Wei Xu

(many slides from Greg Durrett)

This Lecture

Transformer architecture

Attention is All You Need

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research

nikip@google.com

Jakob Uszkoreit* Google Research

usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

Readings

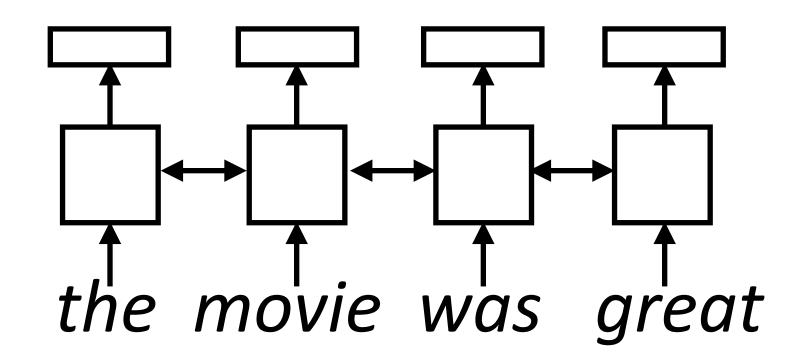
- "The Annotated Transformer" by Sasha Rush https://nlp.seas.harvard.edu/2018/04/03/attention.html
- "The Illustrated Transformer" by Jay Lamar

http://jalammar.github.io/illustrated-transformer/

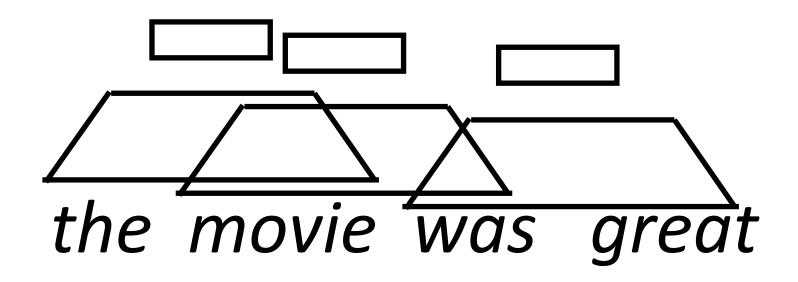
Jurafsky+Martin Chapter 8

Sentence Encoders

LSTM abstraction: maps each vector in a sentence to a new, context-aware vector



CNNs do something similar with filters



Attention can give us a third way to do this

Assume we're using GloVe/word2vec embeddings — what do we want our neural network to do?

The ballerina is very excited that she will dance in the show.

Q: What words need to be contextualized here?

Assume we're using GloVe/word2vec embeddings — what do we want our neural network to do?

The ballerina is very excited that she will dance in the show.

- What words need to be contextualized here?
 - Pronouns need to look at antecedents
 - Ambiguous words should look at context
 - Words should look at syntactic parents/children
- Problem: LSTMs and CNNs don't do this

Want:

The ballerina is very excited that she will dance in the show.

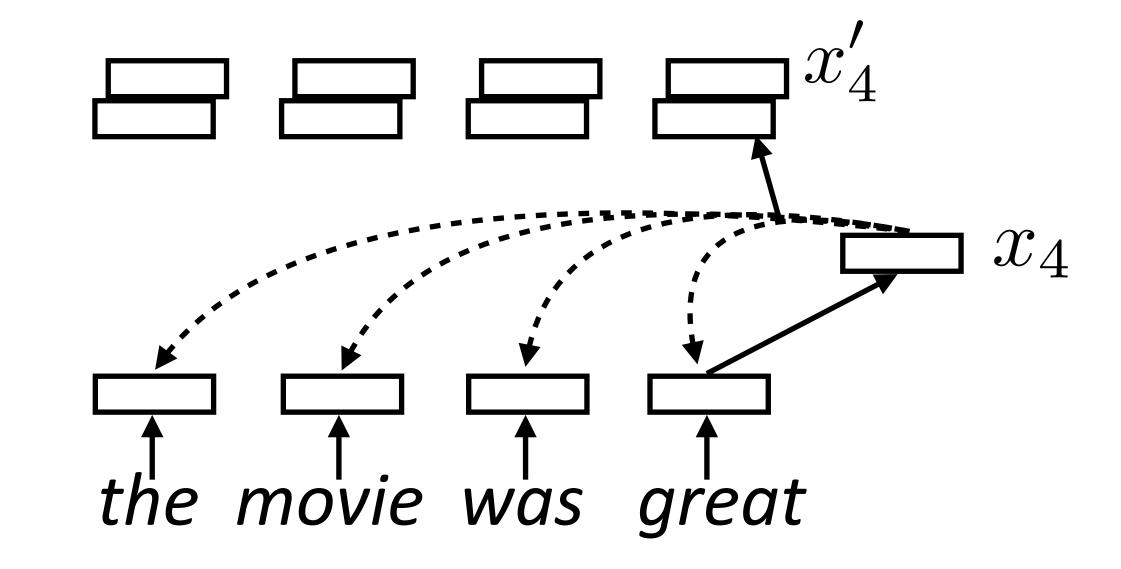
LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

 To appropriately contextualize embeddings, we need to pass information over long distances dynamically for each word

 Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{i=1}^n lpha_{i,j} x_j$ vector = sum of scalar * vector



• Multiple "heads" use different sets of parameters W_k and V_k to get different attention values + transform vectors

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

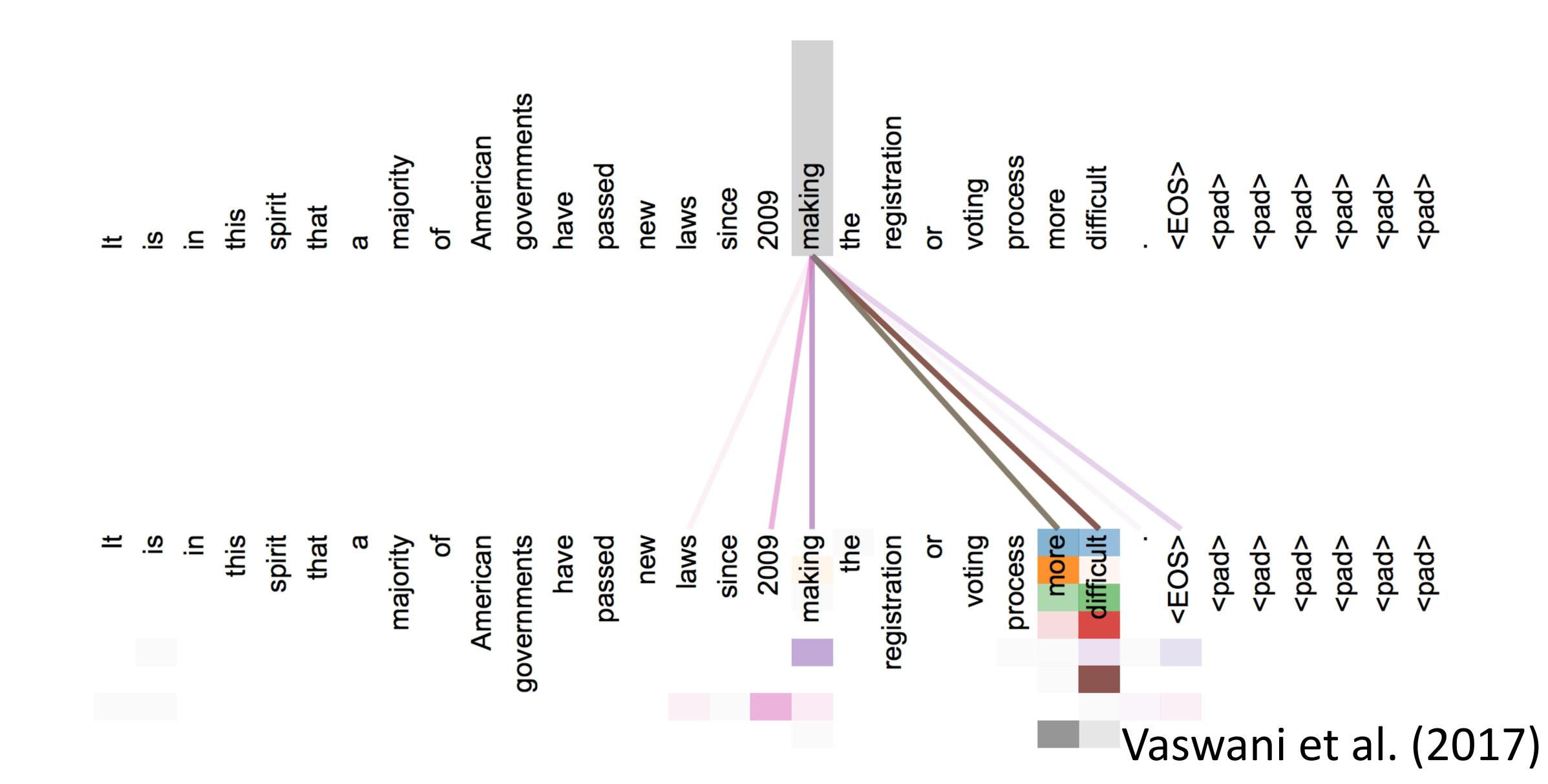
What can self-attention do?

The ballerina is very excited that she will dance in the show.

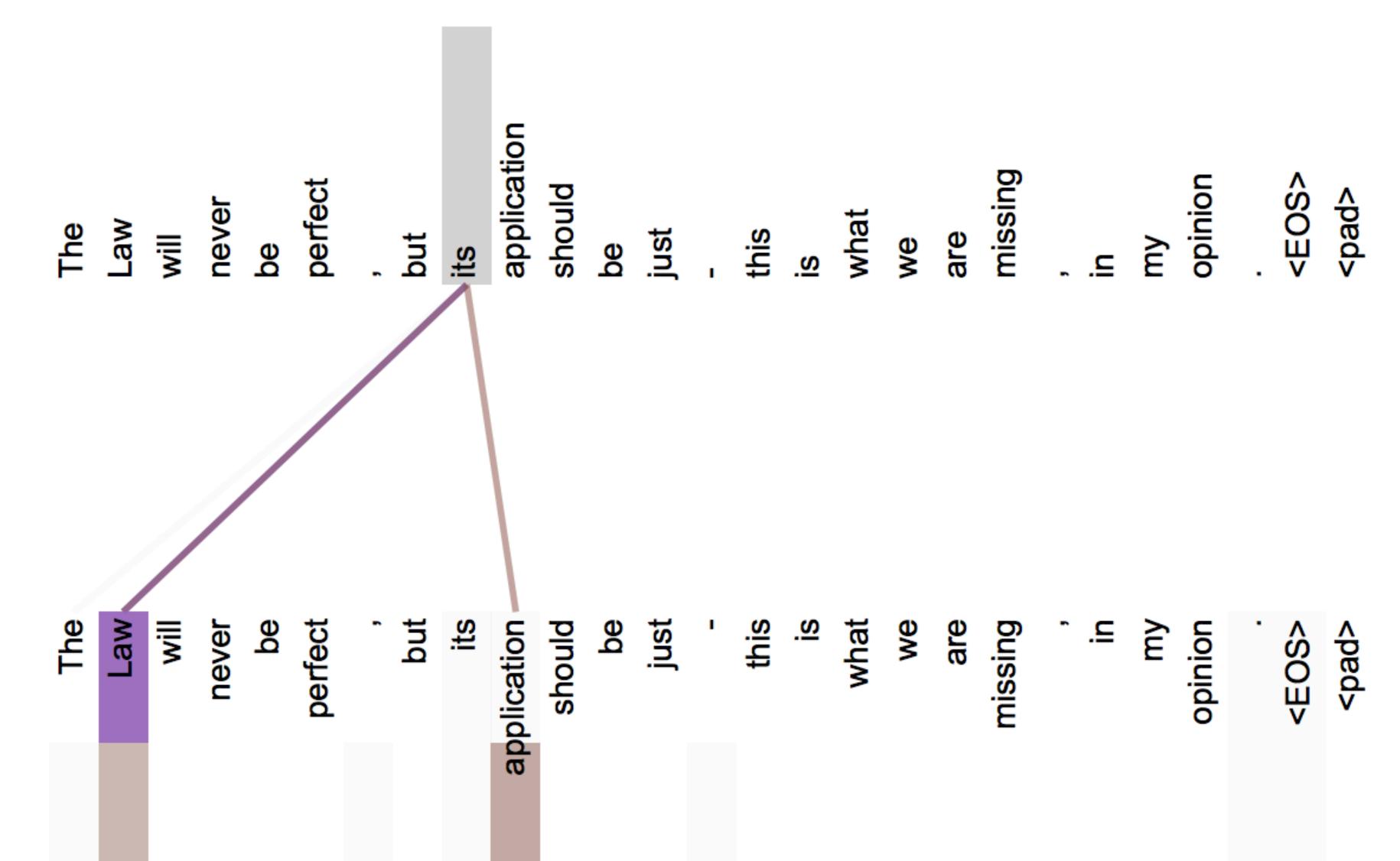
0	0.5	0	0	0.1	0.1	0	0.1	0.2	0	0	0
0	0.1	0	0	0	0	0	0	0.5	0	0.4	0

