Machine Learning Recap
(linear classification - cont’)

Wel Xu

(many slides from Greg Durrett)



Dot Product (math review)

MATH REVIEW | DOT PRODUCTS

Given two vectors u# and v their dot product u - v is ) ;u, 0. The dot product
grows large and positive when u and v point in same direction, grows large
and negative when u# and v point in opposite directions, and is zero when

their are perpendicular. A useful geometric interpretation of dot products is
projection. Suppose ||u|| = 1, so that u# is a unit vector. We can think of any
other vector v as consisting of two components: (a) a component in the di-
rection of # and (b) a component that’s perpendicular to u. This is depicted b
(0.37,0.73). We

can think of v as the sum of two vectors, a and b, where a is parallel to # and b is perpendicular. The

geometrically to the right: Here, # = (0.8,0.6) and v

length of b is exactly u - v = 0.734, which is why you can think of dot products as projections: the dot
product between u and v is the “projection of v onto u.”

Credit: Hal Daumeé Il



Administrivia

» Programming project O is released, due on Jan 17 (Friday).
» Problem Set 1 will be released soon.

» TA Office hours have been announced on Piazza.



Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"
but in this lecture f(z) and 4 are interchangeable

- Linear decision rule: " f(z) +b > 0

w' f(z) >0

> Can delete bias if we augment feature space:

f(x)=10.5,1.6,0.3]
'
0.5, 1.6, 0.3, 1]




Logistic Regression



Logistic Regression

-

P(y = +|z) = logistic(w ' x) )= T

Ply 1) - P wi) /
14+ exp(> ., wiz;) e

- Decisionrule: P(y=+|z) >05<w'z>0

> To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +lz;)

— szmﬂ log (1 + exp (Z wzxﬂ))
— i=1

sum over features



Gradient Decent

» Gradient decent (or ascent) is an iterative optimization algorithm for finding
the minimum (or maximum) of a function.

Repeat until convergence {
1 Initial "

~__— Gradient
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w = w — Ozaﬁ(w)
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Clobal i } learning rate (step size)
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Logistic Regression

> Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example — ;,;jz.(l _ P(yj — Hg;j))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;j;, which will increase P(+)

- Gradient of w; on negative example — rii(—P(y; = +|x;))

If P(+) is close to 0, make very little update
Otherwise make w; look less like x;, which will decrease P(+)

- Can combine these gradients as aﬁ(;i’ i) _ zi(y; — P(y; = 1|z;))




Gradient Decent

log likelihood of data P(y|x) data points ()

N /
3£(§£yj) =z;(y; — P(y; = 1|z;))

» Can combine these gradients as

1
- Training set log-likelihood: L(w) = o Zﬁ(%’ayj)

» Gradient vector: =

Ogguw) (8£ 0L | 8£>



Learning Rate

Too low Just right Too high

J(6) J(0) J(6)

/

E
0 0 0
A sm.all learning rate The opt.lg:al Iear:mgh Too large of a learning rate
requires many updates fate swittly reacnes the causes drastic updates
befqre reach!ng the minimum point which lead to divergent
minimum point ‘behaviors

Credit: Jeremy Jordan



Regularization

» Regularizing an objective can mean many things, including an Lo
L2-norm penalty to the weights: m /

> Llesas) = Ml \)'

- Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
~ Early stopping
> Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping



Data to be classified
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Regularization

Decision Boundary for Logistic Regression
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Regularization

f(x) = [x1, x2, x12, X22, X1X2, .. ]

https://towardsdatascience.com/understanding-regularization-in-machine-learning-5a0369ac/73b9

Decision Boundary for Logistic Regression
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Optimization s

1440

\
&
\ 3-D VIEW
== OF LANDMARK

- Gradient descent OL(w)
w = W —
Ow

Q: What if loss changes quickly in one direction and slowly in another direction?

contour plot

Credit: Stanford CS231n



Feature Scaling




Optimization s
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- Gradient descent OL(w)
Wwi=w—«
ow

Q: What if loss changes quickly in one direction and slowly in another direction?

contour plot
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Solution: feature scaling! Credit: Stanford CS231n




Optimization

» Gradient descent 0
W +— W — Qgq, L

. g =
- Very simple to code up ow

» “First-order” technique: only relies on having gradient

» Newton’s method 5?2 —1
W 4— W — ( ﬁ) g

» Second-order technique 2

» Optimizes quadratic instantly / |
Inverse Hessian: n X n mat, expensive!

» Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian



Logistic Regression: Summary

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference
argmaxyP(y\x) fundamentally same as Naive Bayes

Ply=1lz) >05<w' 2 >0

» Learning: gradient ascent on the (regularized) discriminative log-likelihood



Perceptron/SVM



History |edit]
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Mark | Perceptron machine, the first =
implementation of the perceptron
algorithm. It was connected to a
camera with 20x20 cadmium sulfide
photocells to make a 400-pixel image.
The main visible feature is a patch
panel that set different combinations of
input features. To the right, arrays of
potentiometers that implemented the
adaptive weights.[?1213

original text are shown and corrected.

Perceptron

See also: History of artificial intelligence § Perceptrons and the attack on connectionism, and Al winter § The
abandonment of connectionism in 1969

The perceptron algorithm was invented in 1958 at the Cornell Aeronautical Laboratory by Frank Rosenblatt,®! funded by the United States Office of Naval Research.[*!

The perceptron was intended to be a machine, rather than a program, and while its first implementation was in software for the IBM 704, it was subsequently
implemented in custom-built hardware as the "Mark 1 perceptron". This machine was designed for image recognition: it had an array of 400 photocells, randomly
connected to the "neurons". Weights were encoded in potentiometers, and weight updates during learning were performed by electric motors.[21193

In a 1958 press conference organized by the US Navy, Rosenblatt made statements about the perceptron that caused a heated controversy among the fledgling Al
community; based on Rosenblatt's statements, The New York Times reported the perceptron to be "the embryo of an electronic computer that [the Navy] expects will
be able to walk, talk, see, write, reproduce itself and be conscious of its existence."*]

Although the perceptron initially seemed promising, it was quickly proved that perceptrons could not be trained to recognise many classes of patterns. This caused the
field of neural network research to stagnate for many years, before it was recognised that a feedforward neural network with two or more layers (also called a multilayer
perceptron) had greater processing power than perceptrons with one layer (also called a single layer perceptron).

Single layer perceptrons are only capable of learning linearly separable patterns. For a classification task with some step activation function a single node will have a
single line dividing the data points forming the patterns. More nodes can create more dividing lines, but those lines must somehow be combined to form more complex
classifications. A second layer of perceptrons, or even linear nodes, are sufficient to solve a lot of otherwise non-separable problems.

In 1969 a famous book entitled Perceptrons by Marvin Minsky and Seymour Papert showed that it was impossible for these classes of network to learn an XOR
function. It is often believed (incorrectly) that they also conjectured that a similar result would hold for a multi-layer perceptron network. However, this is not true, as
both Minsky and Papert already knew that multi-layer perceptrons were capable of producing an XOR function. (See the page on Perceptrons (book) for more
information.) Nevertheless, the often-miscited Minsky/Papert text caused a significant decline in interest and funding of neural network research. It took ten more years
until neural network research experienced a resurgence in the 1980s. This text was reprinted in 1987 as "Perceptrons - Expanded Edition" where some errors in the

The kernel perceptron algorithm was already introduced in 1964 by Aizerman et al.[’! Margin bounds guarantees were given for the Perceptron algorithm in the general non-separable case first by Freund and
Schapire (1998),!'] and more recently by Mohri and Rostamizadeh (2013) who extend previous results and give new L1 bounds.!®!

The perceptron is a simplified model of a biological neuron. While the complexity of biological neuron models is often required to fully understand neural behavior, research suggests a perceptron-like linear
model can produce some behavior seen in real neurons.’!

PhD 1956 from Cornell



A Bit of History

» The Mark | Perceptron machine was the first implementation of the
perceptron algorithm.

» Perceptron (Frank Rosenblatt, 1957)

> Artificial Neuron (McCulloch & Pitts, 1943)
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McCulloch Pitts Neuron

) e _ Perceptron
(assuming no inhibitory inputs)
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The IBM Automatic Sequence Controlled Calculator, called Mark | by Harvard University’s staff.

