Transformer

Wel Xu

(many slides from Greg Durrett)

This Lecture

» Transformer architecture

Attention is All You Need

Attention Is All You Need

Ashish Vaswani” Noam Shazeer” Niki Parmar” Jakob Uszkoreit”®
Google Brain Google Brain Google Research Google Research

avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones® Aidan N. Gomez* ' Fukasz Kaiser®
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin*
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requining significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

Vaswani et al. (2017)

Readings

» “The Annotated Transformer” by Sasha Rush
https://nlp.seas.harvard.edu/2018/04/03/attention.html

» “The lllustrated Transformer” by Jay Lamar

http://jalammar.github.io/illustrated-transformer/

» Jurafsky+Martin Chapter 8

Sentence Encoders

» LSTM abstraction: maps each vector in a
sentence to a new, context-aware vector

the movie was great

» CNNs do something similar with filters I s D

L LN N\

the movie 'was great

~ Attention can give us a third way to do this

Vaswani et al. (2017)

Self-Attention

Self-Attention

- Assume we’re using GloVe/word2vec embeddings — what do we want our
neural network to do?

The ballerina is very excited that she will dance in the show.

» Q: What words need to be contextualized here?

Vaswani et al. (2017)

Self-Attention

- Assume we’re using GloVe/word2vec embeddings — what do we want our
neural network to do?

RN

The ballerina is very excited that she will dance in the show.

- What words need to be contextualized here?

» Pronouns need to look at antecedents

» Ambiguous words should look at context

» Words should look at syntactic parents/children

» Problem: LSTMs and CNNs don’t do this
Vaswani et al. (2017)

Self-Attention

» Want:

RN

The ballerina is very excited that she will dance in the show.

» LSTMs/CNNSs: tend to look at local context

The ballerina is very excited that she will dance in the show.

» To appropriately contextualize embeddings, we need to pass information
over long distances dynamically for each word

Vaswani et al. (2017)

Self-Attention

» Each word forms a “query” which then !
computes attention over each word EI EI EI

-

Oéi,j — softmax(:ci ZI?j) scalar ===
/ []
L

p— — e 3
— E QG 5 vector = sum of scalar * vector T T

— the movie was great
71=1

» Multiple “heads” use different sets of parameters Wx and Vi to get
different attention values + transform vectors

T
__ 1 /
a.; i = softmax(x; Wix,) Ty = E ki i Vi

Vaswani et al. (2017)

What can self-attention do?
RN

The ballerina is very excited that she will dance in the show.

O 0.5 o, 0 01 {010 1(0.1{ 0.2 [0jO0O| O

0| 0.1 O] O 0 O 0O[0|05 (004 O

» Attend nearby + to semantically related terms

» Why multiple heads? Softmaxes end up being peaked, single distribution
cannot easily put weight on multiple things

Vaswani et al. (2017)

Visualization

~
i
-
<ped> <ped> muw
<ped> <ped> —_
<ped> <ped> ._nlnw
<ped> <ped> U
<ped> <ped> =
<ped> <ped> m
<SO3> <SO3> %
. . ~
}INOIIP yroyps 8
alow aJow M
ssa20.d ssa00.d
Buijoa Bunoa
ile ile
uolneJsibal uoneJisibal
oy} oy}
Buiyew Bunew
6002 6002
9oUulS aouIs
SME| SME|
MaUu MaU
passed passed
aAey aAey
SjuswuIan0b SjuswuIanob
uedlIaWwyy uedlawy
JO JO
Aluolew Aluolew
e e
jey} ey}
Juids yuids
SIY} SIyj
ul ul

SI S|
])|

Visualization

<ped>
<S03>

uoiluido
Aw

ul
Buissiw
ale

oM
1eym

Sl

SIUY}
)snl

oQ
p|noys
uoneoldde
s

1gle
j088ad
9Q
Janau
[[IM
MET]

oyl

<ped>
<S0O3>

uoluido
Aw

ul
Buissiw
ale

oM
Jeym

Sl

SIY}
ysn(

oQ
p|noys
uonesidde
s

gle

j088d
oQ
Jlanau
[[IM

oyl

Vaswani et al. (2017)

Visualization

~
—
~
<ped> <ped> ~—
<SO3> ~=<S03> ©
. . o~
— v
uoluldo = uoluido
(T
Aw Aw >
(Vg
ul ul (O
1 4 V
buissiw buissiw
ale ale
oM oM
1JEUYM 1Jeym
S| S|
SIY} SIY}
"
a(9(
p|Noys p|noys

uoneoidde ” uoneoldde
S S
R
amtma” 1oopad
aq aq

JoASU JoAoU
[IIM [IM

Eﬁ” Me’]
oy | oy |

Self-Attention

» Each word forms a “query” which then !
computes attention over each word EI EI EI