- Attend nearby + to semantically related terms
- Why multiple heads? Softmaxes end up being peaked, single distribution cannot easily put weight on multiple things

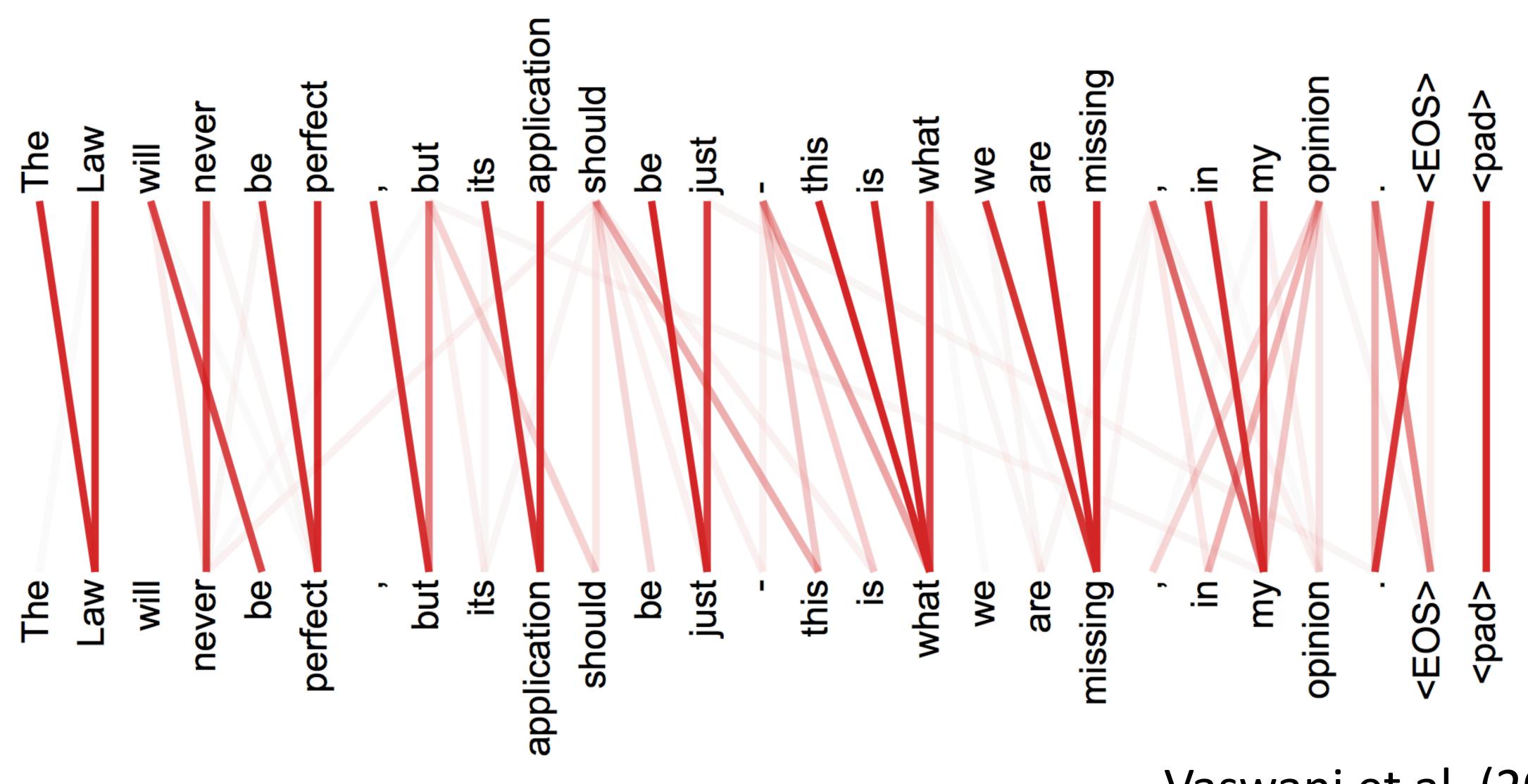
Visualization



Visualization

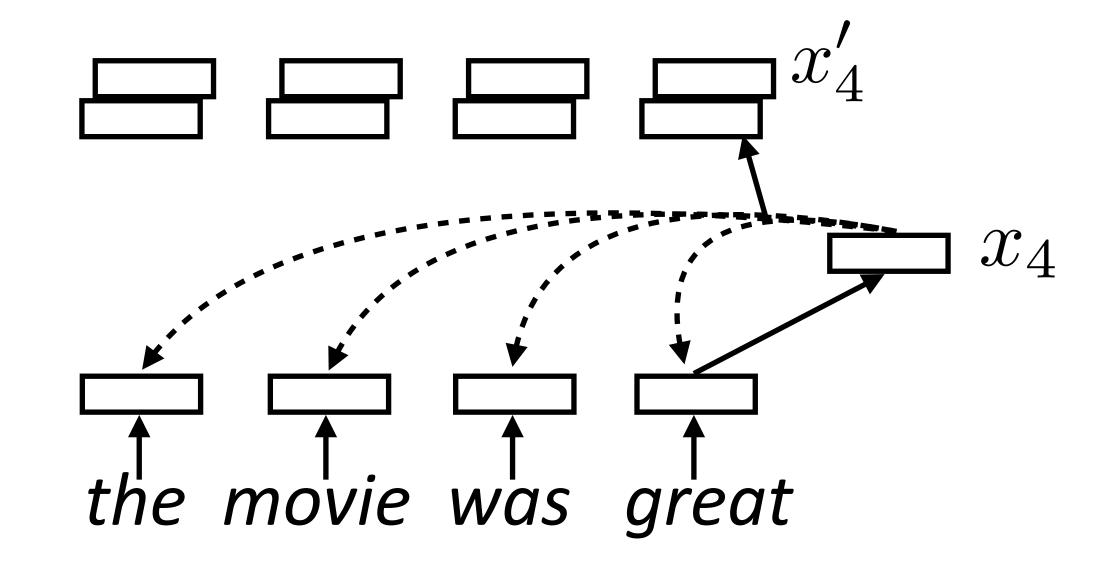


Visualization



 Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^ op x_j)$$
 scalar
$$x_i' = \sum^n lpha_{i,j} x_j \quad \text{vector = sum of scalar * vector}$$

