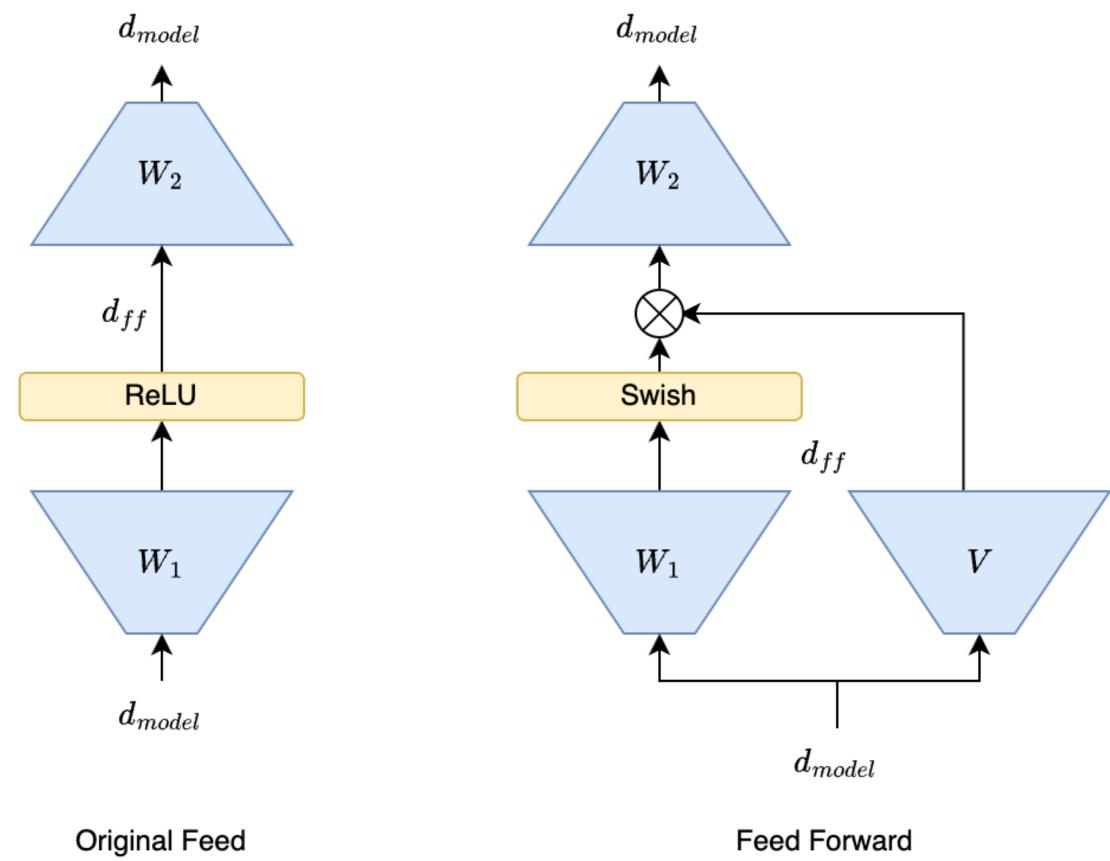


Image Credit: Gabriel Furnieles

SwiGLU in LLaMA

- Feedforward layer in the Transformer using ReLU
- Replace ReLU by SwiGLU



Forward Layer

with SwiGLU

Image Credit: Rohit Bandaru

SwiGLU in LLaMA

 SwiGLU activation function — combines Swish and Gated Linear Unit (GLU), also used in Google's PaLM model

Feedforward layer in the Transformer using ReLU (with no bias shown here):

$$FFN_{ReLU}(x, W_1, W_2) = \max(xW_1, 0)W_2$$

Replace ReLU by Swish or SwiGLU:

$$FFN_{Swish}(x, W_1, W_2) = Swish_1(xW_1)W_2$$

$$FFN_{SwiGLU}(x, W, V, W_2) = (Swish_1(xW) \otimes xV)W_2$$
Shazeer (2020)

LLaMA

 SwiGLU activation function — combines Swish and Gated Linear Unit (GLU), also used in Google's PaLM model

Training Steps	65,536	$524,\!288$	
$\overline{ ext{FFN}_{ ext{ReLU}}(baseline)}$	1.997 (0.005)	1.677	
$\mathrm{FFN}_{\mathrm{GELU}}$	$1.983 \ (0.005)$	1.679	
$\mathrm{FFN}_{\mathrm{Swish}}$	$1.994 \ (0.003)$	1.683	
$\overline{ ext{FFN}_{ ext{GLU}}}$	1.982 (0.006)	1.663	
$\mathrm{FFN}_{\mathrm{Bilinear}}$	1.960 (0.005)	1.648	
$\mathrm{FFN}_{\mathrm{GEGLU}}$	1.942 (0.004)	1.633	Held-out log-perplexity
$\mathrm{FFN}_{\mathrm{SwiGLU}}$	1.944 (0.010)	1.636	
$\mathrm{FFN}_{\mathrm{ReGLU}}$	1.953 (0.003)	1.645	on C4 corpus (used in T5 model)

Shazeer (2020)

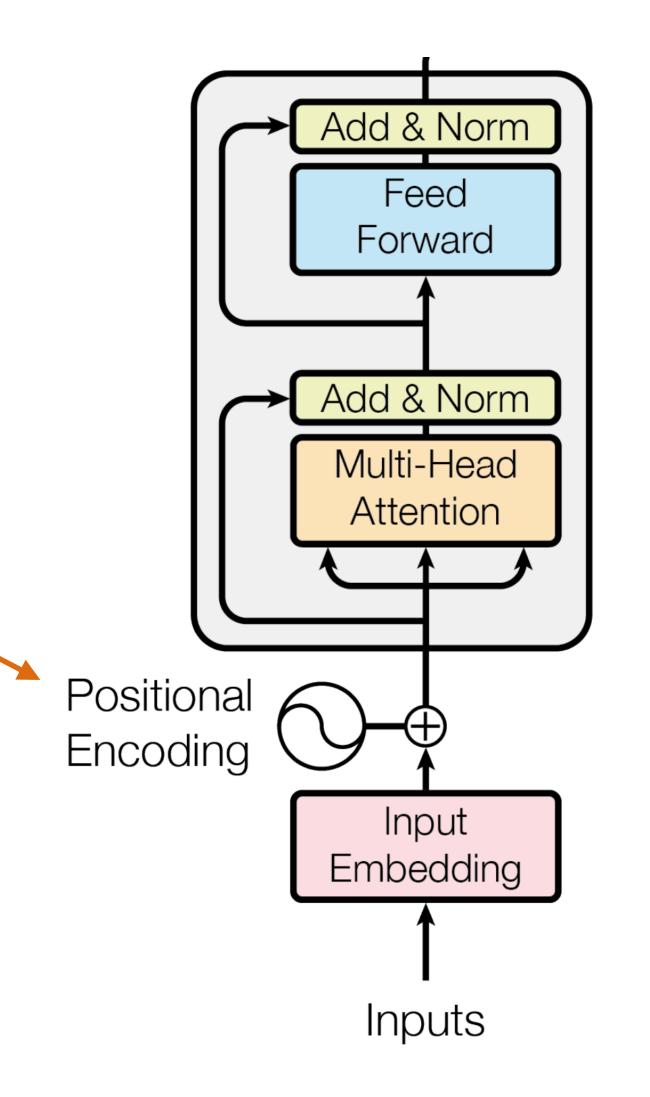
Gated Linear Unit (GLU)

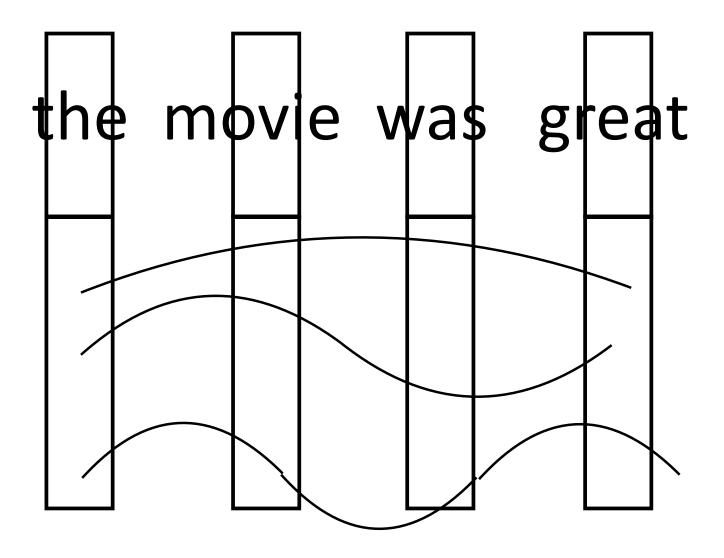
GLU variants generally works pretty well