-

Oéi,j — softmax(:ci ZI?j) scalar ===
/ []
L

p— — e 3
— E QG 5 vector = sum of scalar * vector T T

— the movie was great
71=1

» Multiple “heads” analogous to different convolutional filters. Use
parameters Wi and Vi to get different attention values + transform vectors

n
f i.§ — SOftmaX($;er$j) .CIZ;C,?; — Z ozk,f,;,ijxj
Vaswani et al. (2017)

>

>

Multi-Head Self Attention

Multiple “heads” - actual implementation that uses matrix operations

Let X = [sent len, embedding dim] be the input sentence

Query Q = XWQ: these are like the decoder hidden state in attention

Keys K = XWK: these control what gets attended to, along with the query

» Values V = XWV: these vectors get summed up to form the output

Attention(Q, K,V') = softmax(

QK"

Vg

1%

™ dim of keys

Vaswani et al. (2017)

Input

Embedding

Queries

Keys

Values

Multi-Head Self Attention

3 blocks - 64 dim (dk)
4 blocks - 512 dim (dy)

Credit: Alammar, The lllustrated Transformer

Multi-Head Self Attention

Input 3 blocks - 64 dim (dk)
4 blocks - 512 dim (dy)
Embedding
Queries of q:
Keys
Values
Score qr ® ki= qr * k2 =
Divide by 8 (/dy.) Attention(Q, K, V') = softmax(QKT)V
y V Uk y y - \/d_k
Softmax

Credit: Alammar, The lllustrated Transformer

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (Vd;.)

Softmax

Softmax
X

Sum

Multi-Head Self Attention

1 ®

q2

i ®

3 blocks - 64 dim (dk)
4 blocks - 512 dim (dy)

QK"

Attention(Q, K, V) = softmax(
Vdy

1%

Credit: Alammar, The lllustrated Transformer

Multi-Head Self Attention

every row in X is a word in input sent
Y P sent len x sent len (attn for

each word to each other)

softmax()

sent len x hidden dim

. - Z is a weighted combination of V rows

Credit: Alammar, The lllustrated Transformer

Multi-Head Self Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting =~ matrices,
iInput sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo©
e
W;0
Q1
TT] 1]
W-«

]
T

Credit: Alammar, The lllustrated Transformer

Multi-Head Self Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting = matrices,
Input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
-
Q1
II]I ".
JHEE o
[T] ||
Q7

T T]
n

Credit: Alammar, The lllustrated Transformer

Properties of Self-Attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?*) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

» n =sentence length, d = hidden dim, k = kernel size, r = restricted
neighborhood size

» Quadratic complexity, but O(1) sequential operations (not linear like
in RNNs) and O(1) “path” for words to inform each other

Vaswani et al. (2017)

Transformer

Transformers for MT: Complete Model

Probabilities

» Encoder and decoder are both transformers

Add & Norm

Feed
Forward

» Decoder alternates attention over the output
and attention over the input as well

Add & Norm

Multi-Head

Attention
N x

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention
1

Positional
Encoding

Add & Norm

Masked
Multi-Head
Attention

N x

» Decoder consumes the previous generated
tokens but has no recurrent state

Positional
A\O—@ A |
" $ ‘« Encoding
Input Output
Embedding Embedding

Inputs (Shch)ctuetgL;itgsht) Vaswan| Et al (2017)

Hidden

states
00000
00000
[(XXIXX])

Self-Attention vs. Cross-Attention

The Self-Attentions

Keys

oW
eeo0o®
X X-X-X-}
(I XTI’

HK—

Queries
[oXs]eXeo]e]
(oXoXoXeTo)
(eX=TeXele)
(eTeToToTo)

Values
@008 ~

CLII I

The Cross-Attentions

Encoder

outEut ;

Keys

IR

00000 Queries 2@—*
20000 mmm
XXXX CITeTeTe) }J

000 ® _ (eTeTeTe1o)
(XXXIX I Values
[XXXX) @I I XX
0000 CXXXX)
00000 I

00000
00000 - 4 2)