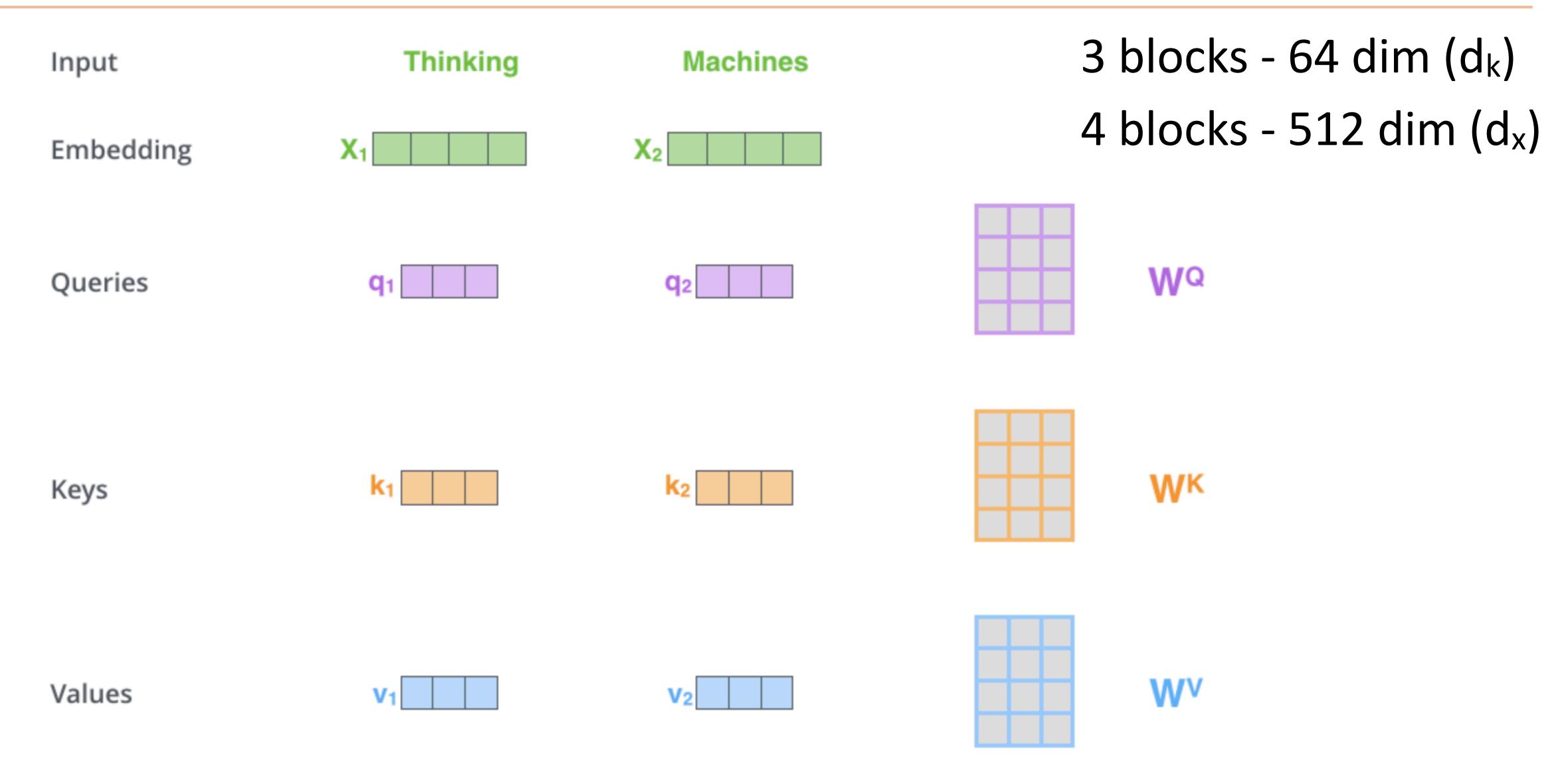


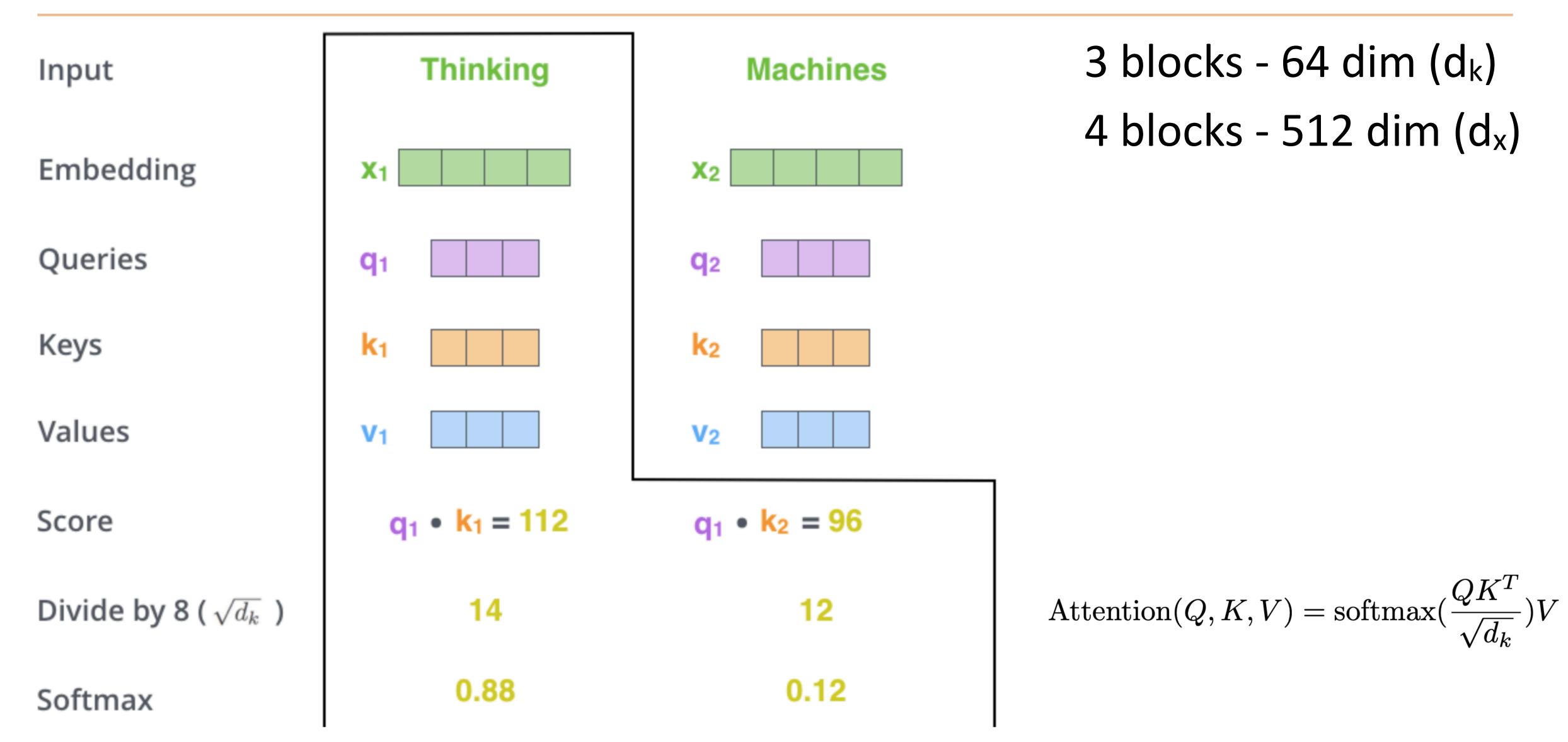
• Multiple "heads" analogous to different convolutional filters. Use parameters W_k and V_k to get different attention values + transform vectors

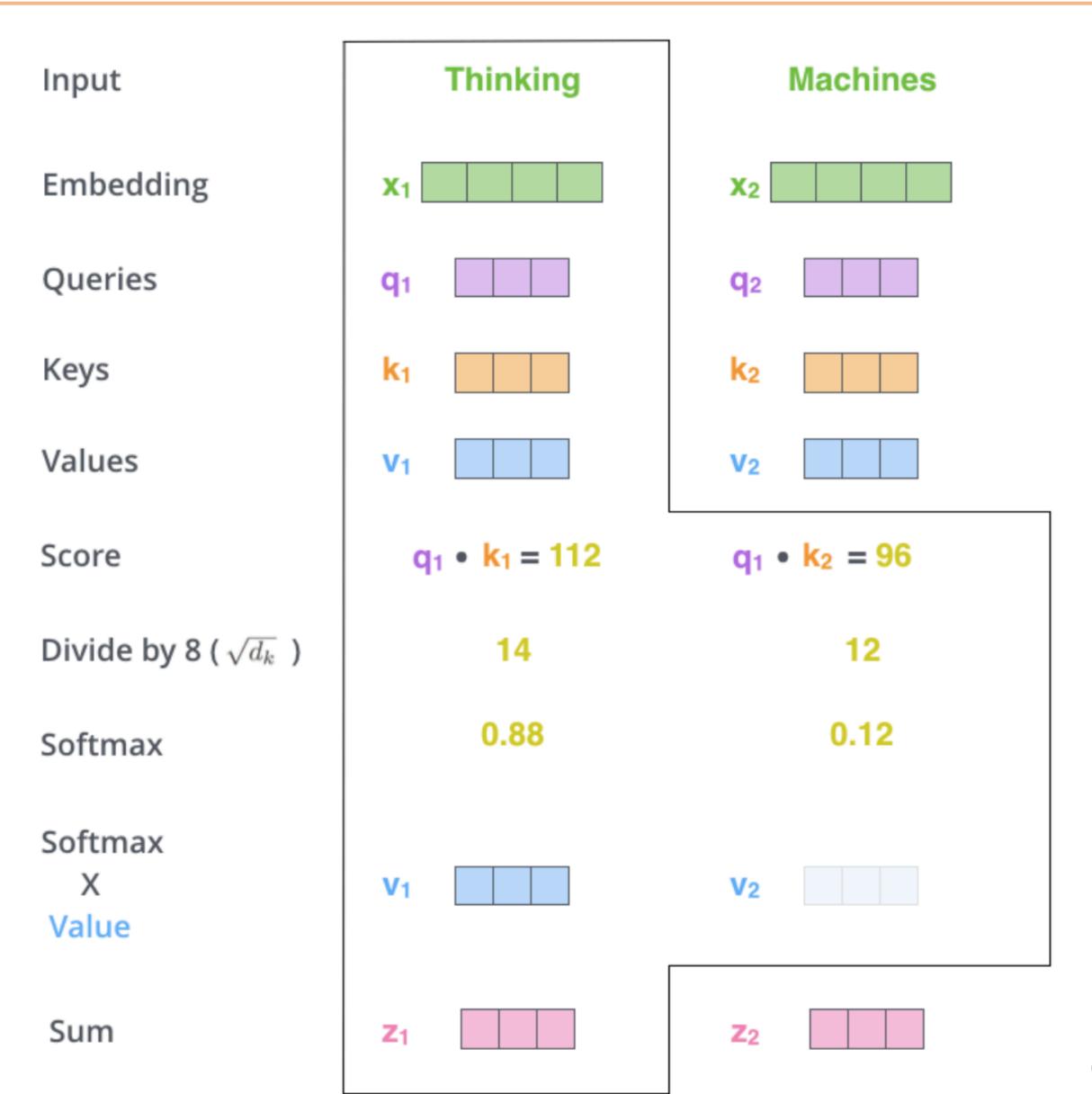
$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

- Multiple "heads" actual implementation that uses matrix operations
- Let X = [sent len, embedding dim] be the input sentence
- Query $Q = XW^Q$: these are like the decoder hidden state in attention
- Keys $K = XW^K$: these control what gets attended to, along with the query
- ▶ Values $V = XW^V$: these vectors get summed up to form the output

