
Sequence Models I

Wei Xu
(many slides from Greg Durrett, Dan Klein, Vivek Srikumar, Chris Manning, Yoav Artzi)



This Lecture

‣ Sequence modeling

‣ HMMs for POS tagging

‣ Viterbi, forward-backward

‣ HMM parameter esDmaDon

‣ Readings: Eisenstein 7.0-7.4, Jurafsky+MarDn Chapter 8



LinguisDc Structures
‣ Language is sequenDally structured: interpreted in an online way

Tanenhaus et al. (1995)



POS Tagging

Ghana ’s ambassador should have set up the big mee5ng in DC yesterday .

‣ What tags are out there?

NNP  POS NN                    MD  VB   VBN   RP DT JJ         NN    IN NNP NN       .

A demo — https://corenlp.run/ 



POS Tagging

Slide credit: Yoav Artzi



POS Tagging

Slide credit: Dan Klein



POS Tagging

Fed raises interest rates 0.5 percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

I’m 0.5% interested 
in the Fed’s raises!

I hereby 
increase interest 
rates 0.5%

Fed raises interest rates 0.5 percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ Other paths are also plausible but even more semanDcally weird…
‣ What governs the correct choice? Word + context
‣ Word idenDty: most words have <=2 tags, many have one (percent, the) 
‣ Context: nouns start sentences, nouns follow verbs, etc.



What is this good for?

‣ Text-to-speech: record, lead

‣ Preprocessing step for syntacDc parsers

‣ Domain-independent disambiguaDon for other tasks

‣ (Very) shallow informaDon extracDon 
‣ IdenDfying Subject-Verb-Object, acDon nouns, … 



Sequence Models

‣ Input x = (x1, ..., xn) y = (y1, ..., yn)Output 

‣ POS tagging: x is a sequence of words, y is a sequence of tags

‣ Today: generaDve models P(x, y); discriminaDve models next Dme



Hidden Markov Models

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

‣ Model the sequence of y as a Markov process

y1 y2

‣ Markov property: future is condiDonally independent of the past given 
the present

‣ If y are tags, this roughly corresponds to assuming that the next tag 
only depends on the current tag, not anything before

y3 P (y3|y1, y2) = P (y3|y2)

‣ Lots of mathemaDcal theory about how Markov chains behave



Hidden Markov Models

y1 y2 yn

x1 x2 xn

…

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

Fed     raises percent…

NNP VBZ NN…
‣ Each node (variable) is 

condiDonally independent 
from its non-dependents 
given its parents.



Hidden Markov Models

y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

IniDal 
distribuDon

TransiDon 
probabiliDes

Emission 
probabiliDes

} }}

‣ ObservaDon (x) depends 
only on current state (y)

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

‣ Each node (variable) is 
condiDonally independent 
from its non-dependents 
given its parents.



Hidden Markov Models

y1 y2 yn

x1 x2 xn

… P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

IniDal 
distribuDon

TransiDon 
probabiliDes

Emission 
probabiliDes

} }}
‣ IniDal distribuDon: |T| x 1 vector (distribuDon over iniDal states) 
‣ Emission probabiliDes: |T| x |V| matrix (distribuDon over words per tag) 
‣ TransiDon probabiliDes: |T| x |T| matrix (distribuDon over next tags per tag)

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

Fed     raises percent…

NNP VBZ NN…



TransiDons in POS Tagging

‣ Dynamics model

Fed raises interest rates 0.5 percent .

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣                            likely because start of sentence

‣                                                 likely because verb olen follows noun

‣                                           direct object follows verb, other verb rarely 
follows past tense verb (main verbs can follow modals though!)

P (y1 = NNP)

P (y2 = VBZ|y1 = NNP)

P (y3 = NN|y2 = VBZ)

P (y1)
nY

i=2

P (yi|yi�1)  NNP - proper noun, singular 
 VBZ  - verb, 3rd ps. sing. present 
 NN   - noun, singular or mass.



Penn Treebank
‣ Developed 1988 — 1994;  
‣ manually annotated with Part-of-Speech tags and syntacDc structure 
‣ Wall Street Journal, Brown, and Switchboard Corpus (>2m words)  



Training HMMs

‣ TransiDons 
‣ Count up all pairs (yi, yi+1) in the training data 
‣ Count up occurrences of what tag T can transiDon to 
‣ Normalize to get a distribuDon for P (next tag | T) 
‣ Need to smooth

‣ Emissions: similar scheme, but trickier smoothing

‣ Similar to Naive Bayes esDmaDon: maximum likelihood soluDon = 
normalized counts (with smoothing) read off supervised data



EsDmaDng TransiDons

‣ Similar to Naive Bayes esDmaDon: maximum likelihood soluDon = 
normalized counts (with smoothing) read off supervised data

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN

‣ How to smooth?