Decoder

hidden states

C0009
000809 }-—)
00000

Self-attentions

Hidden states

Cross-attentions

Hidden states

Image Credit: TheAiEdge.io

Casual Selt-Attention Mask

- Decoder (by default) is autoregressive, making
prediction word by word

~ |t should not peek at the right side of the
output sentence

Subsequent Mask
1.0

0.8

0.6

O OWooO~NOOCOPHPWON—-O
| | 1| | | 1|

Masking

0.4

0.2

0.0

Transformers

Encoder Layer 6

- Alternate multi-head self-attention =

layers and feedforward layers (w/ —
ed RelLU activation) that operate over ==
each word individually Frcoder ayer | o=

FFN(x) = max(0, W7 + b1) W5 + b

Encoder Layer 5

Encoder Layer 3

Add & Norm

Multi-Head » Most of the parameters are in

Attention these feedforward layers
41 J

Encoder Layer 2

Encoder Layer 1

Vaswani et al. (2017)

N=6

Transformers

Encoder Layer 6

dmodel

> Alternate multi-head self-attention

layers and feedforward layers (w/ R T
ReLU activation) that operate over ==
each word individually Encoder Layer 4 | “erlery

FFN(z) = max(0, zW7 + b1)Ws + b

Encoder Layer 3

, h=28
MU ‘t| B Head Encoder Layer 2
Attention Ox =512
__1%¢ J d# = 2048
Encoder Layer 1 AR N
dk= dq — dmodel/ h =64 ==

dvzdmoe h =64 ' \
del / Vaswani et al. (2017)

~Metfi-Head
Attention

Positional
—Ncoding

QO
INnput

INnputs

Transformers

- Alternate multi-head self-attention

layers and feedforward layers

» Residual connections let the model Encoder Layer 4

“skip” each layer — these are

particularly useful for training deep Encoder Layer 3

networks

Encoder Layer 6

Encoder Layer 5

Encoder Layer 2

Encoder Layer 1

Vaswani et al. (2017)

Residual Connections

- allow gradients to flow through a network output to next layer

directly, without passing through non-linear
activation functions

non-linearity
G

input from previous layer
He et al. (2015)

Layer Normalization

> subtract mean, divide by variance

Ba et al. (2016) loffe & Szegedy (2015)

Layer Normalization Batch/Power Normalization

alize across._
ini-batch for a single’

Add & Norm
Multi-Head feature
Attention
g" e Eﬂ
1 g T { S
S A LA LA Bl T
> LA = 5
ositional »‘ o kS // // e 3
—ncoding PP \
Input e
p / .\@Qﬂ\ ll%)at “\\
Embedding O 2N

Inputs Image Credit: Shen et al. (2020)

Batch Normalization

Input: Values of x over a mini-batch: B = {x1._,. };
Parameters to be learned: ~,

Output: {yz- = BNw,ﬁ(fﬂi)}

1 — .
R < — Z T; // mini-batch mean
L
1 ™
2 2 e o o
Op — — T; — // mini-batch variance
B — ;(IB)
T; < Y1 PB // normalize
Vo t+e

yi < yx; + B = BN, 5(x;) // scale and shift

Transformers: Position Sensitivity

RN

The ballerina is very excited that she will dance in the show.

~ If this is in a longer context, we want words to attend locally

» But transformers have no notion of position by default

Vaswani et al. (2017)

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention

\ 1
Positional
Encoding e &

Input
Embedding

INnputs

TN

N\

e ——

N

\
_/

N

Transformers

‘lhe movle was great

T~

/

emb(1)
emb(2)
emb(3)
emb(4)

» Augment word embedding with position embeddings,
each dim is a sine/cosine wave of a different
frequency. Closer points = higher dot products

» Works essentially as well as just encoding position as
a one-hot vector

Vaswani et al. (2017)

Transformers

» Adam optimizer with varied learning
rate over the course of training

SLEROLE —— 512:4000

—— 512:8000
- 256:4000

0.0008 -
> Linearly increase for warmup, then

decay proportionally to the inverse
square root of the step number

0.0006 -

0.0004 -

0.0002 -

» This part is very important!