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
 dim of keys





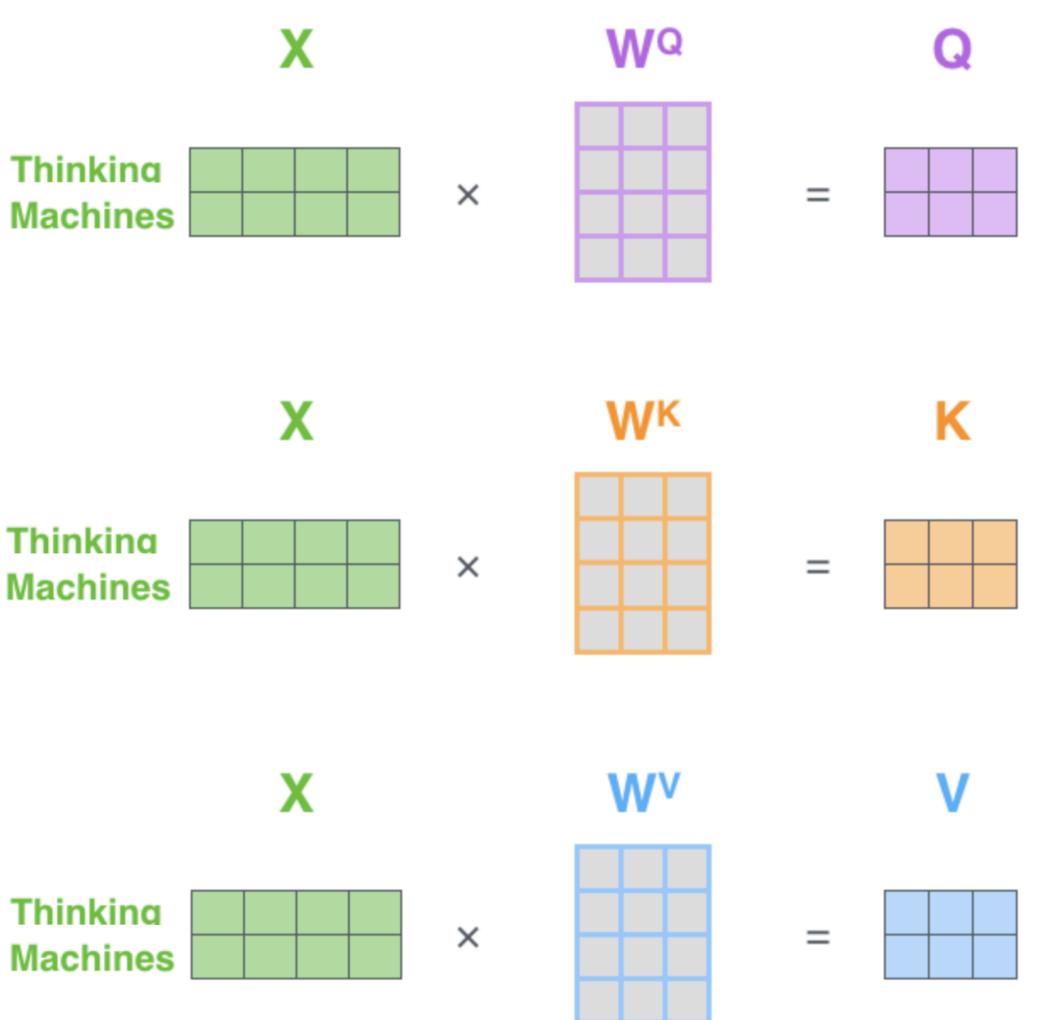


 $3 \text{ blocks} - 64 \text{ dim } (d_k)$

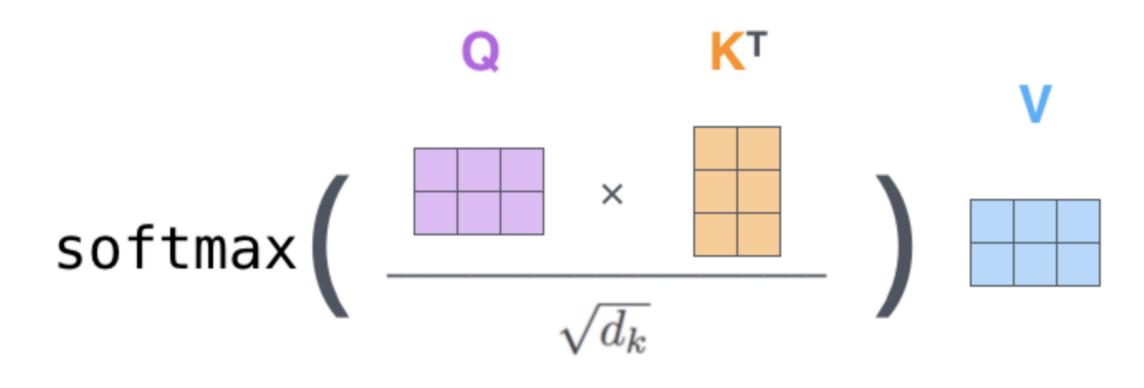
4 blocks - $512 dim (d_x)$

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

every row in X is a word in input sent

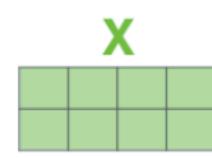


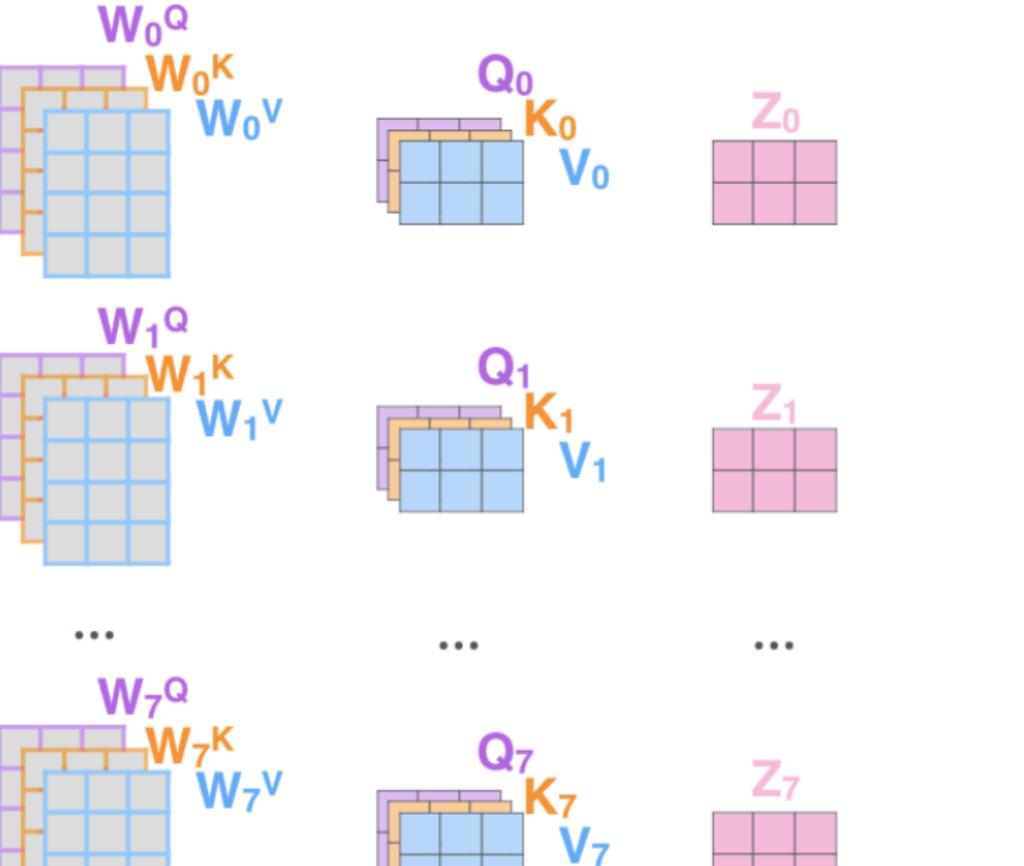
sent len x sent len (attn for each word to each other)

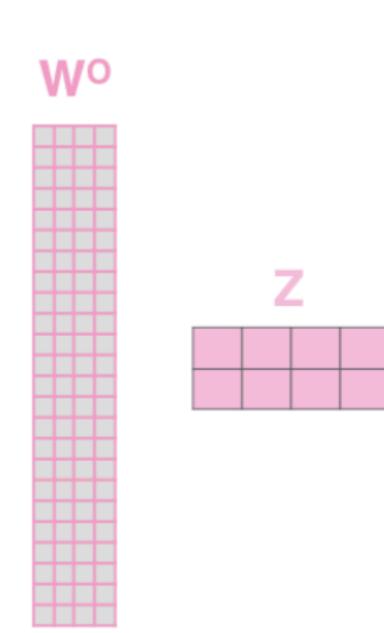


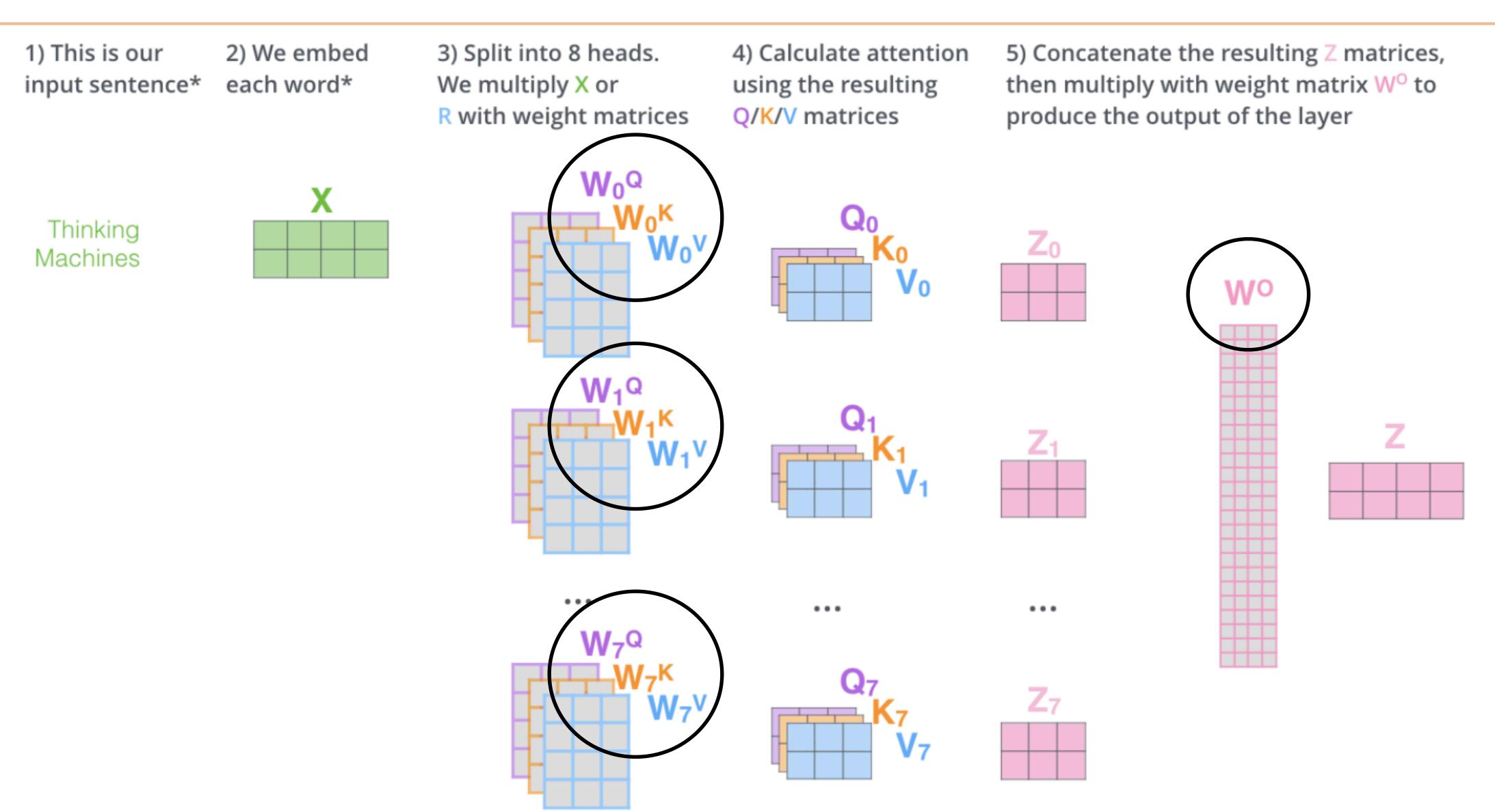
Z is a weighted combination of V rows

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads.
 We multiply X or
 R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer







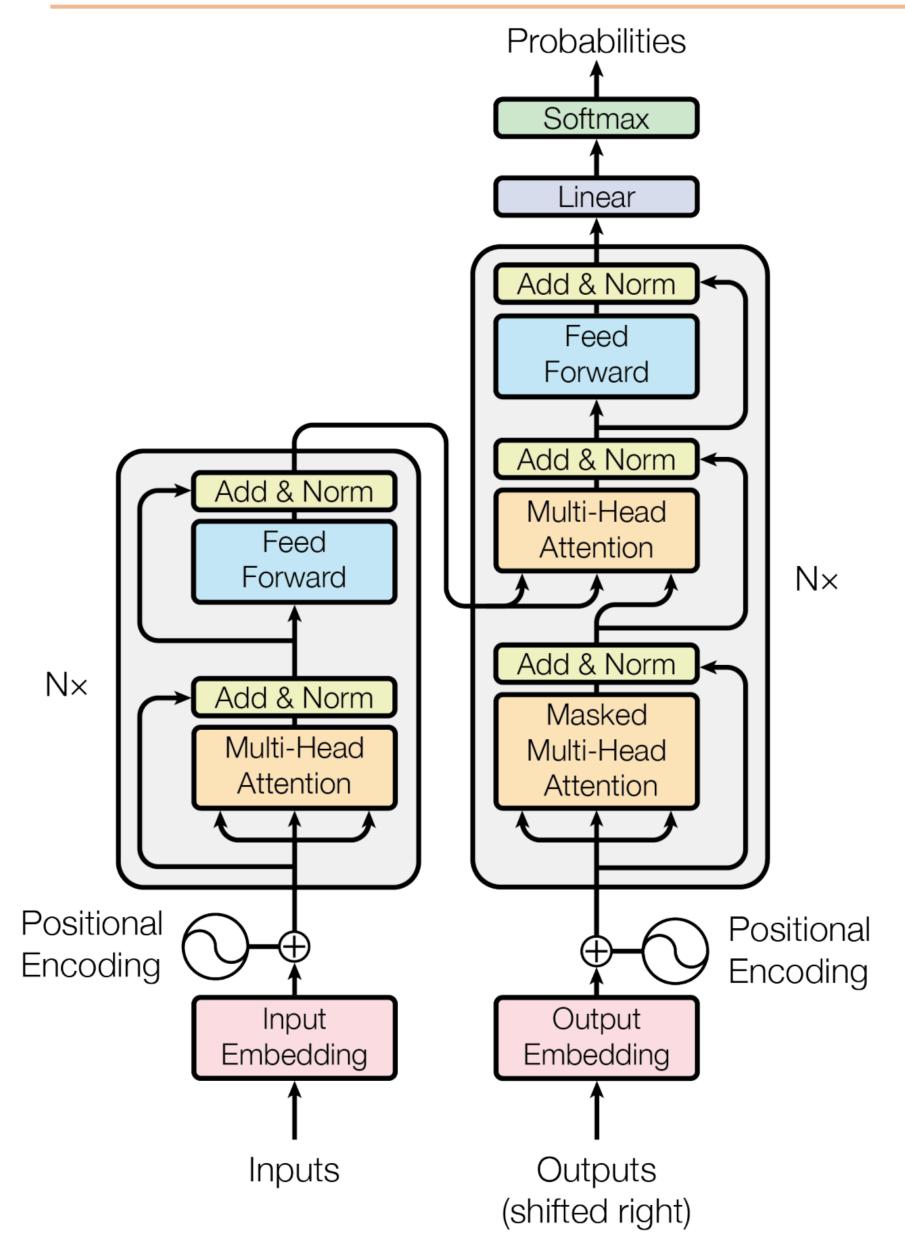


Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

- n = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size
- ▶ Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other

Transformers for MT: Complete Model



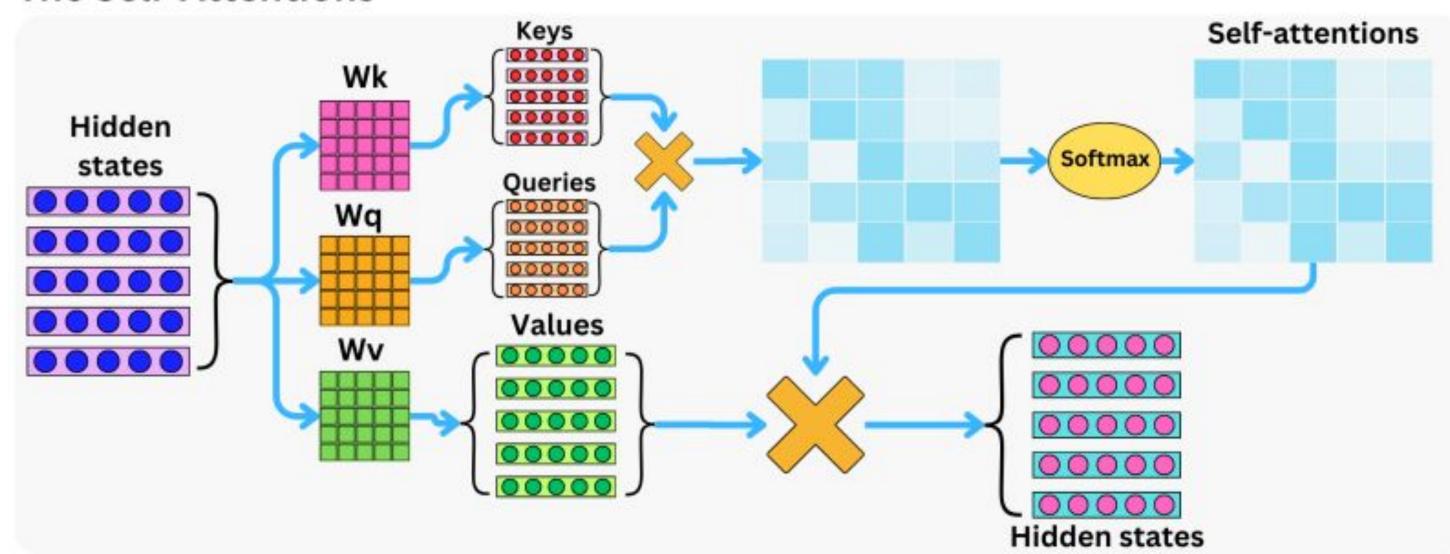
Encoder and decoder are both transformers