‣ One method: smooth with unigram distribuDon over tags

‣ P(tag | NN)

P (tag|tag�1) = (1� �)P̂ (tag|tag�1) + �P̂ (tag)

= empirical distribuDon (read off from data)P̂

.

= (0.5 ., 0.5 NNS)



‣ Emissions P(x | y) capture the distribuDon of words occurring with a 
given tag

Emissions in POS Tagging

‣ P(word | NN) = (0.05 person, 0.04 official, 0.03 interest, 0.03 percent …)

‣ When you compute the posterior for a given word’s tags, the distribuDon 
favors tags that are more likely to generate that word

‣ How should we smooth this?

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN .



EsDmaDng Emissions

‣ P(word | NN) = (0.5 interest, 0.5 percent) — hard to smooth!

‣ Fancy techniques from language modeling, e.g. look at type ferDlity 
— P(tag|word) is flarer for some kinds of words than for others

Fed raises interest rates 0.5 percent
NNP VBZ NN NNS CD NN

P (word|tag) = P (tag|word)P (word)

P (tag)

‣ AlternaDve: use Bayes’ rule

‣ Can interpolate with distribuDon looking at word shape 
P(word shape | tag) (e.g., P(capitalized word of len >= 8 | tag))

TnT tagger - https://arxiv.org/pdf/cs/0003055.pdf

https://arxiv.org/pdf/cs/0003055.pdf


Inference in HMMs

‣ Inference problem:

‣ ExponenDally many possible y here!

‣ SoluDon: dynamic programming (possible because of Markov structure!)

‣ Many neural sequence models depend on enDre previous tag 
sequence, need to use approximaDons like beam search

‣ Input x = (x1, ..., xn) y = (y1, ..., yn)Output 

y1 y2 yn

x1 x2 xn

… P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

argmaxyP (y|x) = argmaxy
P (y,x)

P (x)



Viterbi Algorithm

slide credit: Vivek Srikumar



Viterbi Algorithm

slide credit: Vivek Srikumar



Viterbi Algorithm

slide credit: Vivek Srikumar

best (parDal) score for  
a sequence ending in state s



Viterbi Algorithm

slide credit: Vivek Srikumar



Viterbi Algorithm

slide credit: Vivek Srikumar



Viterbi Algorithm

slide credit: Vivek Srikumar



Viterbi Algorithm

slide credit: Vivek Srikumar



Viterbi Algorithm

slide credit: Vivek Srikumar



Viterbi Algorithm

slide credit: Dan Klein

‣ “Think about” all possible immediate 
prior state values. Everything before 
that has already been accounted for by 
earlier stages.

‣ Compute scores for next step  
(score of opDmal tag sequence ending 
with tag i at the t-th step/word).

Fed  raises interest rates   0.5 …

NNP

VBZ

NN

NNS

CD

. 

.



Summary: HMMs

‣ Inference problem:

‣ Viterbi:

‣ Input x = (x1, ..., xn) y = (y1, ..., yn)Output 

y1 y2 yn

x1 x2 xn

… P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

argmaxyP (y|x) = argmaxy
P (y,x)

P (x)

‣ Training: maximum likelihood esDmaDon (with smoothing)

scorei(s) = max
yi�1

P (s|yi�1)P (xi|s)scorei�1(yi�1)
Andrew Viterbi, 1967 



HMM POS Tagging

‣ Normal HMM “bigram” model: y1 = NNP, y2 = VBZ, …

Fed raises interest rates 0.5 percent
NNP VBZ NN NNS CD NN

‣ Tradeoff between model capacity and data size — trigrams are a 
“sweet spot” for POS tagging

‣ Trigram model: y1 = (<S>, NNP), y2 = (NNP, VBZ), …

‣ P((VBZ, NN) | (NNP, VBZ)) — Noun-verb-noun S-V-O

‣ ProbabiliDes now looks like:

‣ P((NNP, VBZ) | (<S>, NNP)) — verb is occurring two words aler <S>

With more context!  