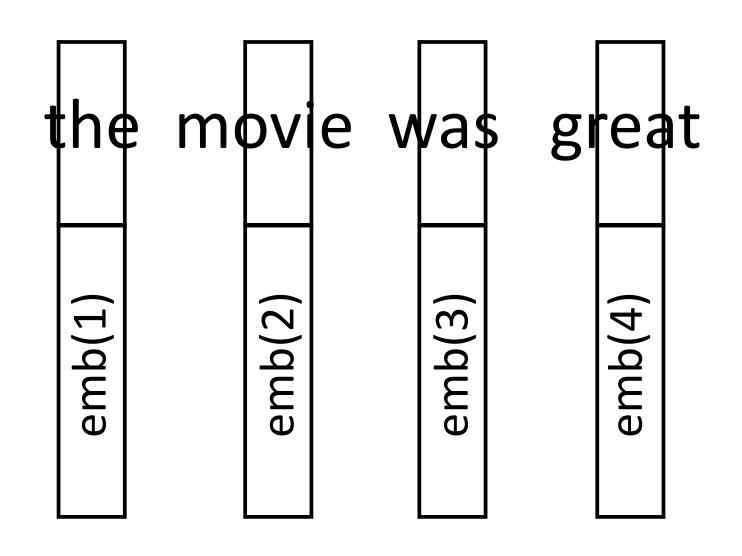
Model	Params	Ops	Step/s	Early loss	Final loss	SGLUE	XSum	WebQ
Vanilla Transformer	223M	11.1T	3.50	2.182 ± 0.005	1.838	71.66	17.78	23.02
GeLU	223M	11.1T	3.58	2.179 ± 0.003	1.838	75.79	17.86	25.13
Swish	223M	11.1T	3.62	2.186 ± 0.003	1.847	73.77	17.74	24.34
ELU	223M	11.1T	3.56	2.270 ± 0.007	1.932	67.83	16.73	23.02
GLU	223M	11.1T	3.59	2.174 ± 0.003	1.814	74.20	17.42	24.34
GeGLU	223M	11.1T	3.55	2.130 ± 0.006	1.792	75.96	18.27	24.87
ReGLU	223M	11.1T	3.57	2.145 ± 0.004	1.803	76.17	18.36	24.87
SeLU	223M	11.1T	3.55	2.315 ± 0.004	1.948	68.76	16.76	22.75
SwiGLU	223M	11.1T	3.53	2.127 ± 0.003	1.789	76.00	18.20	24.34
LiGLU	223M	11.1T	3.59	2.149 ± 0.005	1.798	75.34	17.97	24.34
Sigmoid	223M	11.1T	3.63	2.291 ± 0.019	1.867	74.31	17.51	23.02
Softplus	223M	11.1T	3.47	2.207 ± 0.011	1.850	72.45	17.65	24.34

Narang et al. (2021)

Sine embeddings in the original Transformer:







- Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products
- Works essentially as well as just encoding position as a one-hot vector Vaswani et al. (2017)

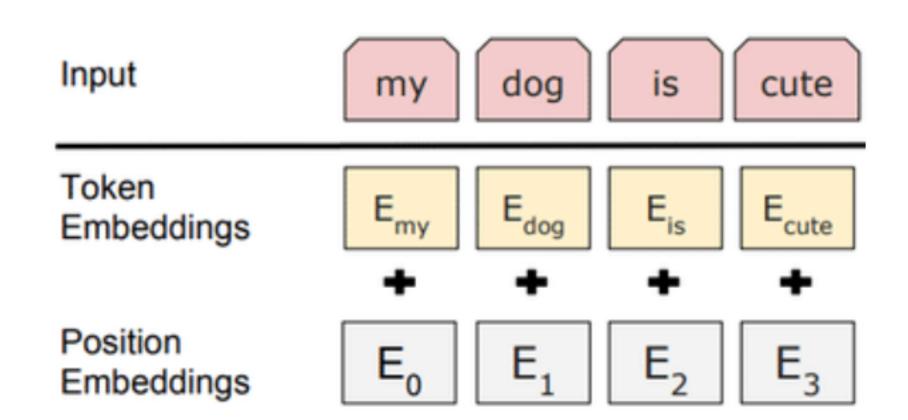
Sine embeddings in the original Transformer:

```
= getPositionEncoding(seq_len=100, d=512, n=10000)
2 cax = plt.matshow(P)
  plt.gcf().colorbar(cax)
                                                                     300
                                                                                            400
                                                                                                                  500
                                               200
                                                                                                                               - 0.75
                                                                                                                                - 0.50
                                                                                                                               0.25
                                                                                                                                - 0.00
                                                                                                                                -0.50
                                                                                                                                -0.75
                                   The positional encoding matrix for n=10,000, d=512, sequence length=100
```

 A vector of sines and cosines of a harmonic series of frequencies. None of the two is the same.

Image Credit: Mehreen Saeed

- Absolute positional embeddings are added to input token embeddings
 - fixed encoding for each position (e.g., sine embeddings)
 - or learned encoding for each position



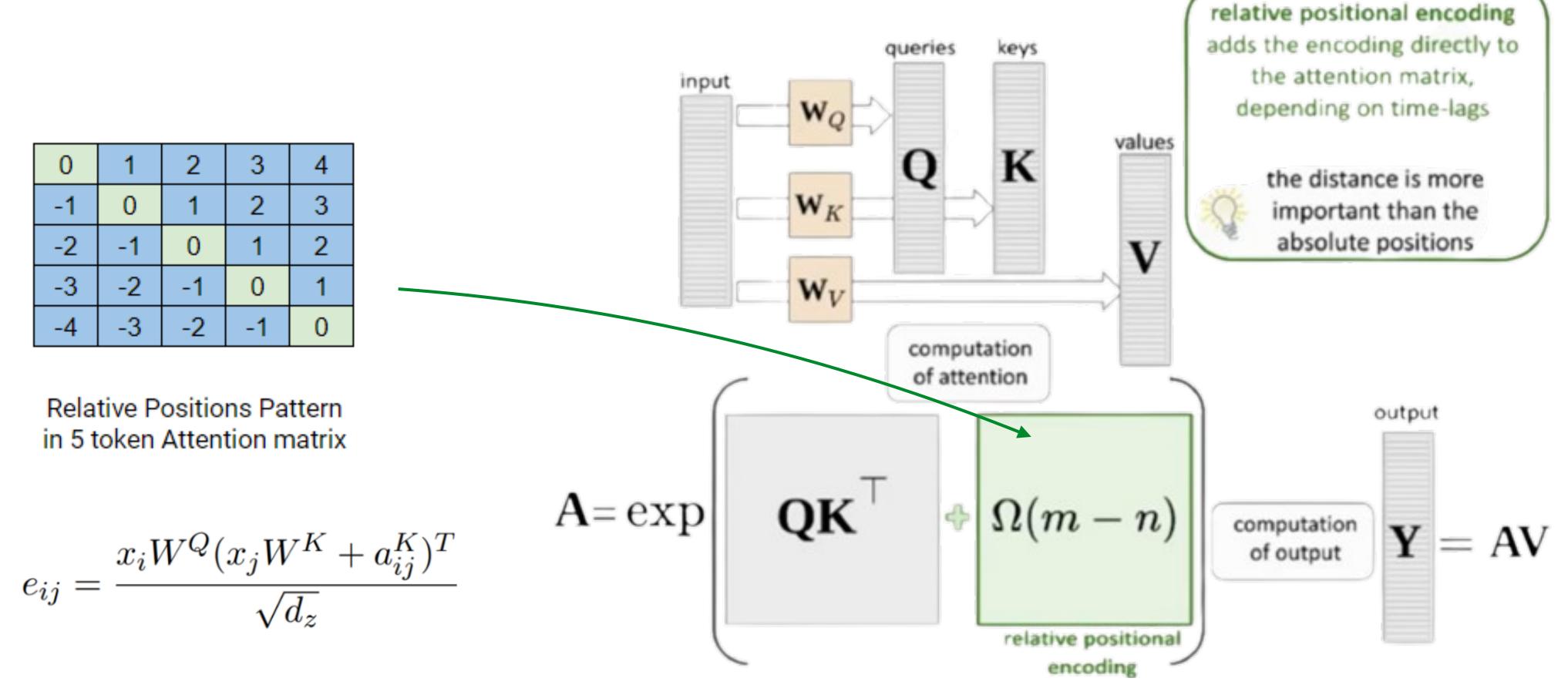
- Limitations:
 - embedding for each position (e.g., 1, 2, 3, ..., 1000, ... 5000)
 - can't generalize well to arbitrary long sequences
 - can't capture relative distance between two tokens

Relative positional embedding encodes the distance between tokens

0	1	2	3	4
-1	0	1	2	3
-2	-1	0	1	2
-3	-2	-1	0	1
-4	-3	-2	-1	0

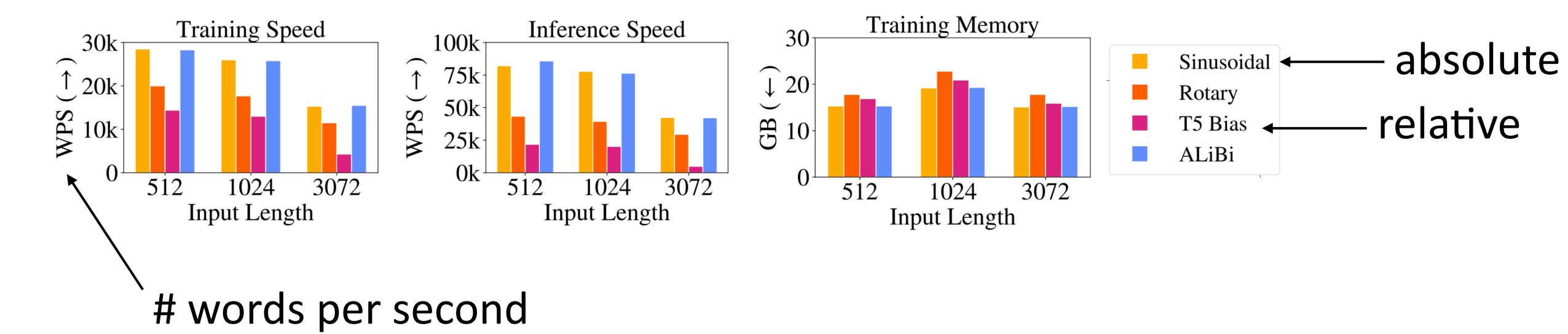
Relative Positions Pattern in 5 token Attention matrix

- Relative positional embedding encodes the distance between tokens
- added directly to the self-attention matrix