 Decoder alternates attention over the output and attention over the input as well

 Decoder consumes the previous generated tokens but has no recurrent state

Self-Attention vs. Cross-Attention

The Self-Attentions



The Cross-Attentions

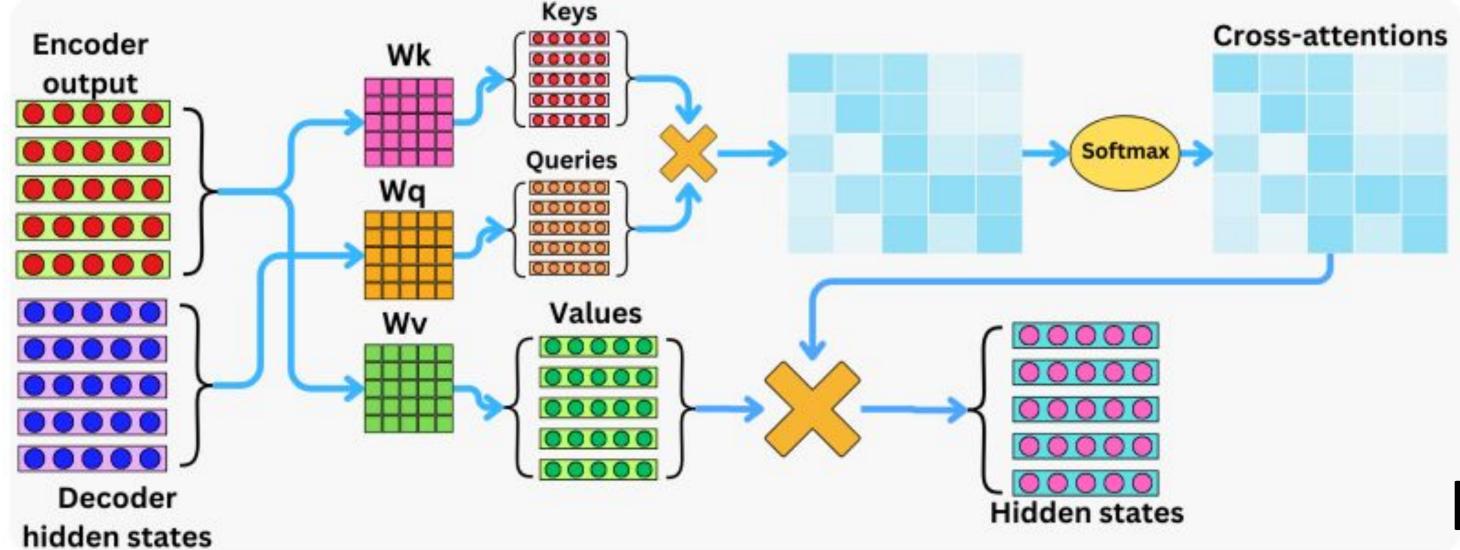
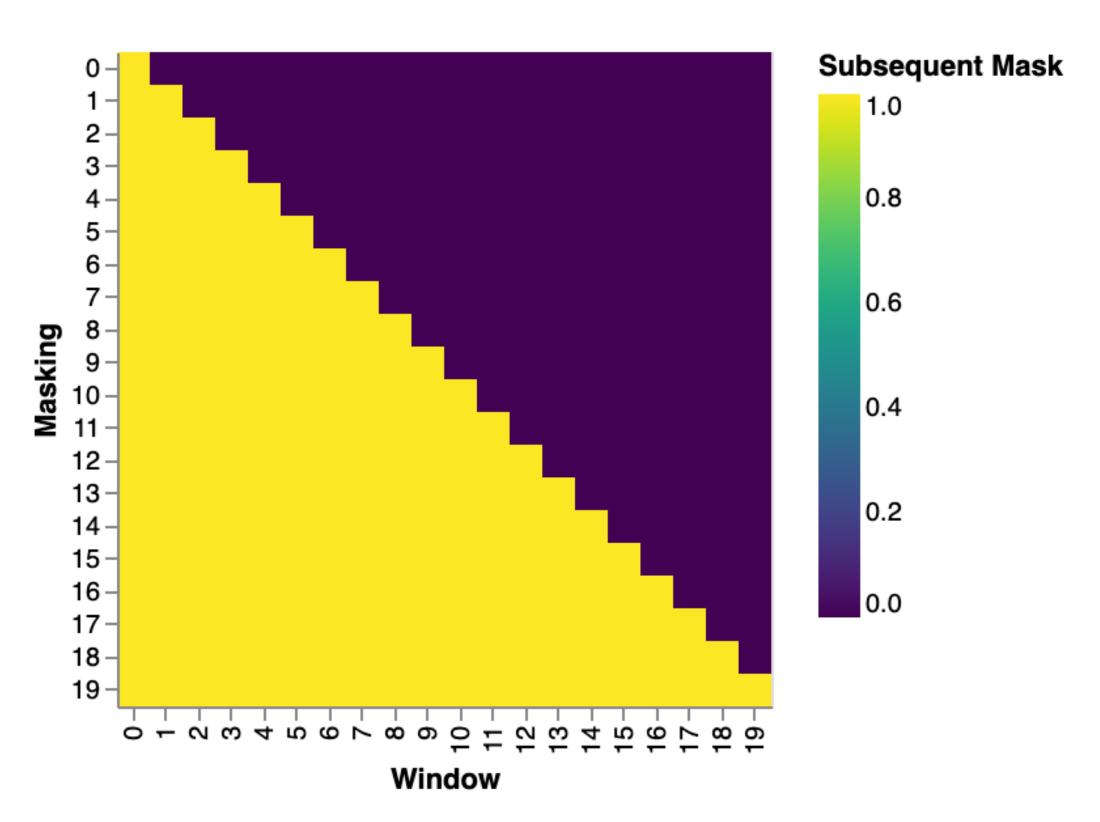


Image Credit: TheAiEdge.io

Casual Self-Attention Mask

- Decoder (by default) is autoregressive, making prediction word by word
- It should not peek at the right side of the output sentence

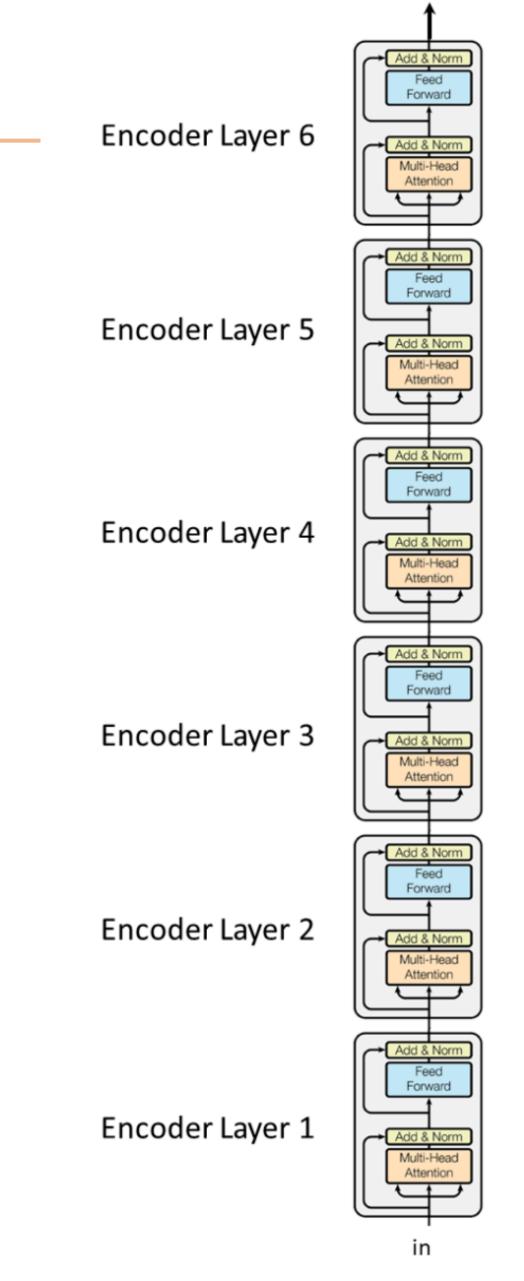


Add & Norm Feed Forward Multi-Head Attention

 Alternate multi-head self-attention layers and feedforward layers (w/ ReLU activation) that operate over each word individually

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

 Most of the parameters are in these feedforward layers



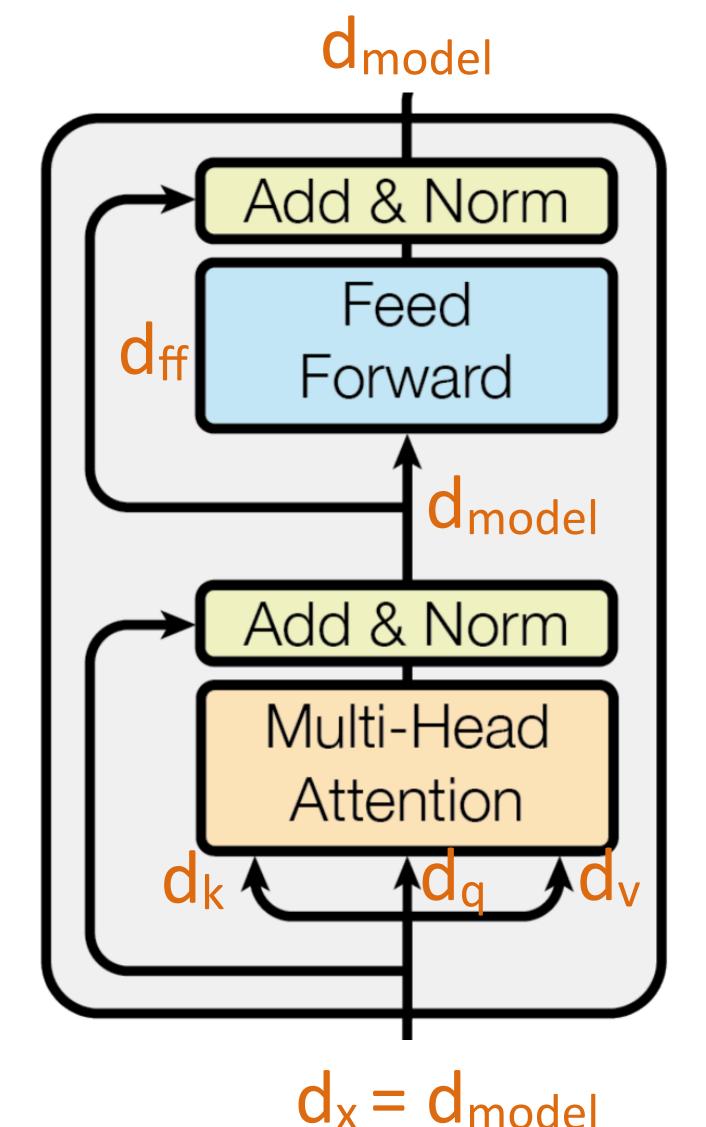


N = 6

Encoder Layer 6

Encoder Layer 5

Encoder Layer 4



Alternate multi-head self-attention layers and feedforward layers (w/ ReLU activation) that operate over each word individually

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

$$d_{x} = 512$$

$$d_{\rm ff} = 2048$$

$$d_k = d_q = d_{model} / h = 64$$

$$d_v = d_{model} / h = 64$$

Add & Norm Forward Add & Norn Malti-Head Attention Positional Encoding Embedding Inputs

