Backpropagation

J.G. Makin
February 15, 2006

1 Introduction

The aim of this write-up is clarity and completeness, but not brevity. Feel free to skip to the
“Formulae” section if you just want to “plug and chug” (i.e. if you're a bad person). If you're
familiar with notation and the basics of neural nets but want to walk through the derivation,
just read the “Derivation” section. Don’t be intimidated by the length of this document, or
by the number of equations! It’s only long because it includes even the simplest details, and
conceptually it’s entirely straighforward.

2 Specification

We begin by specifying the parameters of our network. The feed-forward neural networks
(NNs) on which we run our learning algorithm are considered to consist of layers which may
be classified as input, hidden, or output. There is only one input layer and one output layer
but the number of hidden layers is unlimited. Our networks are “feed-forward” because
nodes within a particular layer are connected only to nodes in the immediately “down-
stream” layer, so that nodes in the input layer activate only nodes in the subsequent hidden
layer, which in turn activate only nodes in the nezt hidden layer, and so on until the nodes
of the final hidden layer, which innervate the output layer. This arrangement is illustrated
nicely in Fig. (1). Note that in the figure, every node of a particular layer is connected to
every node of the subsequent layer, but this need not be the case.

A few comments on notation: If a particular layer has J € N nodes in it, then we will
refer to an arbitrary node in that layer as the ;' node, where j € {0,1,...,J}. Similarly,
the 7" node is in a layer with I nodes, and so on, where each layer makes use of its own index
variable. We take (abusive) advantage of this notation in the discussion below by referring
to layers by the node index variable associated with each one. Thus, e.g., the i** node is in
the i*" layer, which has a total of I nodes.

Secondly, the layers are labeled in reverse alphabetical order (we didn’t want to make it
too easy on you, gentle reader), so that the further upstream (i.e. the closer to the input
layer), the later the letter.

Figure 1: A piece of a neural network. Activation flows from layer k to j to 1.

Thirdly and finally: Since the layers are not in general fully connected, the nodes from
layer k which innervate the j* node of layer j will in general be only a subset of the K nodes
which make up the k' layer. We will denote this subset by K, and similarly for the other
subsets of input nodes. (Frankly, this distinction has no ramifications for the derivation, and
if the reader is confused by it he is advised to ignore it.)

3 The McCulloch-Pitts Neuron

A single McCulloch-Pitts (MP) neuron (Fig. 3), very simply, transforms the weighted sum
of its inputs via a function, usually non-linear, into an activation level, alternatively called
the “output.” In class we broke this up into two parts, the weighted sum and the activation
function, largely to stress that all MP neurons perform the weighted sum of the inputs but
activation functions vary. Thus, the weighted sum is

Ti= Y WYk, (1)

kEK]'

where again K is the set of nodes from the k' layer which feed node j (cf. Fig. 2); and the
activation is

yj = flz;). (2)
We discussed four different activation functions, f(-), in class: linear,
f(z) = Bz (3)
threshold,
1 z>0
ro={, % (@)
sigmoid,
1
f(z) (5)

4 O

O
Ky O>@

N L S

J J

Figure 2: The set of nodes labeled K; feed node 1 in the j* layer, and the set labeled K,
feed node 2.

and radial basis, as in e.g. the Gaussian:

£2) = eap{ -1,)

g

Here (3,0,~v,0, and p are free parameters which control the “shape” of the function.

4 The Sigmoid and its Derivative

In the derivation of the backpropagation algorithm below we use the sigmoid function, largely
because its derivative has some nice properties. Anticipating this discussion, we derive those
properties here. For simplicity we assume the parameter v to be unity.

Taking the derivative of Eq. (5) by application of the “quotient rule,” we find:

H(z) _ 0-(l—e) = (=)
dz (1+e2)2

B 1 e *
T o l4eF\14e
1
= 1— L
1+e = 1+e =

= f()(1-f(2)) (7)

This somewhat surprising result will simplify our notation in the derivation below.

Yk

u,’k‘}'

Ty = E WYk,

k & I \'_.I'

y; = f(z;)

Figure 3: The MP neuron takes a weighted sum (z;) of the inputs (y;), and passes it through
the activation function f(-) to produce the output y;.

5 Interpretation of the Algorithm

A supervised learning algorithm attempts to minimize the error between the actual outputs—
i.e., the activation at the output layer—and the desired or “target” activation, in this case by
changing the values of the weights in the network. Backprop is an iterative algorithm, which
means we don’t change the weights all at once but rather incrementally. How much should
we change each weight? One natural answer is: in proportion to its influence on the error;
the bigger the influence of weight w,,, the greater the reduction of error that can induced
by changing it, and therefore the bigger the change our learning algorithm should make in
that weight, hoping to capitalize on the strength of influence of the weight at this point of
the error curve. Of course, this influence isn’t the same everywhere: changing any particular
weight will generally make all the others more or less influential on the error, including the
weight we have changed.

A good way to picture this “influence” is as the steepness of a hill, where the planar
dimensions are weights, and the height of the hill is the error. This picture is shown in
Fig. 4. (One obvious limitation of this approach is that our imaginations limit us to three
dimensions, and hence to only two weights at once; whereas our network may have many,
many more than two weights.) Now, given a position in weight space by the current value
of the weights, the influence of weight w,, on the error is the steepness of the hill at that
point along the direction of the w,, axis. The steeper the hill at that point, the bigger the
change in weights. The weights are changed in proportion to these steepnesses, the error
recalculated, and the process begun again.* This process is iterated until the error falls below
some pre-ordained threshold, at which point the algorthim is considered to have learned the

*It makes intuitive sense to recalculate the error every time a weight has been changed, but in your
programming assignment you will probably want to calculate all the errors at once, and then make all the
changes at once, without recalculating the error after each change.