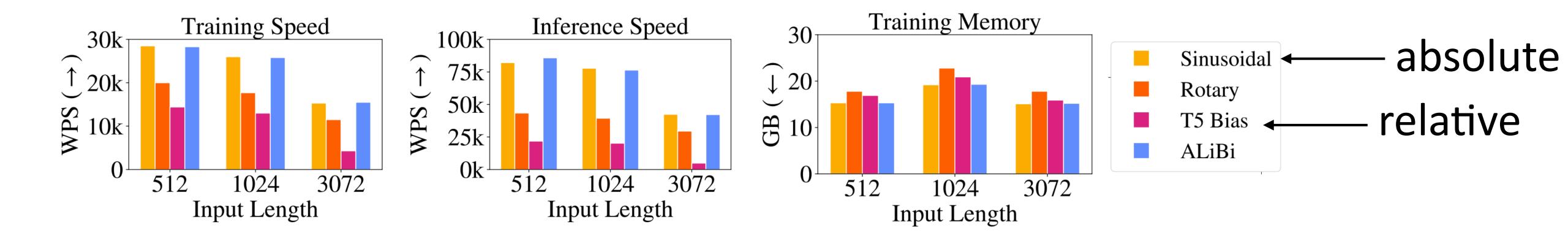
Shaw et al. (2018)

- Relative positional embedding encodes the distance between tokens
- added directly to the self-attention matrix
- Limitations: slow

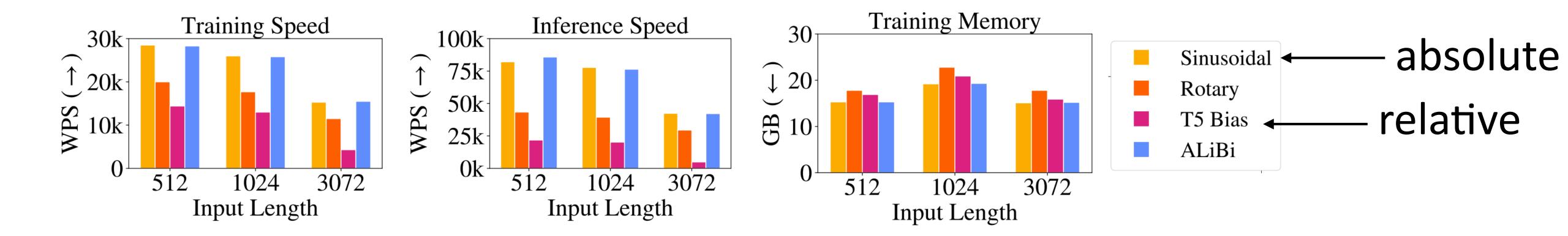


Press et al. (2020)

- Relative positional embedding encodes the distance between tokens
- added directly to the self-attention matrix
- Limitations: slow (why?)



- Relative positional embedding encodes the distance between tokens
- added directly to the self-attention matrix
- Limitations: slow (why? changes KV values all the time, can't do KV caching)



KV Caching

- Accelerate LLM inference by reducing redundant computations
- Have the key and value projections cached

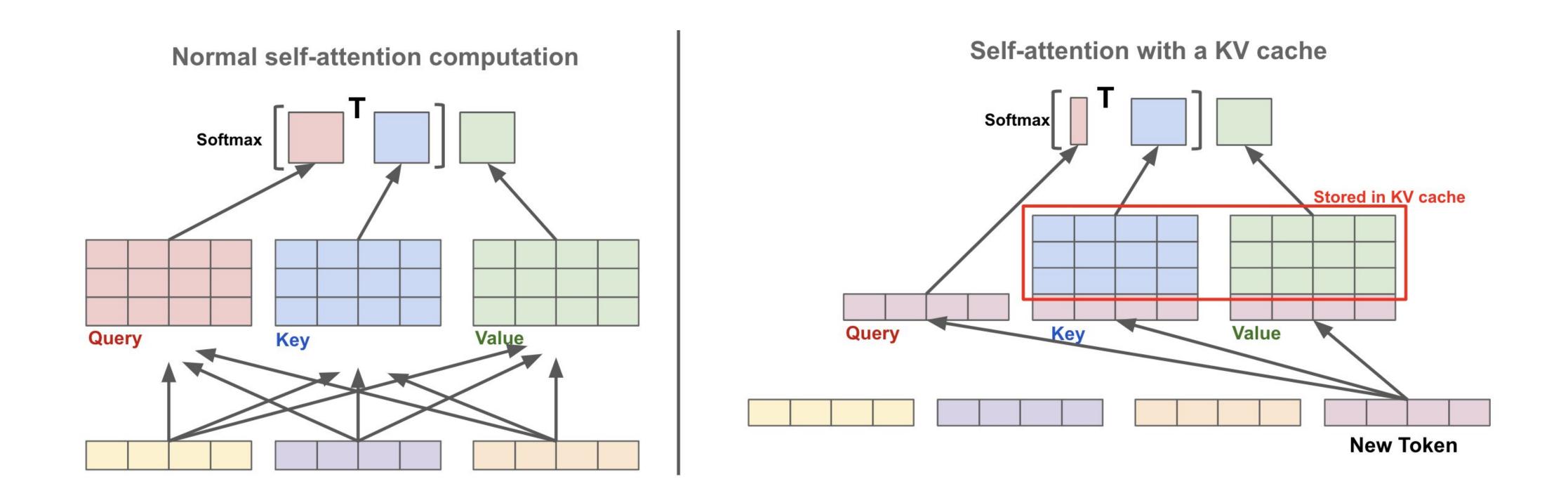
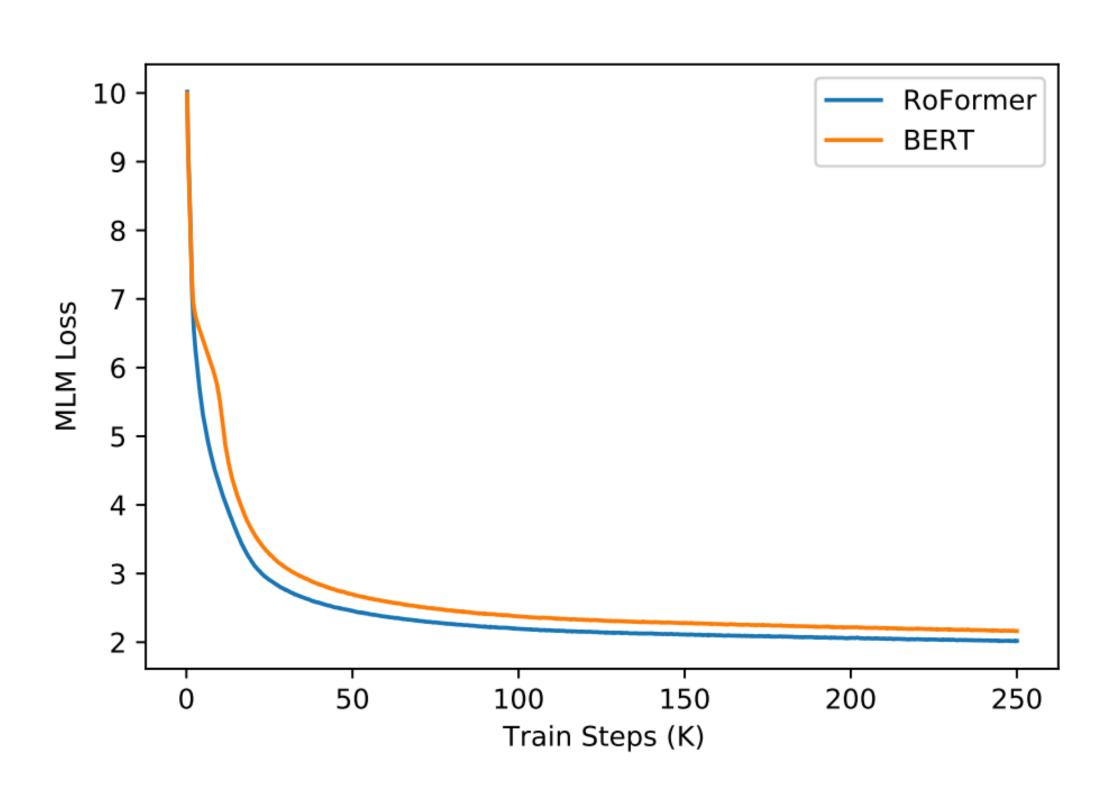


Image Credit: Cameron R. Wolfe

Rotary Positional Embeddings

Rotary Positional Embeddings (RoPE)



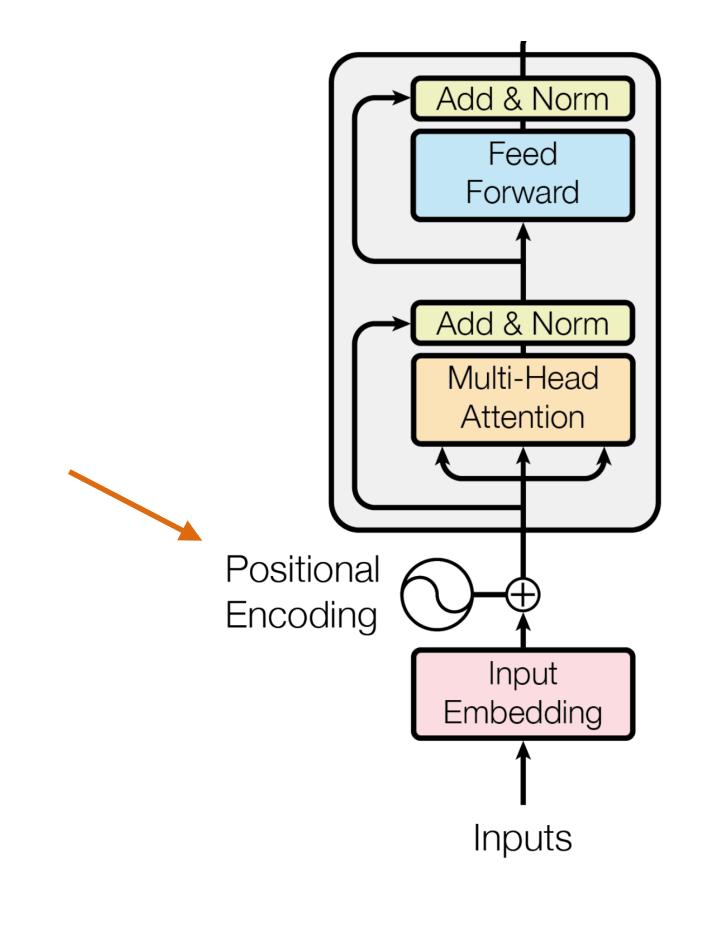


Figure 3: Evaluation of RoPE in language modeling pre-training. Left: training loss for BERT and RoFormer.