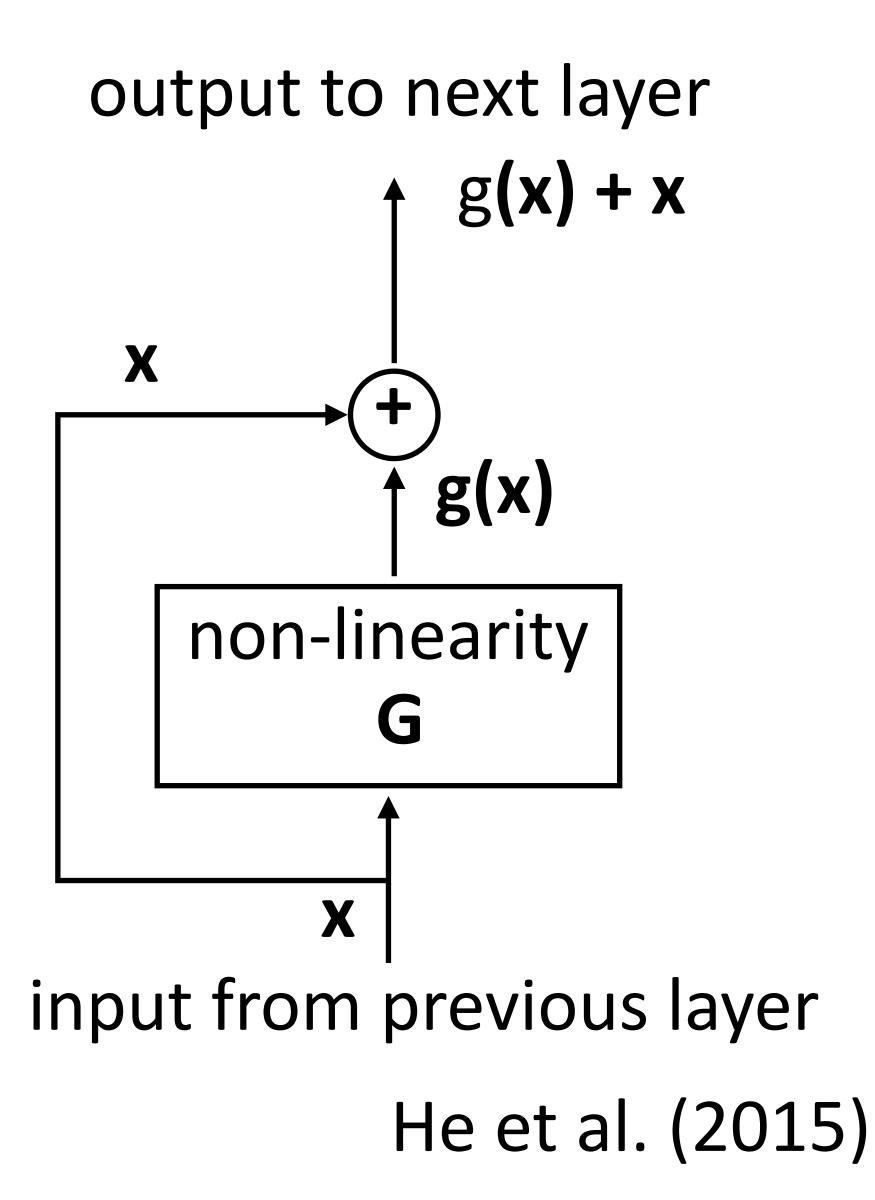
 Alternate multi-head self-attention layers and feedforward layers

 Residual connections let the model "skip" each layer — these are particularly useful for training deep networks

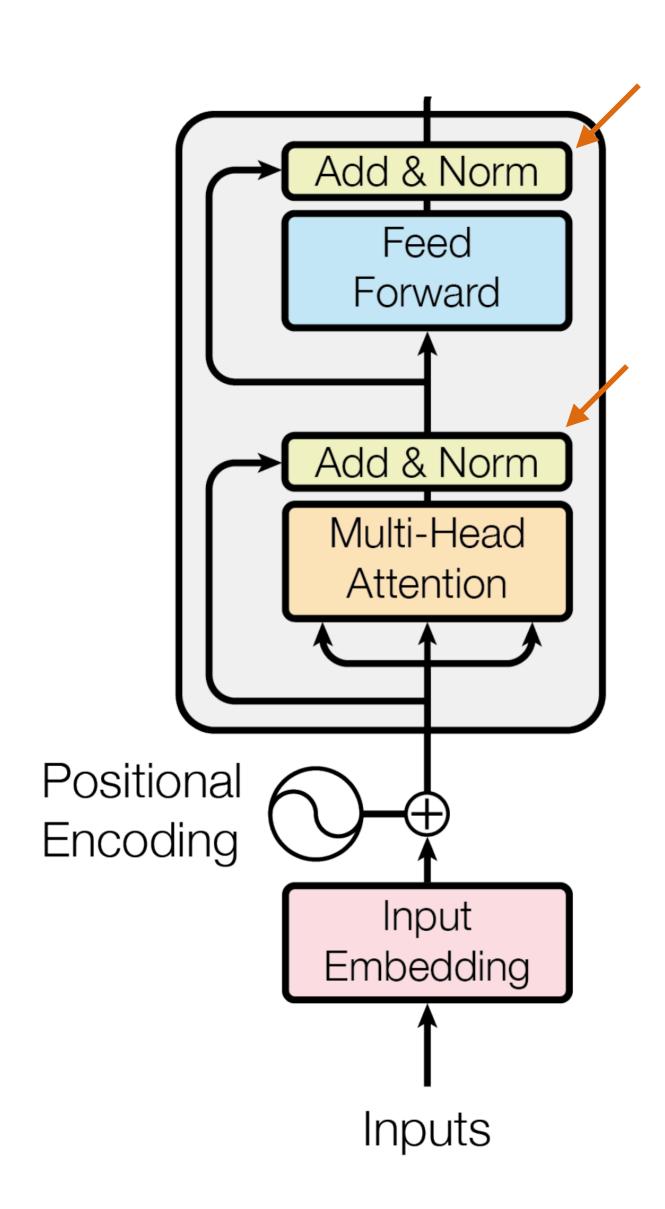
out Encoder Layer 6 **Encoder Layer 5 Encoder Layer 4 Encoder Layer 3 Encoder Layer 2** Encoder Layer 1

Residual Connections

 allow gradients to flow through a network directly, without passing through non-linear activation functions



Layer Normalization



subtract mean, divide by variance

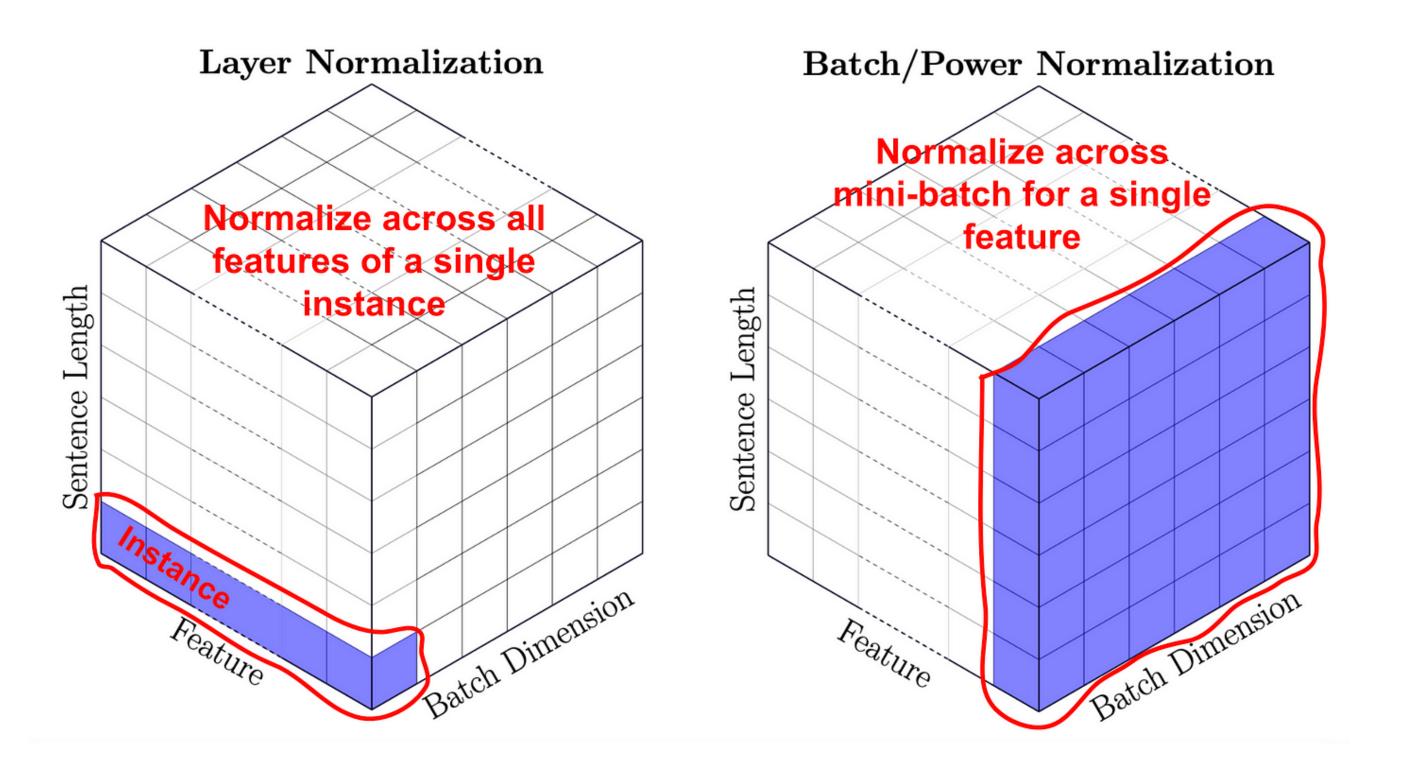


Image Credit: Shen et al. (2020)

Batch Normalization

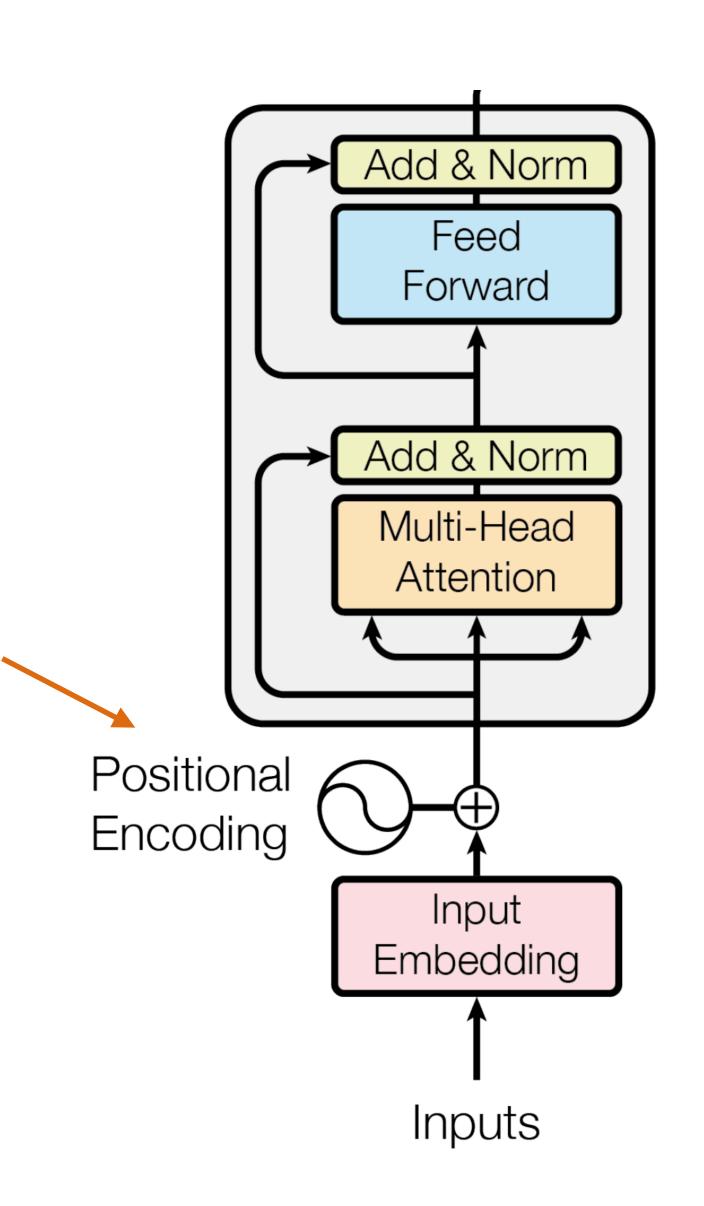
```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
                Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
 \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                                  // mini-batch mean
  \sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2}  // mini-batch variance \widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} // normalize
      y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                                        // scale and shift
```