4

25

20 \\

Wi T
AN Pt

150 LRI it etiet

EECH AN NN Rvnas st gu s efeatesse

Figure 4: The error as a function of the weight space.

function of interest and the procedure terminates. For this reason, backprop is known as a
“steepest descent” algorithm.

Students who have taken a multi-variable calculus course will have long since recognized
the quantity which we have variously referred to as the “influence of weight w,, on the error”
and the “steepness of the error curve in the direction of weight w,,” as the derivative of the
error with respect to weight w,,. All that remains is to calculate this quantity.

6 Derivation

In preparation for the derivation of the algorithm, we need to define a meaure of error.
Intuitively, the error is the difference between the actual activation of an output node and
the desired (“target”) activation (¢;) for that node. The total error is the sum of these errors
for each output node. Furthermore, since we’d like negative and positive errors not to cancel
each other out, we square these differences before summing. Finally, we scale this quantity
by a factor of 1/2 for convenience (which will become clear shortly):

E =2 (t;—y)™ (8)

Jj=1

DN | —

It must be stressed that this equation applies only when the j** layer is the output layer,
which is the only layer for which the error is defined.

From the considerations mooted in the previous section, the weight change for a weight
connecting a node in layer k£ to a node in layer j is

oF
(9wkj ’

Awyj = —a (9)
Here a is a free parameter (the “learning rate”) that we set prior to training; it lets us scale
our step size according to the problem at hand. In our case, adjustments of o will be ad
hoc, so we will content ourselves with this intuitive explanation. Note the negative sign: this
indicates that weight changes are in the direction of decrease in error. Now expanding the
partial derivative by the chain rule, we find:

9L _ 0B dy; O,
kaj N 8yj 8xj awkj’

(10)

where we recall from Eq. (1) that z; is the weighted sum of the inputs into the 5" node (cf.
Fig. 3), and hence
a.Tj

8wkj

= Yk (11)

We will find it notationally convenient to treat the first two factors as a single quantity, an
“error term”:

= OOy,
I 83/] 8:(:j '
Nevertheless, we would like to calculate this term. We recall that y; = f(z;) is the sigmoid

function, the derivative of which we calculated in Eq. (7), so that in the present set of
variables:

(12)

% = y;(1 —y;). (13)

Finally we consider the first partial derivative in the error term. When j is an output layer,
this quantity is easy to calculate; it is just the derivative of Eq. (8) with respect to y;, i.e.,

oF
= (ts—). 14
dy; (t; — ;) (14)
(Notice how the scaling factor was neatly eliminated in taking the derivative.) Putting Egs.
(11), (13), and (14) into Eq. (10), we have:
or
0wkj a

—(t; = vi)yi (L — y;) - (15)

In the case where j is a hidden layer, 0E/Jy; is not quite as simple. Intuitively, we
need to see how the error caused by y; has propagated into the activations of the next (ith)
layer. Mathematically, this amounts to another application of the chain rule. Recalling our
multi-variable calculus:

ayj iel, 8yl 8:62 ayj '

(16)

6

The first two partial derivatives are, from Eq. (12), just the error term for the next (i*")
layer, §;. The final term is simply the derivative of Eq. (1) with respect to the input:

aiL’i
— = wj;. 17
ayj J ()
Making these substitutions yields:
oF
ayj ;61]; J ()

so that in the case of hidden layers,

oF
8wkj

== Z(@‘wﬁ)%‘(l = Yj)Yk- (19)

iEIj

Notice that even though this formula differs from the output-layer case, Eq. (15), we can
write a single formula by employing our definition of the error term, Eq. (12):

oF
awkj

= —0;Y- (20)

We haven’t done anything magical here, we’ve just buried the differences in the equations
for the output and hidden layers in the error term. This is essentially what you will do in
your programming assignment: create a single function that calculates the weight change for
the weight connecting a paricular pair of nodes, given the activation of the upstream node
and the error term of the downstream node. Each node will calculate its own error term,
and this will vary according to whether the node lives in a hidden or output layer. We now
put all these pieces together.

7 Formulae

For a weight connecting a node in layer & to a node in layer j (see Fig. 1), the change in
weight is given by
Awyj(n) = ad;y, + nAwg;(n — 1) (21)

where:

e « is the learning rate, a real value on the interval (0,1];

Yk is the activation of the node in layer k, i.e. the activation of the presynaptic node,
the one upstream of the weight;

e n and n — 1 refer to the iteration through the loop (i.e., the “epoch”);

7 is the momentum, a real value on the interval [0,1); and

7

e §; is the “error term” associated with the node after the weight, i.e. the postsynaptic
node.

This is simply a combination of Egs. (9) and (20), plus a “momentum term” which will be
explained shortly, and application of the iterative procedure discussed in Section 5. Now, if
7 is the ouput layer,
05 = (t; — y3)y; (1 — y5); (22)

if 7 is a hidden layer, then

05 1= (D dawji)y; (1 — yy). (23)

ielj

One can see from Eq. (23) that calculation of the error term for a node in a hidden layer
requires the error term from nodes in the subsequent (i.e. downstream) layer, and so on
until the output layer error terms are calculated using (22). Thus, computation of the error
terms must proceed backwards through the network, beginning with the output layer and
terminating with the first hidden layer. It is this backwards propagation of error terms after
which the algorithm is named.