Su et al. (2021)

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

Jianlin Su

Zhuiyi Technology Co., Ltd. Shenzhen bojonesu@wezhuiyi.com

Yu Lu

Zhuiyi Technology Co., Ltd. Shenzhen julianlu@wezhuiyi.com

Shengfeng Pan

Zhuiyi Technology Co., Ltd. Shenzhen nickpan@wezhuiyi.com

Bo Wen

Zhuiyi Technology Co., Ltd. Shenzhen brucewen@wezhuiyi.com

Yunfeng Liu

Zhuiyi Technology Co., Ltd. Shenzhen glenliu@wezhuiyi.com

April 21, 2021

ABSTRACT

Position encoding in transformer architecture provides supervision for dependency modeling between elements at different positions in the sequence. We investigate various methods to encode positional information in transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing experiment for English benchmark will soon be updated.

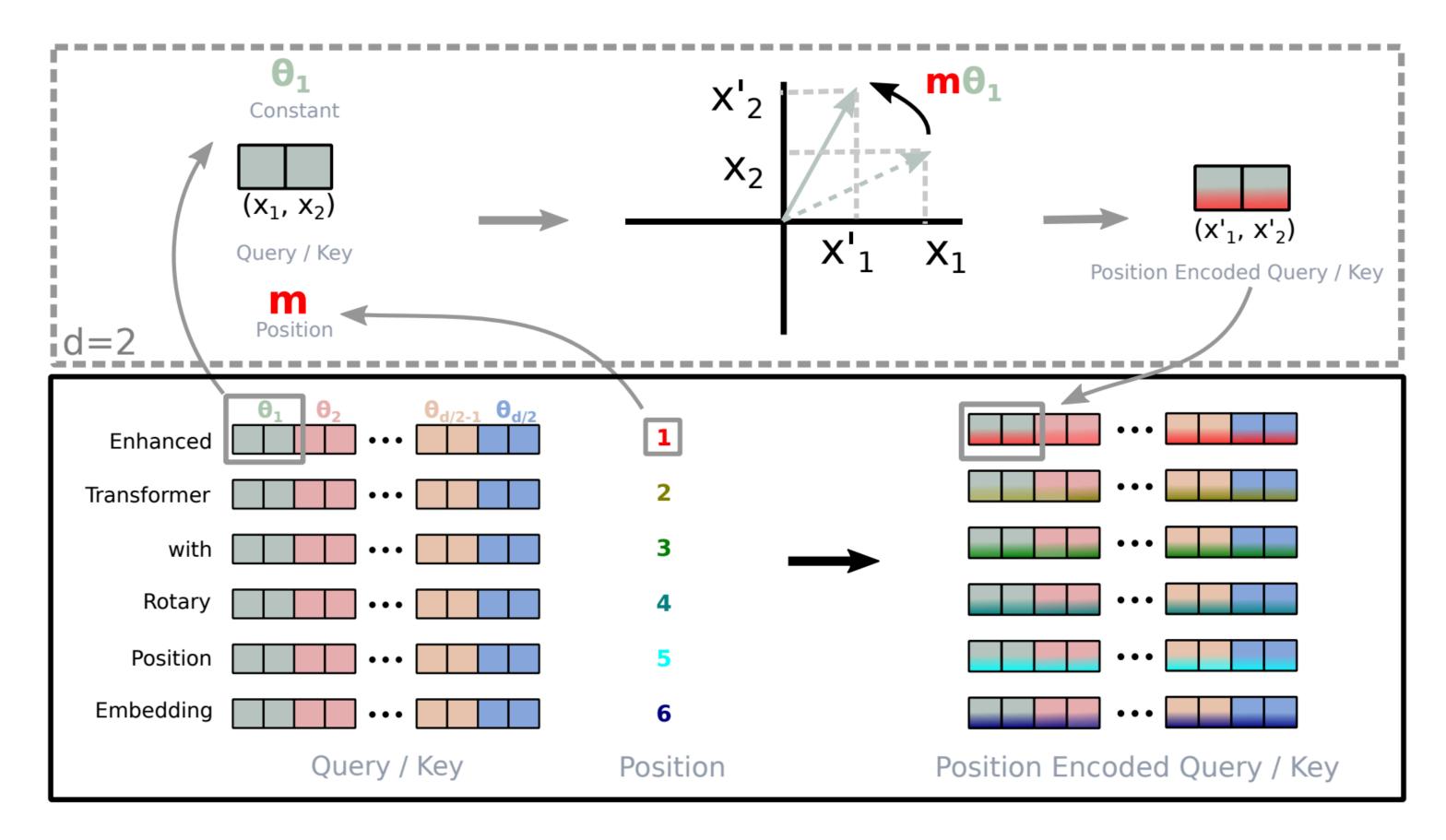


Figure 1: Implementation of Rotary Position Embedding(RoPE).

Rotation instead of addition!

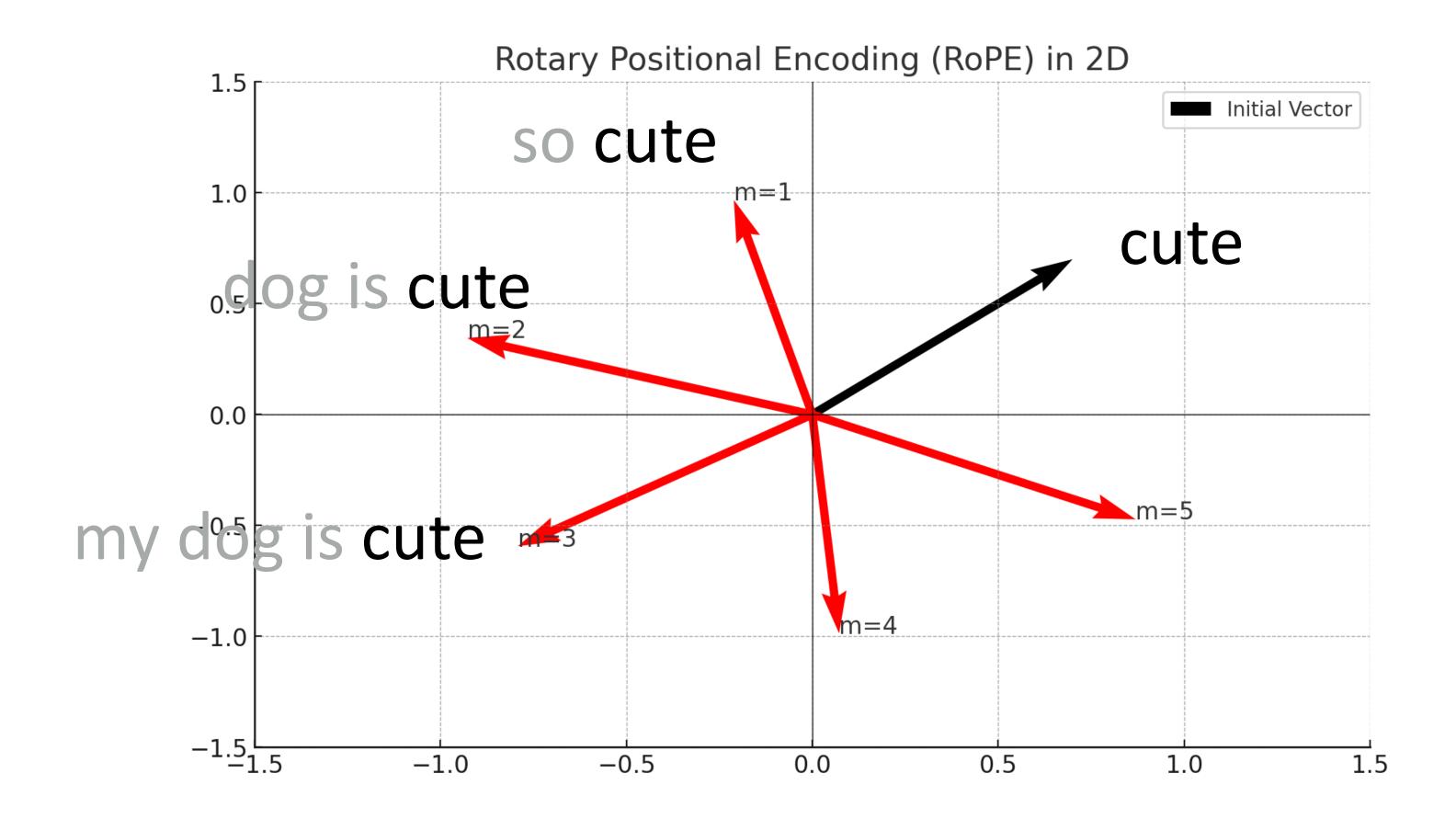
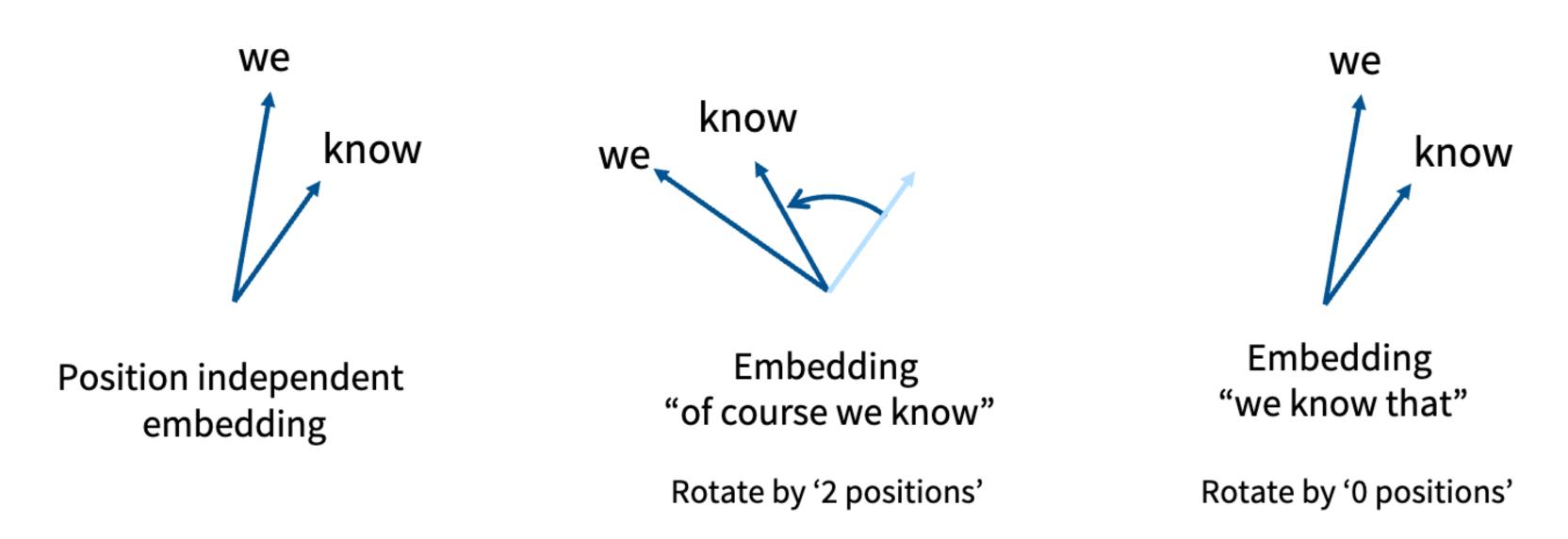


