
Machine Learning Recap

(linear classifica2on)

Wei Xu
(many slides from Greg Durrett)

Trivia Time

Q: max/min of log prob.?

Coursework Plan

‣ Four programming projects (33%)

‣ Implementa2on-oriented, PyTorch

‣ 1.5~2 weeks per assignment

‣ fairly substan2al implementa2on effort except P0

‣ Three wriWen assignments (20%) + in-class midterm exam (15%)

‣ Mostly math and theore2cal problems related to ML / NLP

‣ Final project (25%) + in-class presenta2on of a recent research paper (2%)

‣ Par2cipa2on (5%)

Course Requirements

‣ Prior exposure to machine learning

‣ Programming / Python experience (medium-to-large scale project, debug

PyTorch codes when there are no error messages)

‣ Probability (e.g. condi2onal probabili2es, condi2onal independence, Bayes Rule)

‣ Linear Algebra (e.g., mul2plying vectors and matrices, matrix inversion)

‣ Mul:variable Calculus (e.g., calcula2ng gradients of func2ons with several variables)

There will be a lot of math and programming!

Background Test

‣ Problem Set 0 (math background) is released, due Thursday Jan 9.

‣ Project 0 (programming - logis2c regression) is also released, due Friday Jan 17.

‣ Take CS 4641/7641 Machine Learning and (Math 2550 or Math 2551 or Math

2561 or Math 2401 or Math 24X1 or 2X51) before (not in the same semester)
this class.

‣ If you want to understand the lectures beWer and complete homework with more

ease, taking also CS 4644/7643 Deep Learning before this class.

This and next Lecture

‣ Linear classifica2on fundamentals

‣ Three discrimina2ve models: logis2c regression, perceptron, SVM

‣ Naive Bayes, maximum likelihood es2ma2on

‣ Different mo2va2ons but very similar update rules / inference!

Readings

Chapter 2 & 4

(+ J&M ch 5)

Classifica2on

Classifica2on: Sen2ment Analysis

this movie was great! would watch again

Nega2ve

Posi2ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or

absence of certain words (great, awful)

‣ Steps to classifica2on:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm

‣ Train weights (i.e., model parameters) on data to get our classifier

Feature Representa2on

this movie was great! would watch again Posi2ve

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0

posi2on 0 posi2on 1 posi2on 2 posi2on 3 posi2on 4

‣ Very large vector space (size of vocabulary), sparse features

…f(x) = [

…

What are features?

‣ Don’t have to be just bag-of-words

‣ More sophis2cated feature mappings possible (l-idf), as well as lots

of other features: character n-grams, parts of speech, lemmas, …

f(x)

Tf-idf Weigh2ng

‣ Tf*idf

‣ Tf: term frequency

‣ Idf: inverse document frequency

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 17

solider 2 80 62 89

fool 36 58 1 4

clown 20 15 2 3
 !" = log10(count(!, #) + 1)

$#"$ = log10(
%
#"$

)

Total number of docs

in collec2on

number of docs that

have word i

word-doc co-occurrences

Classifica2on

‣ Embed datapoint in a feature space

+
+

+
+

+
+

+
+

-
-

-
-

-
-

-
-

-

‣ Linear decision rule:

 = [0.5, 1.6, 0.3]

 [0.5, 1.6, 0.3, 1]

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

f(x)

‣ Can delete bias if we augment feature space:

w>f(x) > 0

Linear func2ons are powerful!

+++++++ - - - -

+

+

+
+

+

+

+

-
- - -

x

x2

x

f(x) = [x1, x2, x12, x22, x1x2]f(x) = [x1, x2]

Linear func2ons are powerful!

+
+

+ +
+

+
+

+

- - -
-

--
-
-

-+
+

+ +
+

+
+

+

- - -
-

--
-
-

-

???

x1

x2

+
+

+ +
+

+
+

+

- - -
-

--
-
-

-

+
+

+ +
+

+
+

+

- - -
-

--
-
-

-

x1x2

x1

‣ “Kernel trick” does this for “free,” but is too expensive to use in NLP

applica2ons, training is instead ofO(n2) O(n · (num feats))

hWps://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM

hWp://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf

https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM
http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf

Naive Bayes

Naive Bayes

‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant

for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assump2on:

condi2onal independence

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis2c model that places a distribu2on

P (y|x)

y

n
xi

‣ Compute , predict to classify

P (x, y)

argmaxyP (y|x)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Why the log?

‣ Mul2plying together lots of probabili2es

P (y|x) = P (y)P (x|y)
P (x)

= P (y)
nY

i=1

P (xi|y)

‣ Probabili2es are numbers between 0 and 1

Q: What could go wrong here?

‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood:P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

ith feature of jth example

Maximum Likelihood Es2ma2on

Maximum Likelihood Es2ma2on

‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood:P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

‣ Equivalent to maximizing logarithm of data likelihood:

mX

j=1

logP (yj , xj) =
mX

j=1

"
logP (yj) +

nX

i=1

logP (xji|yj)
#

ith feature of jth example

‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Observe (H, H, H, T) and maximize likelihood:

mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

hWp://fooplot.com/

Maximum Likelihood Es2ma2on

http://fooplot.com/

Maximum Likelihood Es2ma2on

‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Maximum likelihood parameters for binomial/

mul2nomial = read counts off of the data + normalize

‣ Observe (H, H, H, T) and maximize likelihood:

mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

hWp://fooplot.com/

http://fooplot.com/

Naive Bayes: Learning

hWp://socialmedia-class.org/slides_AU2017/Shimodaira_note07.pdf

‣ Learning = es2mate the parameters of the model

‣ Prior probability — P(+) and P(-):

‣ frac2on of + (or -) documents among all documents

‣ Word likelihood — P(wordi| +) and P(wordi| -):

‣ number of + (or -) documents wordi is observed, divide by the total

number of documents of + (or -) documents

P (y|x) / P (y)
nY

i=1

P (xi|y)

This is for Bernoulli (binary features) document model!