HMM POS Tagging

‣ Baseline: assign each word its most frequent tag: ~90% accuracy

‣ Trigram HMM: ~95% accuracy / 55% on “unknown” words

‣ TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks

‣ State-of-the-art (BiLSTM-CRFs, BERT): 97.5% / 89%+ on unks

‣ MaxEnt tagger (Toutanova + Manning 2000): 96.9% / 87.0% on unks

‣ Dataset: Penn Treebank English Corpus (44 POS tags)



Errors

official knowledge made  up  the story recently  sold  shares
JJ/NN       NN VBD  RP/IN DT  NN RB    VBD/VBN  NNS

Slide credit: Dan Klein / Toutanova + Manning (2000)(NN NN: tax cut, art gallery, …)

gold label

https://sites.google.com/site/partofspeechhelp/home/in_rp

Verb Past Tense / Verb Past Participles 
Particle / Preposition or Subordinating Conjunction

https://sites.google.com/site/partofspeechhelp/home/in_rp


Remaining Errors

‣ Underspecified / unclear, gold standard inconsistent / wrong: 58%

‣ Lexicon gap (word not seen with that tag in training): 4.5% of errors
‣ Unknown word: 4.5%

‣ Could get right: 16% (many of these involve parsing!)
‣ Difficult linguisDcs: 20%

They      set       up absurd situa5ons, detached from reality
VBD / VBP? (past or present?)

a $ 10 million fourth-quarter charge against discon5nued opera5ons
adjecDve or verbal parDciple? JJ / VBN?

Manning 2011 “Part-of-Speech Tagging from 97% to 100%: Is It Time for Some LinguisDcs?”



POS with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector 
than in sparse models, but every feature fires on 
every example

em
b(interest)

em
b(rates)‣ Weight matrix learns posiDon-dependent 

processing of the words

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs



POS with Feedforward Networks

‣ Hidden layer mixes these 
different signals and learns 
feature conjuncDons

Botha et al. (2017)



POS with Feedforward Networks
‣ MulDlingual tagging results:

Botha et al. (2017)

‣ Gillick et al. (2016) used LSTMs; this is smaller, faster, and berer



Other Languages

Petrov et al. (2012)



Other Languages

‣ Universal POS tagset (~12 tags), cross-lingual model works as well as 
tuned CRF using external resources Gillick et az. (2016)

Byte-to-Span



Forward-Backward Algorithm

‣ In addiDon to finding the best path, we may want to compute 
marginal probabiliDes of paths P (yi = s|x)

P (yi = s|x) =
X

y1,...,yi�1,yi+1,...,yn

P (y|x)

‣ What did Viterbi compute? P (ymax|x) = max
y1,...,yn

P (y|x)

‣ Can compute marginals with dynamic programming as well using an 
algorithm called forward-backward



Forward-Backward Algorithm
P (y3 = 2|x) =

sum of all paths through state 2 at time 3

sum of all paths



Forward-Backward Algorithm

slide credit: Dan Klein

P (y3 = 2|x) =
sum of all paths through state 2 at time 3

sum of all paths

=

‣ Easiest and most flexible to do one 
pass to compute        and one to 
compute 



Forward-Backward Algorithm

↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

‣ IniDal:

‣ Recurrence:

‣ Same as Viterbi but summing 
instead of maxing!

‣ These quanDDes get very small! 
Store everything as log probabiliDes



Forward-Backward Algorithm

‣ IniDal:

�n(s) = 1

�t(st) =
X

st+1

�t+1(st+1)P (st+1|st)P (xt+1|st+1)

‣ Recurrence:

‣ Big differences: count emission for 
the next Dmestep (not current one)



Forward-Backward Algorithm
↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

�n(s) = 1

�t(st) =
X

st+1

�t+1(st+1)P (st+1|st)P (xt+1|st+1)

‣ Big differences: count emission for 
the next Dmestep (not current one)



Forward-Backward Algorithm
↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

�n(s) = 1

�t(st) =
X

st+1

�t+1(st+1)P (st+1|st)P (xt+1|st+1)

P (s3 = 2|x) = ↵3(2)�3(2)P
i ↵3(i)�3(i)

‣ What is the denominator here? P (x)

=



Next Up

‣ CRFs: feature-based discriminaDve models 
‣ sequenDal as HMM + ability to use rich features as in LR

‣ Named enDty recogniDon

‣ More sequenDal models