Image Credit: Sushant Kumar

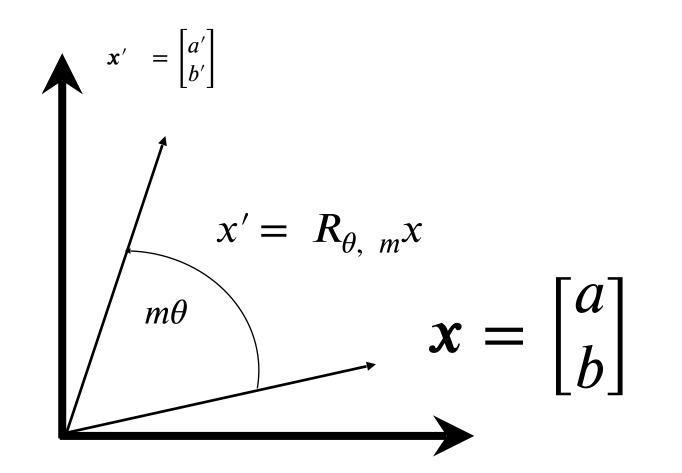
- Rotation instead of addition, such that
 - embeddings are invariant to absolute position
 - inner products are invariant to arbitrary rotation
- captures both absolute position and relative distance!



In 2D, a rotation matrix can be defined in the following form:

$$R_{\theta, m} = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix}$$

The rotation increases with increasing θ and m.



Apply rotation after getting Q and K vectors (not V)

- In practice, rotate d dimensional embedding matrices.
- ▶ Idea: rotate different dimensions with different angles $\Theta = \{\theta_0, \theta_1, \theta_2, \theta_3, ..., \theta_{d/2}\}$

$$\boldsymbol{R}_{\Theta,m}^{d} = \begin{pmatrix} \cos m\theta_{1} & -\sin m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ \sin m\theta_{1} & \cos m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos m\theta_{2} & -\sin m\theta_{2} & \cdots & 0 & 0\\ 0 & 0 & \sin m\theta_{2} & \cos m\theta_{2} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2}\\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{pmatrix}$$

A more computational efficient realization, taking advantage of the sparsity

$$\boldsymbol{R}_{\Theta,m}^{d}\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_1 \\ \cos m\theta_1 \\ \cos m\theta_2 \\ \vdots \\ \cos m\theta_{d/2} \\ \cos m\theta_{d/2} \end{pmatrix} + \begin{pmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ \vdots \\ -x_d \\ x_{d-1} \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_1 \\ \sin m\theta_1 \\ \sin m\theta_2 \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \end{pmatrix}$$

Su et al. (2021)