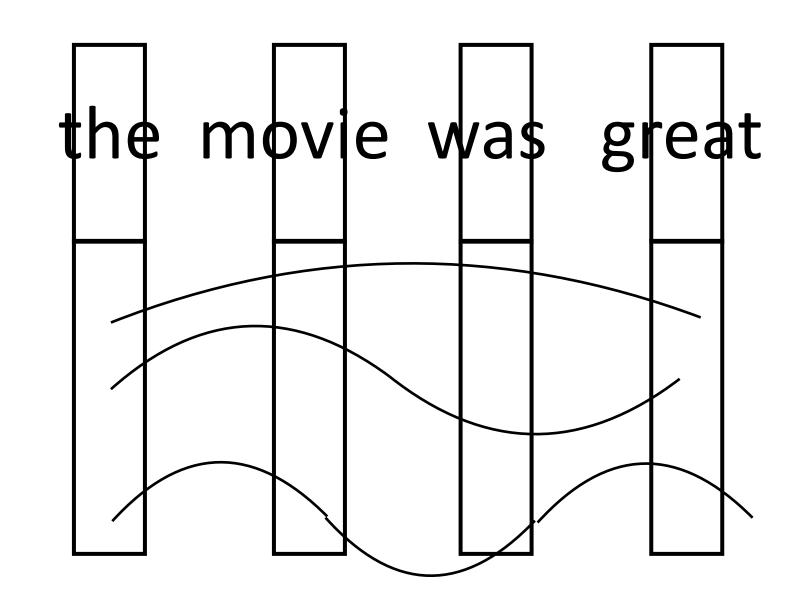
Transformers: Position Sensitivity

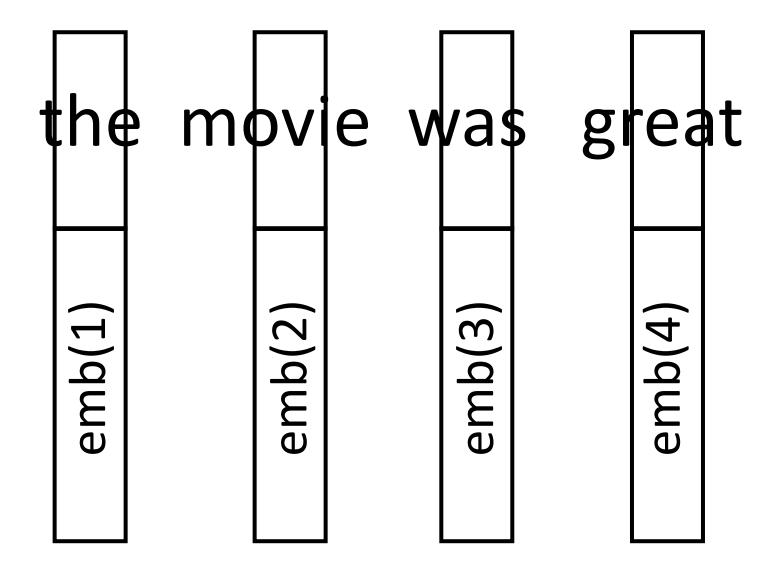
The ballerina is very excited that she will dance in the show.

If this is in a longer context, we want words to attend locally

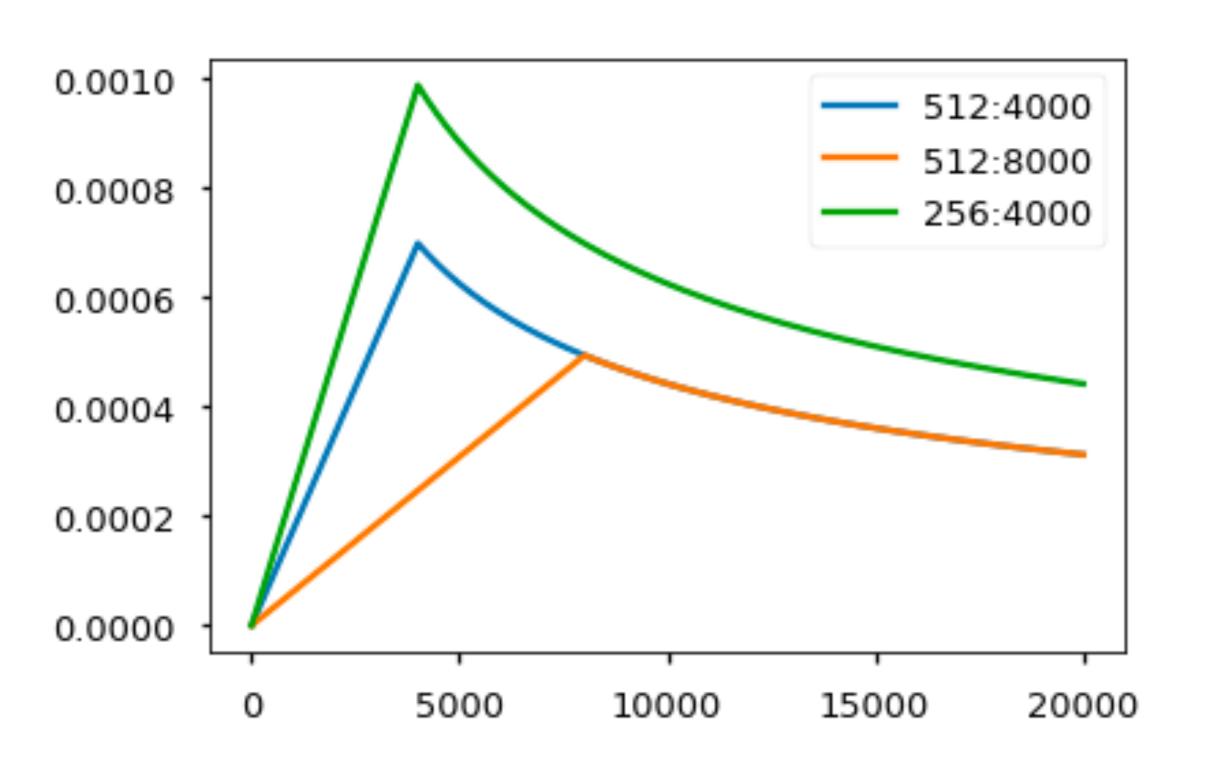
But transformers have no notion of position by default





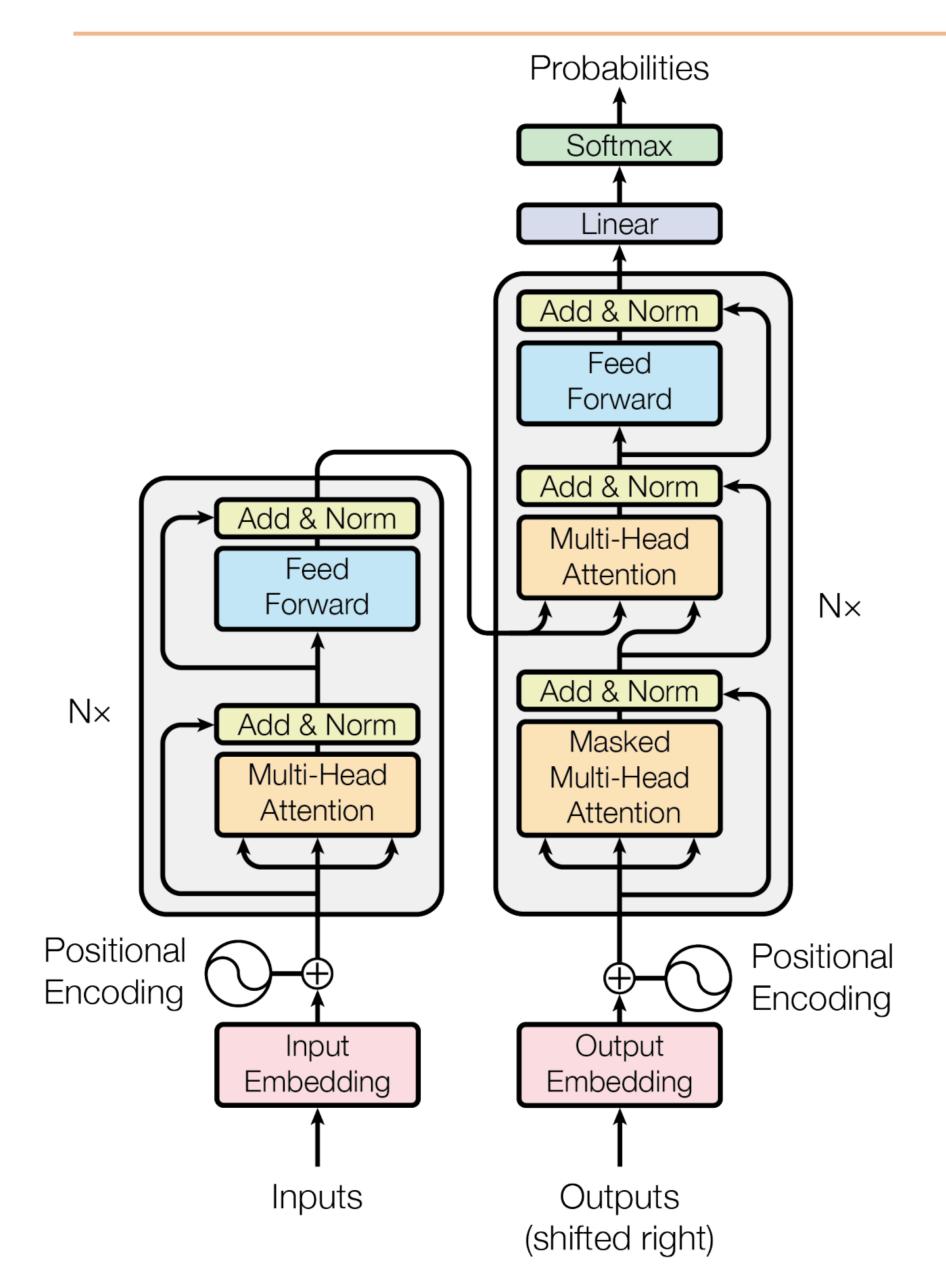


- Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products
- Works essentially as well as just encoding position as a one-hot vector Vaswani et al. (2017)



- Adam optimizer with varied learning rate over the course of training
- Linearly increase for warmup, then decay proportionally to the inverse square root of the step number
- This part is very important!

Transformers for MT: Complete Model



Many other details to get it to work: residual connections, layer normalization, positional encoding, optimizer with learning rate schedule, label smoothing

N/ada1	BL	EU	
Model	EN-DE	EN-FR	
ByteNet [18]	23.75		
Deep-Att + PosUnk [39]		39.2	
$\overline{GNMT} + RL [38]$	24.6	39.92	
ConvS2S [9]	25.16	40.46	
MoE [32]	26.03	40.56	
Deep-Att + PosUnk Ensemble [39]		40.4	
GNMT + RL Ensemble [38]	26.30	41.16	
ConvS2S Ensemble [9]	26.36	41.29	
Transformer (base model)	27.3	38.1	
Transformer (big)	28.4	41.8	

big = 6 layers, 1000 dim for each token, 16 heads,
 base = 6 layers + other params halved

Useful Resources

nn.Transformer:

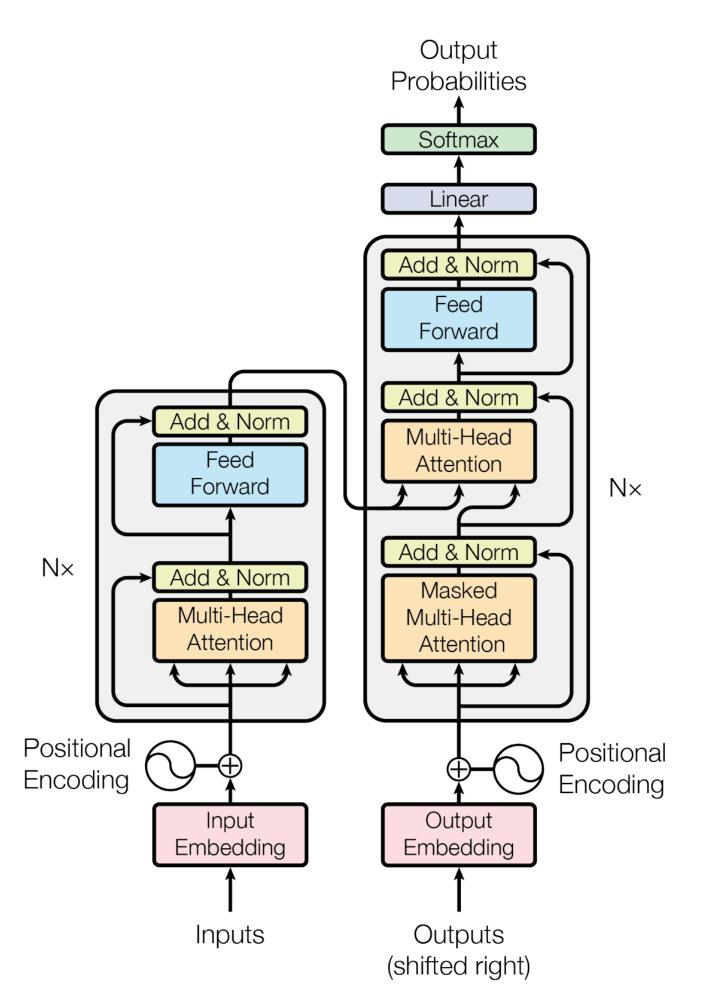
```
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
```

nn.TransformerEncoder:

```
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
```