0.0000 -

0 5000 10000 15000 20000

Vaswani et al. (2017)

Transformers for MT: Complete Model

Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

» Many other details to get it to work: residual
connections, layer normalization, positional

N x

Add & Norm

N> AGd & Norm —— encoding, optimizer with learning rate
Multi-Head Multi-Head
Attention ention "
t_-_ schedule, label smoothing

Positional
Encoding

Positional
A\O—@ A |
" $ ‘« Encoding
Input Output
Embedding Embedding

Inputs (Shch)ctuetgL;itgsht) Vaswan| Et al (2017)

Transformers

BLEU

Model

EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2
GNMT + RL [38] 24.6 39.92
ConvS2S [9] 25.16 40.46
MoE [32] 26.03 40.56
Deep-Att + PosUnk Ensemble [39] 40.4
GNMT + RL Ensemble [38] 26.30 41.16
ConvS2S Ensemble [9] 26.36 41.29
Transformer (base model) 27.3 38.1
Transformer (big) 28.4 41.8

» big = 6 layers, 1000 dim for each token, 16 heads,

base = 6 layers + other params halved

Vaswani et al. (2017)

Useful Resources

nn.Transtormer:

>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = toxrch.rand((10, 32, 512))

>>> tgt = toxrch.rand((20, 32, 512))
>>> out = transformer_model(sxrc, tgt)

nn.TransformerEncoder:

>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)

>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer _encoder(src)

Summary: Transformer Uses

» Supervised: transformer can replace LSTM as encoder, decoder, or both;
such as in machine translation and natural language generation tasks.

OQutput
Probabilities
:ax » Encoder and decoder are both transformers
T » Decoder consumes the previous generated
e R token (and attends to input), but has no
o)| (| 52525 || v recurrent state
Nx Add & Norm cdd S Rorm
&Atte:tion} . AtteAntion}
) - VRN /) “
cncoaing QO &) Ereoing
I [

Inputs (sh%uetgtiitgjht) Va Swah | Et d I . (2 O 1 7)

Summary: Transformer Uses

> Unsupervised: transformers work better than LSTM for unsupervised
pre-training of embeddings — predict word given context words

- BERT (Bidirectional Encoder
Representations from Transformers):

pretraining transformer language models BERT (Ours)
similar to ELMo (based on LSTM)

> Stronger than similar methods, SOTA on ~11
tasks (including NER — 92.8 F1)

Other Transformer Variations

>~ Multilayer transformer networks consist of interleaved self-attention and
feedforward sublayers.

» Could ordering the sublayers in a different pattern lead to better
performance?

sfsfsfsfsfsfsfsfsfsfsfsfsfsf

l 2

(f—>[Add & Norm | (a) Interleaved Transformer
Feed
’ Forward l
S } sssssssfsfsfsfsfsfsfsfffffff
Nx | —(Add & Norm)
o Foad (b) Sandwich Transformer
’ Attention l
At
& ') Figure 1: A transformer model (a) 1s composed of inter-
Positional @_% leaved self-attention (green) and feedforward (purple)
Encoding sublayers. Our sandwich transformer (b), a reordering
’ Em'g‘gg;mg l of the transformer sublayers, performs better on lan-
T guage modeling. Input flows from left to right.
Inputs

Press et al. (2020)

Other Transformer Variations

- Mixture of Expert (MoE) Transformer, e.g., used in massively multilingual MT

X (N/ fsor)

X (fmoE—1)
S0
T\
FFN
|
[LayerNorm |
X N
D
,69 7
[Multi-head attention |
FFN | [
| [LayerNorm]
{ LayerNorm
D b
{ I 3/
Multi-head attention| | | | o= --"-------- |
I | - |
[LayerNorm J | ‘M()I;‘ Gating l
________ e
Input 4 positional [LayerNorm |
Embeddings
' A
\
(a”) Dense Transformer | Multi-head attention |
I
[LayerNorm J

Input + positional
Embeddings

(b) MoE Transformer

Figure 16: Illustration of a Transformer encoder with MoE layers inserted at a
1: faror frequency. Each MoE layer has E experts and a gating network responsible for

dispatching fokens Eigen el al. (2013), Shazeer et al. (2017), NLLB (2022)

Transformer as in LLaMA-3

Output
Probabilities
t
Softmax
Linear
t
. !)
Add & Norm
Feed
Forward
— E—
- = Add & Norm
Add & Nom Multi-Head
Feed Attention
F
cn:rard | 7 } f N x
Nix Add & Norm
Add &'NO'm Masked
Multi-Head Multi-Head
Altention Attention
At t
L — > s p—
FPositional Positional
x + + X
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Softmax

Feed Forward
SwiGLU

i

RMS Norm

A

>
t

Self-Attention (Grouped Multi-Query Attention)

with KV Cache

Q®
t

K®

v
t

j

RMS Norm

Embeddings

’

Input

LLaMA

o e e e e e e e e e e e e e e e

Nx

Q Rotary
Positional Encodings