Inner product decays as relative distance increases

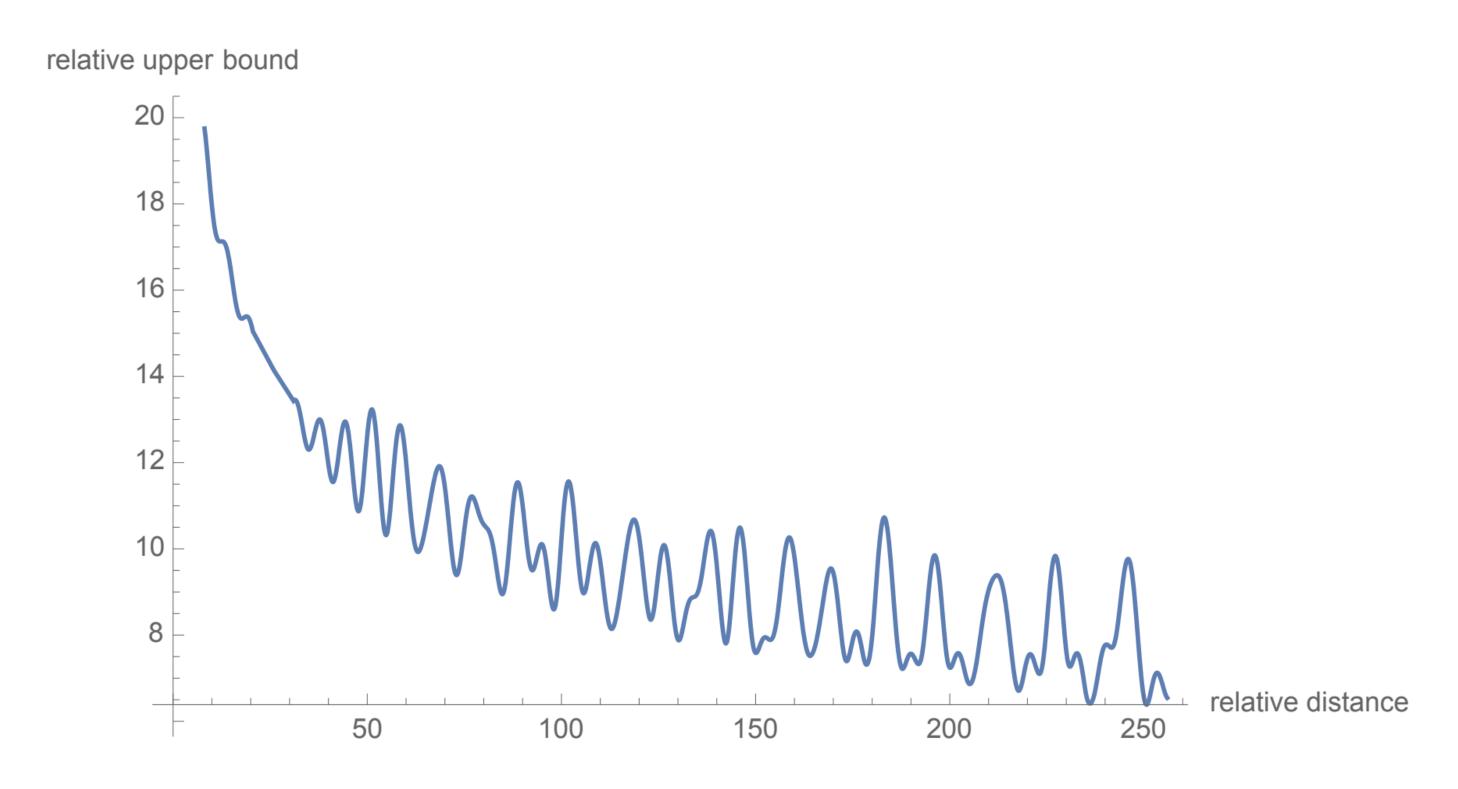


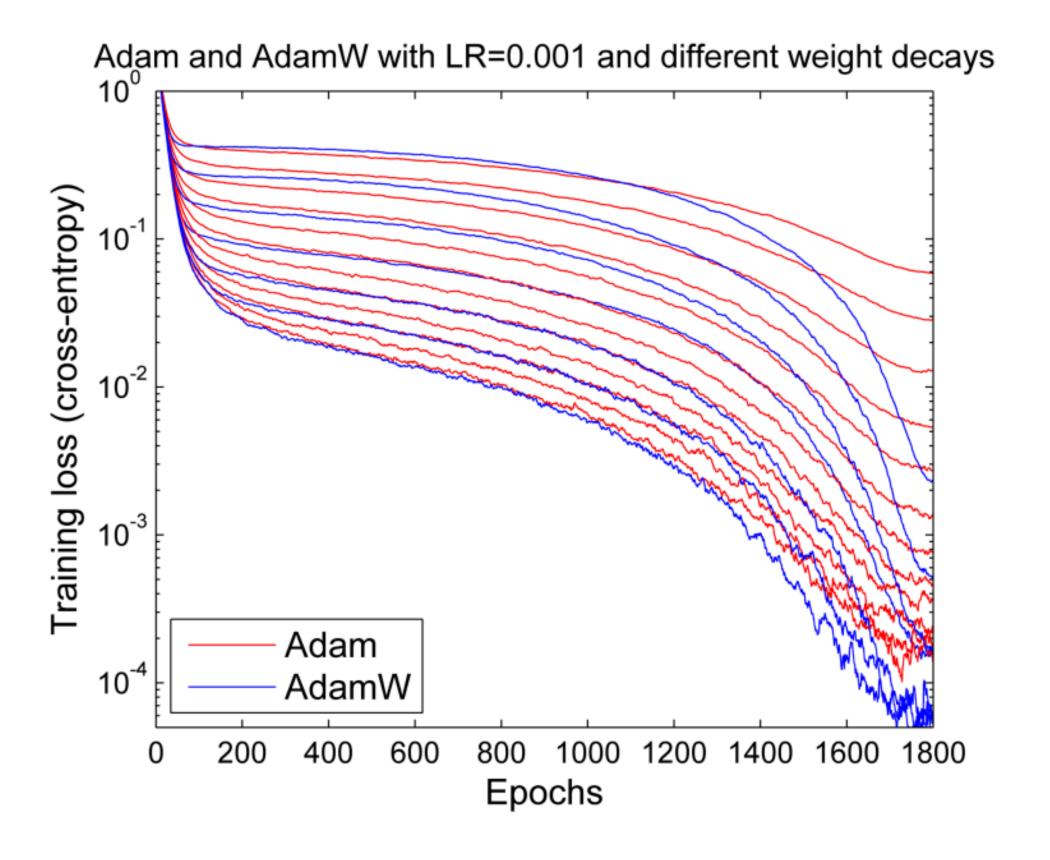
Figure 2: Long-term decay of RoPE.

Allows extension of the context window

Optimization

AdamW

AdamW (Adam w/ weight decay) optimizer



AdamW Optimizer

AdamW (Adam w/ weight decay)

$$x_t \leftarrow x_{t-1} - \alpha \frac{\beta_1 m_{t-1} + (1 - \beta_1)(\nabla f_t + w x_{t-1})}{\sqrt{v_t} + \epsilon}$$

weight is regularized less when v is large (insert line 6,7,8 into line 12; ignore 9,10)

Algorithm 2 Adam with L₂ regularization and

```
1: given \alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, w \in \mathbb{R}
 2: initialize time step t \leftarrow 0, parameter vector \mathbf{x}_{t=0} \in \mathbb{R}^n, first
      moment vector \mathbf{m}_{t=0} \leftarrow \mathbf{0}, second moment vector \mathbf{v}_{t=0} \leftarrow \mathbf{0},
      schedule multiplier \eta_{t=0} \in \mathbb{R}
 3: repeat
 4: t \leftarrow t+1
         \nabla f_t(\mathbf{x}_{t-1}) \leftarrow \text{SelectBatch}(\mathbf{x}_{t-1})

    ▶ select batch and

           return the corresponding gradient
 6: \boldsymbol{g}_t \leftarrow \nabla f_t(\boldsymbol{x}_{t-1}) + w \boldsymbol{x}_{t-1}
 7: m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t
                                                                          ▶ here and below all
           operations are element-wise
          \mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2
          \hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t)
                                                       \triangleright \beta_1 is taken to the power of t
10: \hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t / (1 - \beta_2^t)
                                                       \triangleright \beta_2 is taken to the power of t
           \eta_t \leftarrow \text{SetScheduleMultiplier}(t) \triangleright \text{can be fixed, decay, or}
           also be used for warm restarts
           \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \eta_t \left( \alpha \hat{\boldsymbol{n}}_t / (\sqrt{\hat{\boldsymbol{v}}_t} + \epsilon) \right)
13: until stopping criterion is met
14: return optimized parameters x_t
```

Loshchilov and Hutter (2017)

AdamW Optimizer

AdamW (Adam w/ weight decay) optimizer

weight decay after (first and second moments of) gradient calculation for parameter-wise adaptive learning rate

Adam with L₂ regularization Algorithm Adam with weight decay (AdamW) 1: given $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, w \in \mathbb{R}$ 2: initialize time step $t \leftarrow 0$, parameter vector $\mathbf{x}_{t=0} \in \mathbb{R}^n$, first moment vector $\mathbf{m}_{t=0} \leftarrow \mathbf{0}$, second moment vector $\mathbf{v}_{t=0} \leftarrow \mathbf{0}$, schedule multiplier $\eta_{t=0} \in \mathbb{R}$ 3: repeat $t \leftarrow t + 1$ $\nabla f_t(\mathbf{x}_{t-1}) \leftarrow \text{SelectBatch}(\mathbf{x}_{t-1})$ > select batch and return the corresponding gradient $\boldsymbol{g}_t \leftarrow \nabla f_t(\boldsymbol{x}_{t-1})$ $\boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t$ ▶ here and below all operations are element-wise $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$ $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t)$ $\triangleright \beta_1$ is taken to the power of t $\triangleright \beta_2$ is taken to the power of t $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t/(1-\beta_2^t)$ $\eta_t \leftarrow \text{SetScheduleMultiplier}(t) \triangleright \text{can be fixed, decay, or}$ also be used for warm restarts $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} - \eta_t \left(\alpha \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t + \epsilon}) + w \mathbf{x}_{t-1} \right)$

Loshchilov and Hutter (2017)

13: until stopping criterion is met

14: return optimized parameters x_t

What are being used?

Aa Name	# Year	Norm	Parallel Layer	☑ Pre-norm	Position embedding	Activations
Original transformer	2017	LayerNorm	Serial		Sine	ReLU
GPT	2018	LayerNorm	Serial		Absolute	GeLU
T5 (11B)	2019	RMSNorm	Serial	<u> </u>	Relative	ReLU
GPT2	2019	LayerNorm	Serial	<u>~</u>	Sine	GeLU
T5 (XXL 11B) v1.1	2020	RMSNorm	Serial	<u>~</u>	Relative	GeGLU
mT5	2020	RMSNorm	Serial	<u>~</u>	Relative	GeGLU
GPT3 (175B)	2020	LayerNorm	Serial	<u>~</u>	Sine	GeLU
GPTJ	2021	LayerNorm	Parallel	<u>~</u>	RoPE	GeLU
LaMDA	2021			<u>~</u>	Relative	GeGLU
Gopher (280B)	2021	RMSNorm	Serial	<u>~</u>	Relative	ReLU
GPT-NeoX	2022	LayerNorm	Parallel	<u>~</u>	RoPE	GeLU
BLOOM (175B)	2022	LayerNorm	Serial	<u>~</u>	AliBi	GeLU
OPT (175B)	2022	LayerNorm	Serial	<u>~</u>	Absolute	ReLU
PaLM (540B)	2022	RMSNorm	Parallel	<u>~</u>	RoPE	SwiGLU
Chinchilla	2022	RMSNorm	Serial		Relative	ReLU
Mistral (7B)	2023	RMSNorm	Serial	<u>~</u>	RoPE	SwiGLU
LLaMA2 (70B)	2023	RMSNorm	Serial	<u></u>	RoPE	SwiGLU
LLaMA (65B)	2023	RMSNorm	Serial	<u></u>	RoPE	SwiGLU
Qwen (14B)	2024	RMSNorm	Serial	<u>~</u>	RoPE	SwiGLU
DeepSeek (67B)	2024	RMSNorm	Serial		RoPE	SwiGLU
Yi (34B)	2024	RMSNorm	Serial	<u>~</u>	RoPE	SwiGLU

Mostly follow previous successful choices.

Image Credit: Tatsu Hashimoto

What are being used?

- There are many architectural variations.
- Major differences? Position embeddings, activations, tokenization
- This is an evolving field; a lot of empirical analysis is going into identifying best practices.