Summary: Transformer Uses

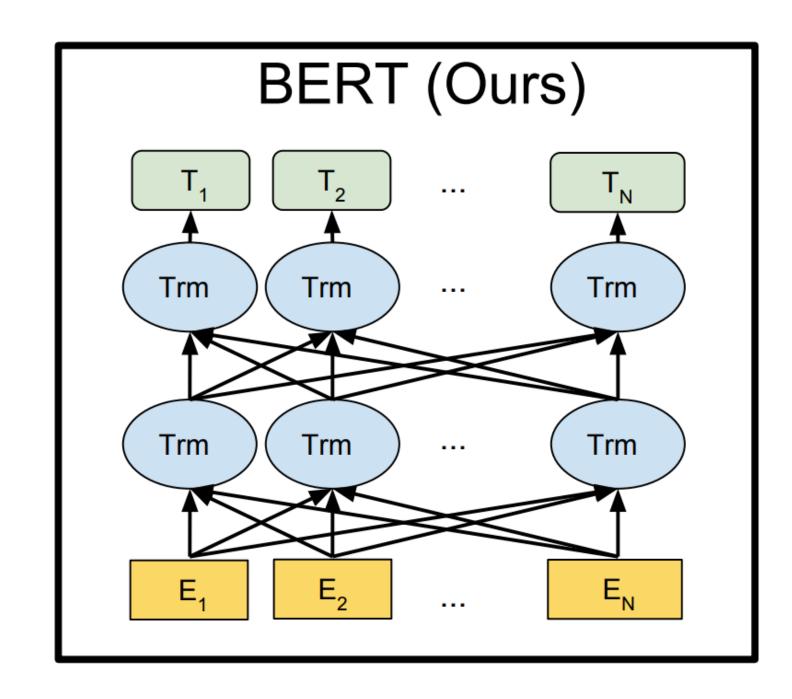
Supervised: transformer can replace LSTM as encoder, decoder, or both; such as in machine translation and natural language generation tasks.



- Encoder and decoder are both transformers
- Decoder consumes the previous generated token (and attends to input), but has no recurrent state

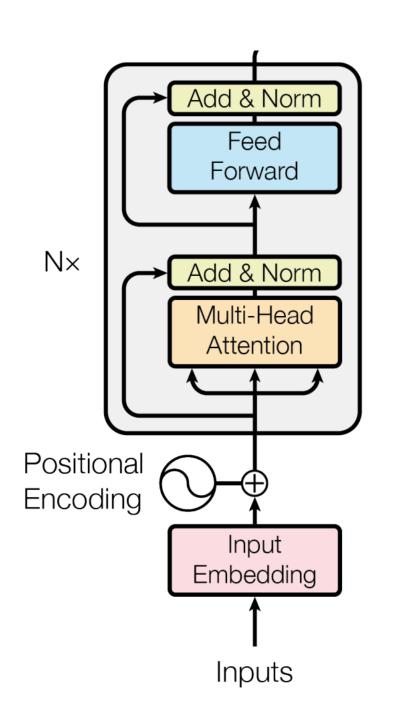
Summary: Transformer Uses

- Unsupervised: transformers work better than LSTM for unsupervised pre-training of embeddings — predict word given context words
- BERT (Bidirectional Encoder Representations from Transformers): pretraining transformer language models similar to ELMo (based on LSTM)
- Stronger than similar methods, SOTA on ~11 tasks (including NER 92.8 F1)



Other Transformer Variations

- Multilayer transformer networks consist of interleaved self-attention and feedforward sublayers.
- Could ordering the sublayers in a different pattern lead to better performance?



sfsfsfsfsfsfsfsfsfsfsfsf

(a) Interleaved Transformer

sssssssfsfsfsfsfsfsfffffff

(b) Sandwich Transformer

Figure 1: A transformer model (a) is composed of interleaved self-attention (green) and feedforward (purple) sublayers. Our sandwich transformer (b), a reordering of the transformer sublayers, performs better on language modeling. Input flows from left to right.

Other Transformer Variations

Mixture of Expert (MoE) Transformer, e.g., used in massively multilingual MT

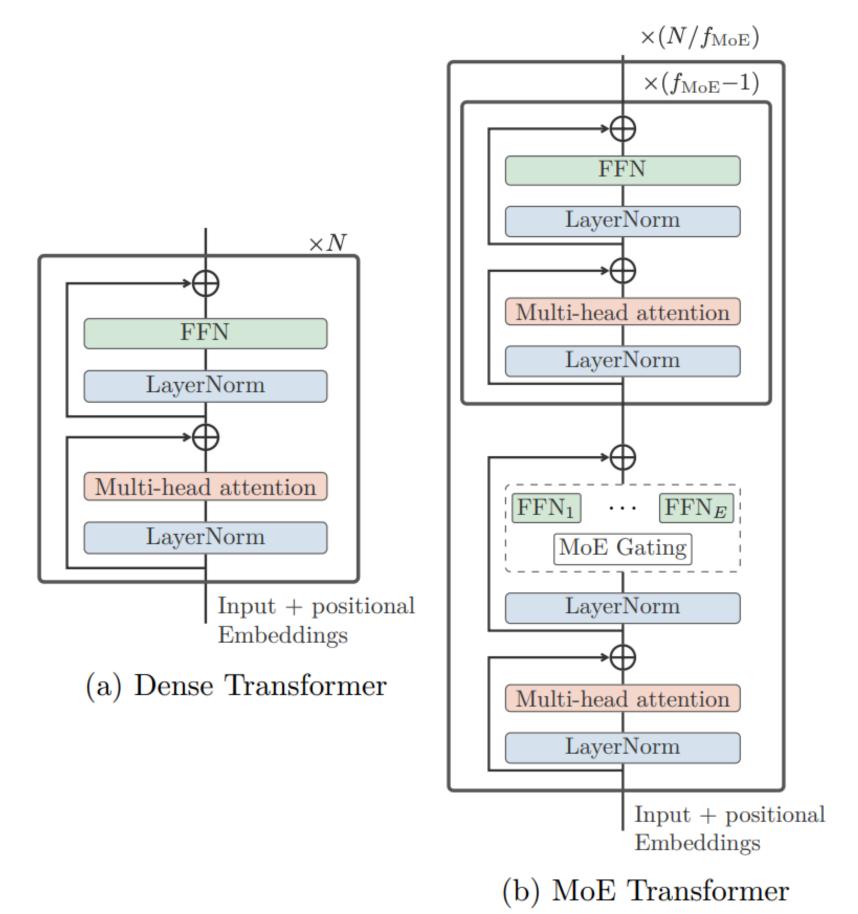
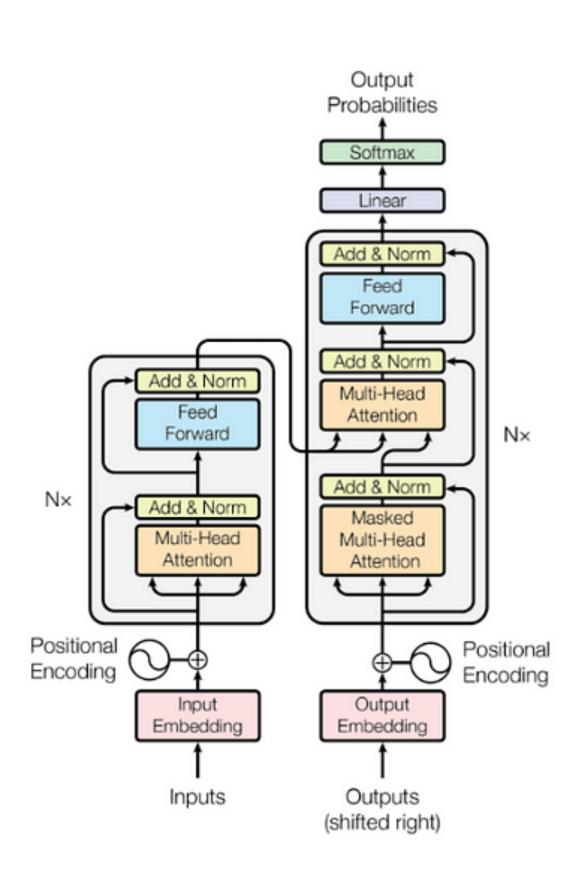


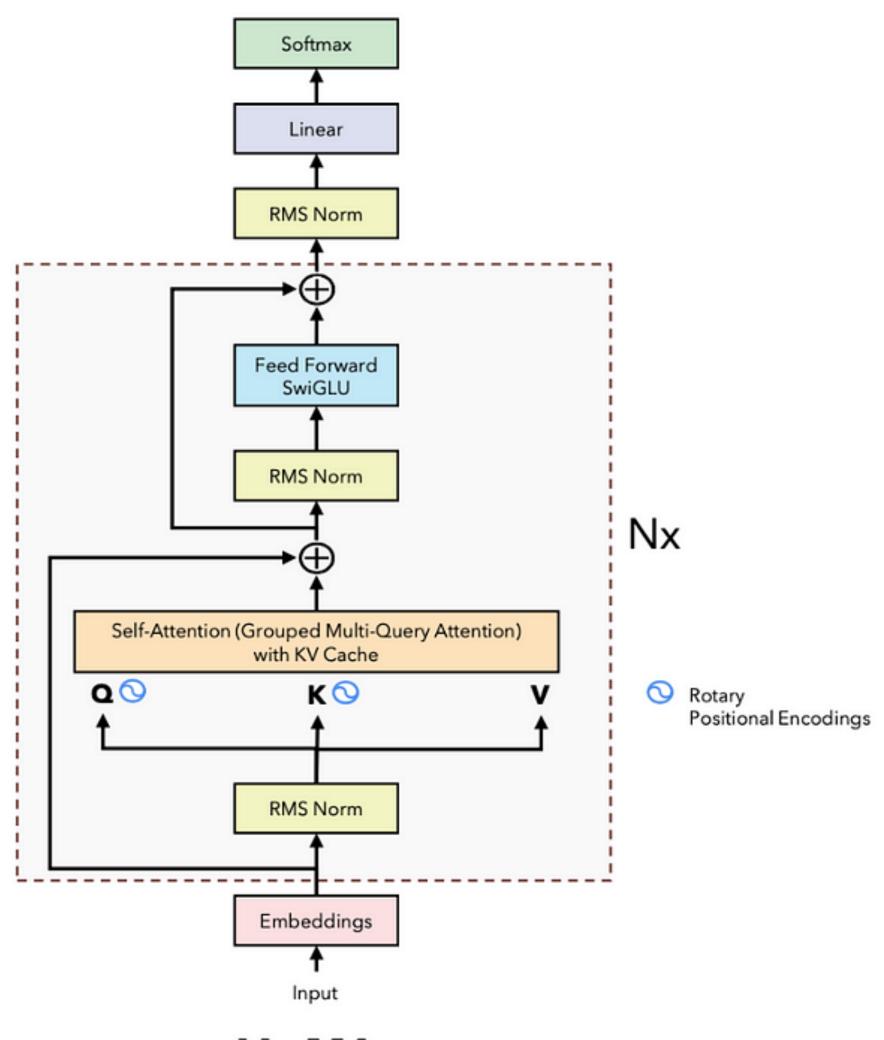
Figure 16: Illustration of a Transformer encoder with MoE layers inserted at a $1:f_{\text{MoE}}$ frequency. Each MoE layer has E experts and a gating network responsible for dispatching tokens.

Eigen el al. (2013), Shazeer et al. (2017), NLLB (2022)

Transformer as in LLaMA-3



Transformer



LLaMA