It was designed for image recognition: it had an array of 400 photocells, randomly connected to

the "neurons". Weights were encoded in potentiometers, and weight updates during learning

were performed by electric motors. The first program was run on Mark | in 1944,
https://www.youtube.com/watch?v=SaFQAoYV1Nw

https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_al&feature=emb_logo


https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_aI&feature=emb_logo

Perceptron - artificial neuron
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Figure from https://jontysinai.github.io/jekyll/update/2017/1 1/1 |/the-perceptron.html



Perceptron

» Simple error-driven learning approach similar to logistic regression

- Decisionrule: ¢p' 2 > () Logistic Regression
- If incorrect: if positive, 1y «— w + o w4 w+z(1 — Py = 1|z))
ifnegative,w%w_g; w%w—azP(yzl\aj)

~ Algorithm is very similar to logistic regression

» Perceptron guaranteed to eventually separate the data if the data are
separable


http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Perceptron

» Separating hyperplane

Two vectors have a zero dot product if and only if they are perpendicular



Linear Separability

> In general, two groups are linearly separable in n-dimensional space,
if they can be separated by an (n-1)-dimensional hyperplane.
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What does “converge” mean?

> It means that it can make an entire pass through the training data
without making any more updates.

> In other words, Perceptron has correctly classified every training
example.

» Geometrically, this means that it was found some hyperplane that
correctly segregates the data into positive and negative examples


http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Support Vector Machines

» Many separating hyperplanes — is there a best one?
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Support Vector Machines

» Many separating hyperplanes — is there a best one?
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» The hyperplane lies exactly halfway between
the nearest positive and negative example.
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Support Vector Machines

» Many separating hyperplanes — is there a best one?
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Support Vector Machines
» Constraint formulation: find w via following quadratic program:

Minimize ||w||§ minimizing norm with

stV w'z; >1ify;, =1 fixed margin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!



N-Slack SVMs

Tr
Minimize ) ||qpl|2 +- Zgﬂ'
j=1

Image credit: Lang Van Tran

http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf




N-Slack SVMs

Tr
Minimize ) |lqp]|2 + Z@'
j=1

UV 2y — D)(w' zj) > 1§ Vi & =0

- The ¢, are a "fudge factor” to make all constraints satisfied
» Take the gradient of the objective (flip for maximizing):

Y . 0 |

» Looks like the perceptron! But updates more frequently

http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf




LR, Perceptron, SVM

B o exp (D wimg)
y = 1jz) = (1 +exp (3o wiz;))

Decisionrule:  py, = 1]2) > 05 < w' 'z >0

- Logistic regression: P(

Gradient (unregularized): z(y — P(y = 1|x))

» Logistic regression, perceptron, and SVM are closely related

~ All gradient updates: “make it look more like the right thing and less like the
wrong thing”



LR, Perceptron, SVM

> Gradients on Positive Examples

Logistic regression

x(l — logistic(w ' z))

Perceptron

:c if w'z <0, else 0

SVM (ignoring regularizer)

a: if w' 'z <1, else 0

*these gradients are for maximizing things, which is why they are flipped

http://ciml.info/dl/v0 99/ciml-v0 99-chQ7.pdf




LR, Perceptron, SVM

> Loss on Positive Examples

Hinge Loss

max (0,1 — 2)

‘(IHinge (SVM)

1
0 1|)_' ‘(ILogistic
Perceptron |, = !
g > p 0 1 , 3

http://ciml.info/dl/v0 99/ciml-v0 99-chQ7.pdf




Optimization — more later ...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better), e.g., Newton’s method,
Quasi-Newton methods (LBFGS), Adagrad, Adadelta, etc.

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective



Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Features # of | frequency or [[ NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [ 806 | 808 ] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Method RT-s MPQA

MNB-uni 779  85.3

MNB-bi 79.0  86.3| «—— Naive Bayes is doing well!
SVM-uni 762  86.1

SVM-bi 777  86.7

NBSVM-uni | 78.1  85.3

NBSVM_bi 104 863 Ng and Jordan (2002) — NB
RAE 76.8 857 can be better for small data

RAE-pretrain | [77.7  86.4

Voting-w/Rev. | 63.1 81.7
Rule 629  81.8
BoF-noDic. 757  81.8 Recursive Auto-encoder. Before

BoF-w/Rev. | 764  84.1 neural nets had taken off —
Tree-CRF 77.3 86.1

BoWSVM _ _ results weren’t that great
Kim (2014) CNNs 81.5 39. Wang and Manning (2012)




Summary

> Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

- All gradient updates: “make it look more like the right thing and less
like the wrong thing”



QA Time

DO YOU HAVE

ANY QUESTIONS?