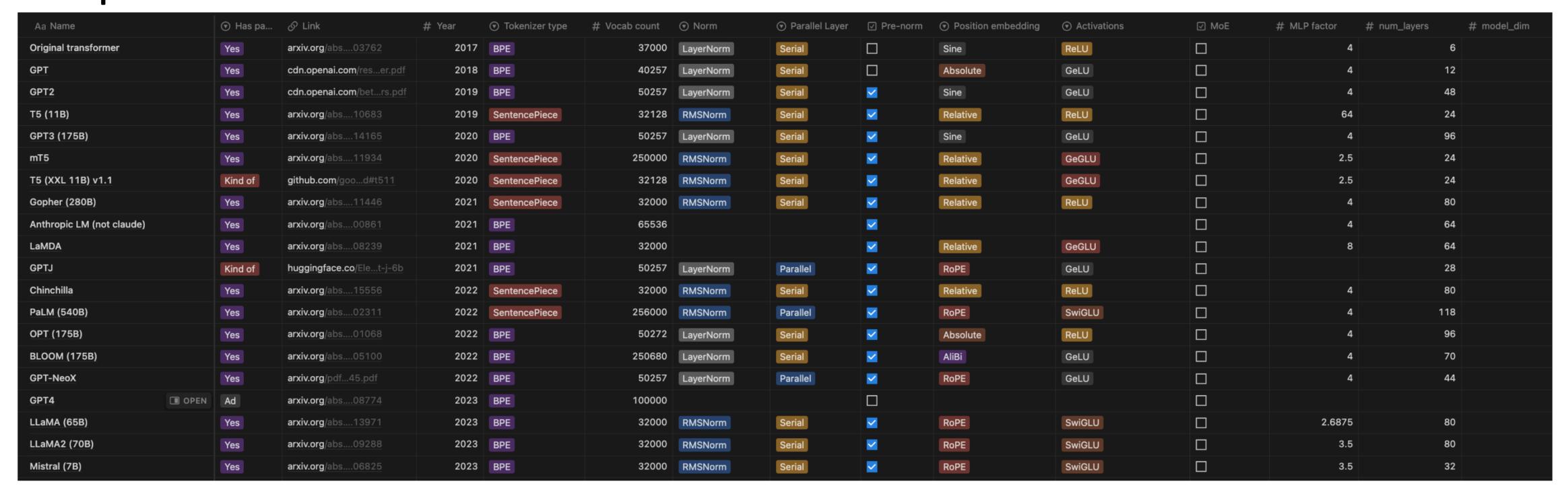


Image Credit: Tatsu Hashimoto

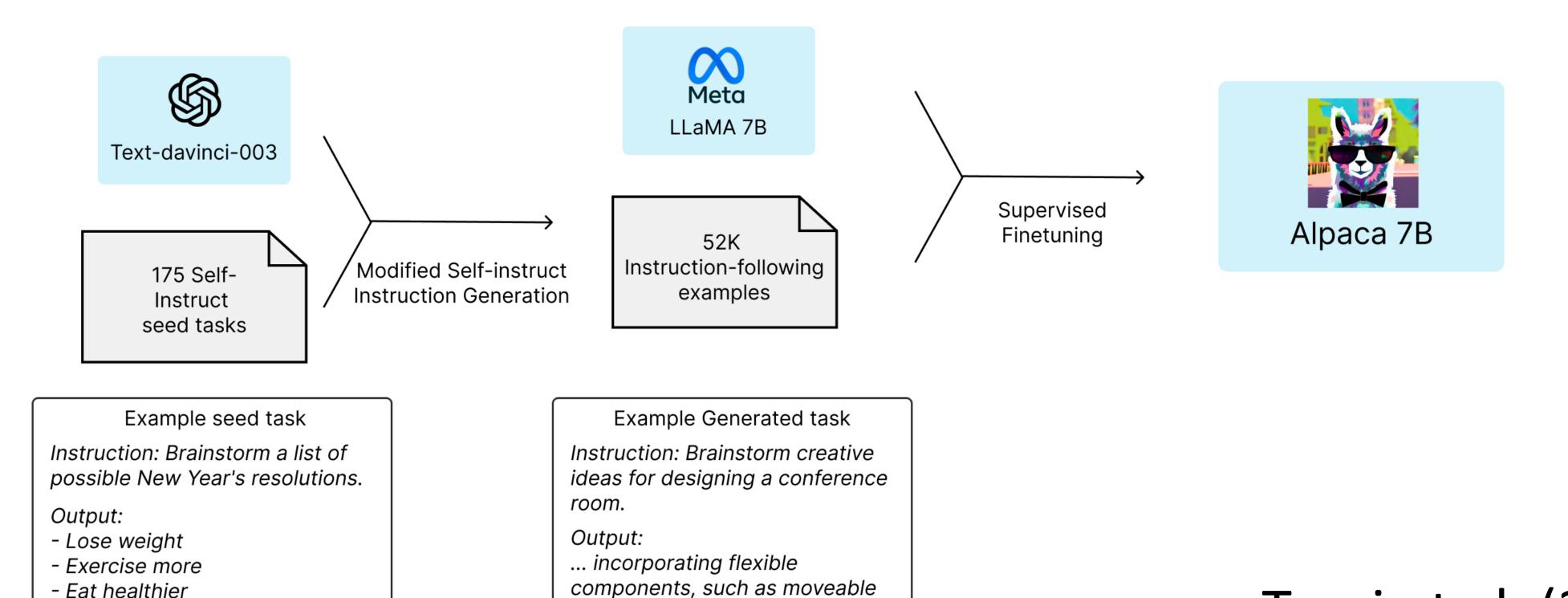
Other Open-source Efforts

Alpaca

Released by Stanford on March 13, 2023

- Eat healthier

Fine-tuned Meta's LLaMA-7B on 52k instruction-following demonstrated generated (Self-Instruct) using GPT-3.5 (text-davinci-003) for \$500.



walls and furniture ...

Taori et al. (2022)

Address the labor-intense process for creating human-written instructions

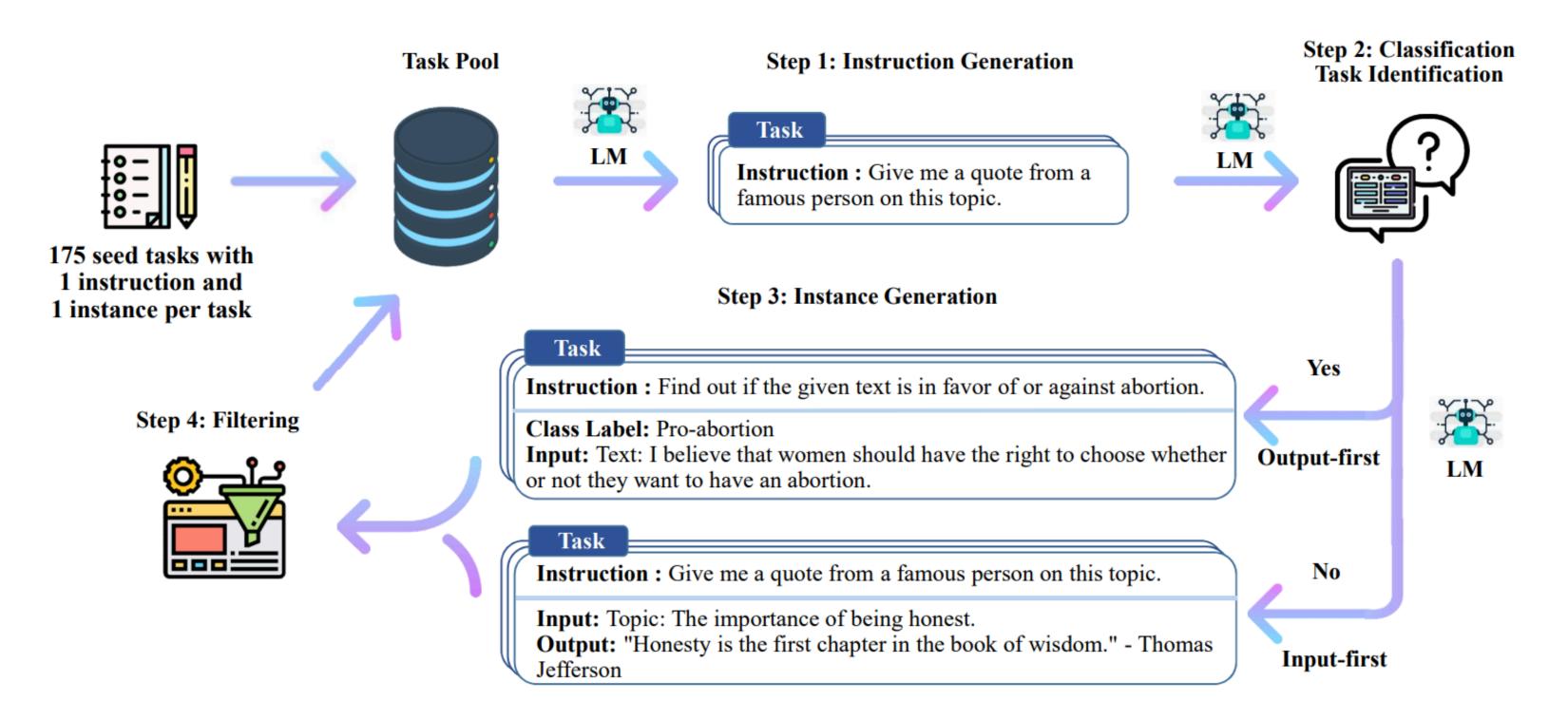


Figure 1: A high-level overview of SELF-INSTRUCT. The process starts with a small seed set of tasks (one instruction and one input-output instance for each task) as the task pool. Random tasks are sampled from the task pool, and used to prompt an off-the-shelf LM to generate both new instructions and corresponding instances, followed by filtering low-quality or similar generations, and then added back to the initial repository of tasks. The resulting data can be used for the instruction tuning of the language model itself later to follow instructions better. Tasks shown in the figure are generated by GPT3. See Table 10 for more creative examples.

Wang et al. (2022)

Using multiple prompting templates to (a) generate the instruction,
 (b) classifying whether an instruction represents a classification task or not,
 (c) generating non-classification or classification instances

```
Come up with a series of tasks:

Task 1: {instruction for existing task 1}
Task 2: {instruction for existing task 2}
Task 3: {instruction for existing task 3}
Task 4: {instruction for existing task 4}
Task 5: {instruction for existing task 5}
Task 6: {instruction for existing task 6}
Task 7: {instruction for existing task 7}
Task 8: {instruction for existing task 8}
Task 9:
```

Table 6: Prompt used for generating new instructions. 8 existing instructions are randomly sampled from the task pool for in-context demonstration. The model is allowed to generate instructions for new tasks, until it stops its generation, reaches its length limit or generates "Task 16" tokens.

```
Given the classification task definition and the class labels, generate an input that
corresponds to each of the class labels. If the task doesn't require input, just generate the
correct class label.
Task: Classify the sentiment of the sentence into positive, negative, or mixed.
Class label: mixed
Sentence: I enjoy the flavor of the restaurant but their service is too slow.
Class label: Positive
Sentence: I had a great day today. The weather was beautiful and I spent time with friends.
Class label: Negative
Sentence: I was really disappointed by the latest superhero movie. I would not recommend it.
Task: Tell me the first number of the given list.
Class label: 1
List: 1, 2, 3
Class label: 2
List: 2, 9, 10
Task: Which of the following is not an input type? (a) number (b) date (c) phone number (d)
email address (e) all of these are valid inputs.
Class label: (e)
      {instruction for the target task}
```

Table 9: Prompt used for the output-first approach of instance generation. The model is prompted to generate the class label first, and then generate the corresponding input. This prompt is used for generating the instances for classification tasks.

Wang et al. (2022)

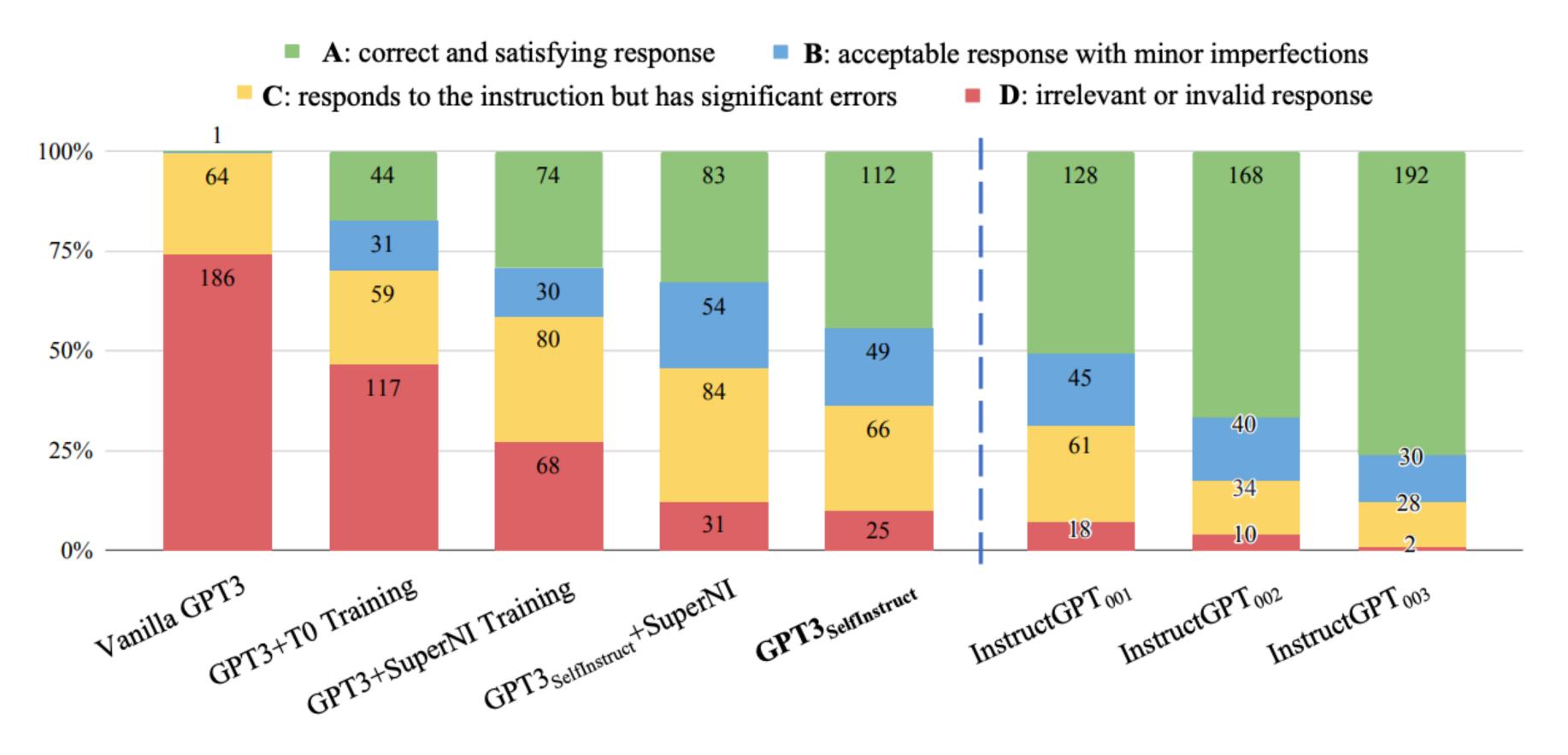


Figure 5: Performance of GPT3 model and its instruction-tuned variants, evaluated by human experts on our 252 user-oriented instructions (§5.4). Human evaluators are instructed to rate the models' responses into four levels. The results indicate that GPT3_{SELF-INST} outperforms all the other GPT3 variants trained on publicly available instruction datasets. Additionally, GPT3_{SELF-INST} scores nearly as good as InstructGPT₀₀₁ (c.f., footnote 1).

OLMo

- Released by AI2 on Feb 28, 2024
- Open-source not only the training code and model weights, but the full pre-training data (Dolma dataset) and intermediate checkpoints

Size	Layers	Hidden Size	Attention Heads	Tokens Trained
1B	16	2048	16	2T
7B	32	4086	32	2.46T
65B*	80	8192	64	

Table 1: OLMo model sizes and the maximum number of tokens trained to.

^{*} At the time of writing our 65B model is still training.

Chatbot Arena: Elo Rankings

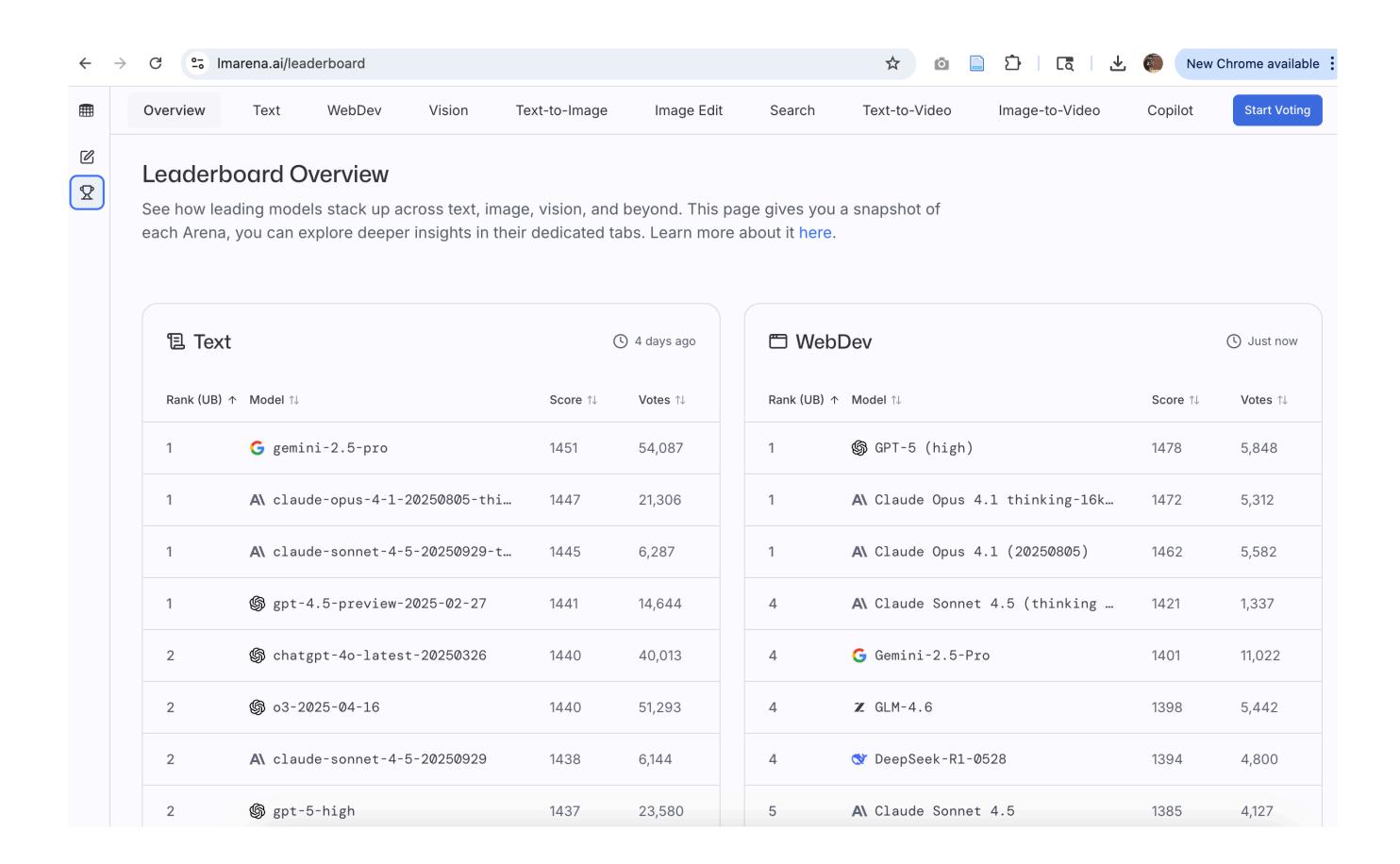
 Accepted as one of the premiere rankings for LLMs

 Style control was introduced as it was believed that the "style" of responses had a big effect

Rank*	Rank	Model A	Arena	95% CI 🔺	Votes A	Organization	License 🔺
(UB)	(StyleCtrl)		Score			B	
1	2	Grok-3-Preview-02-24	1407	+7/-7	7580	xAI	Proprietary
1	1	GPT-4.5-Preview	1404	+7/-9	6024	OpenAI	Proprietary
3	6	Gemini-2.0-Flash-Thinking-Exp- 01-21	1384	+5/-5	19837	Google	Proprietary
3	3	Gemini-2.0-Pro-Exp-02-05	1380	+4/-4	17695	Google	Proprietary
3	2	ChatGPT-4o-latest (2025-01-29)	1375	+4/-5	19587	OpenAI	Proprietary
6	4	DeepSeek-R1	1361	+5/-6	10474	DeepSeek	MIT
6	10	Gemini-2.0-Flash-001	1355	+4/-5	15416	Google	Proprietary
6	3	01-2024-12-17	1353	+4/-4	22010	OpenAI	Proprietary
9	10	Gemma-3-27B-it	1339	+9/-11	3870	Google	Gemma
9	10	Qwen2.5-Max	1338	+5/-5	14258	Alibaba	Proprietary
9	7	ol-preview	1335	+4/-4	33195	OpenAI	Proprietary
9	10	o3mini-high	1328	+6/-5	11409	OpenAI	Proprietary

Chatbot Arena —> LM Arena

 Accepted as one of the premiere rankings for LLMs



leaderboard on Oct 20, 2025

https://lmarena.ai/

Takeaways

New and actively developing situation. A lot is going on ...