Maximum Likelihood for Naive Bayes

P (great|+) =
1

2

P (great|�) =
1

4

P (+) =
1

2

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (�) =

1

2

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[] 1/4

1/8[]=
2/3

1/3[]it was great

P (great|�) =
1

4

P (y|x) / P (y)
nY

i=1

P (xi|y)

prior

word

likelihood

…
…P (y|x) /

Naive Bayes

‣ Bernoulli document model:

‣ A document is represented by binary features

‣ Feature value be 1 if the corresponding word is represent in

the document and 0 if not

hWp://socialmedia-class.org/slides_AU2017/Shimodaira_note07.pdf

‣ Mul2nominal document model:

‣ A document is represented by integer elements

‣ Feature value is the frequency of that word in the document

‣ See textbook and lecture note by Hiroshi Shimodaira linked below

for more details

Naive Bayes

hWp://socialmedia-class.org/slides_AU2017/Shimodaira_note07.pdf

Zero Probability Problem

‣ What if we have seen no training document with the word “fantas2c”

and classified in the topic posi2ve?

‣ Word likelihood — P(wordi| +) and P(wordi| -):

‣ frequency of wordi is observed plus 1

‣ Laplace (add-1) Smoothing

P (y|x) / P (y)
nY

i=1

P (xi|y)

Naive Bayes: Summary

‣ Model

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Learning: maximize by reading counts off the data

‣ Inference

P (x, y)

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna2vely: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0

<latexit sha1_base64="FZr/riCBo1+PNx2P5vFNKKQzJnQ=">AAACc3icbZDfTtswFMbdDBhk/CnbJTcWZVIrRJUwJHbDhNgNF1wUiUKlpkSO66QWjh3ZJ2xVlsfbQ+wZuB2XSDhtkSjlSJY/fec78vEvygQ34Hn/as6HpeWVj6tr7qf1jc2t+vbna6NyTVmXKqF0LyKGCS5ZFzgI1ss0I2kk2E1097Pq39wzbbiSVzDO2CAlieQxpwSsFdbD4ILFoHkyAqK1+oUDoRIcxJrQotMcn+y3ysl90CrxPg5MnoYFP/HLWzmf/B3yPy/pqa4mfnhhveG1vUnhReHPRAPNqhPWn4KhonnKJFBBjOn7XgaDgmjgVLDSDXLDMkLvSML6VkqSMjMoJiBK/NU6QxwrbY8EPHFfTxQkNWacRjaZEhiZt73KfK/XzyH+Pii4zHJgkk4finOBQeGKKh5yzSiIsRWEam53xXRELBqw7N25Z4am2m3uI0WWxHbp0nVdy8t/S2dRXB+2/W/tw8ujxunZjNwq2kG7qIl8dIxO0TnqoC6i6C96QP/RY+3R2XF2nb1p1KnNZr6guXIOngEgn75t</latexit>

y

n
xi

w>f(x) > 0
Linear model!

Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s generaCve:

spends capacity modeling P(x,y), when what we care about is P(y|x)

‣ Correlated features compound: beauCful and gorgeous are not independent!

the film was beauCful, stunning cinematography and gorgeous sets, but boring —

P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

‣ Discrimina2ve models model P(y|x) directly (SVMs, most neural networks, …)

Logis2c Regression

Logis2c Regression

‣ To learn weights: maximize discrimina2ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

sum over features

P (y = 1|x) � 0.5 , w>x � 0P (y = +|x) = logistic(w>x)‣ Decision rule:

Gradient Decent

‣ Gradient decent (or ascent) is an itera2ve op2miza2on algorithm for finding

the minimum (or maximum) of a func2on.

Repeat until convergence {

} learning rate (step size)

L

Lmin

L

Lmin

deriv. of exp
@ex

@x
= ex

deriv. of log
@ log x

@x
=

1

x

Logis2c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)
= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

@f

@x
=

@f

@g

@g

@x
=

@f(g)

@g

@g(x)

@x

chain rule:

maximize!

Logis2c Regression

If P(+) is close to 1, make very liWle update

Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi2ve example

‣ Gradient of wi on nega2ve example

If P(+) is close to 0, make very liWle update

Otherwise make wi look less like xji, which will decrease P(+)

= xji(�P (yj = +|xj))

‣ Recall that yj = 1 for posi2ve instances, yj = 0 for nega2ve instances.

xj(yj � P (yj = 1|xj))‣ Can combine these gradients as
@L(xj , yj)

@wi
=

= xji(1� P (yj = +|xj))

Gradient Decent

xj(yj � P (yj = 1|xj))‣ Can combine these gradients as
@L(xj , yj)

@wi
=

data points (j)log likelihood of data P(y|x)

‣ Gradient vector:

‣ Training set log-likelihood:

Learning Rate

Credit: Jeremy Jordan

Regulariza2on

‣ Regularizing an objec2ve can mean many things, including an

L2-norm penalty to the weights:

‣ Keeping weights small can prevent overfi}ng

‣ For most of the NLP models we build, explicit regulariza2on isn’t necessary

‣ Early stopping

‣ For neural networks: dropout and gradient clipping

‣ Large numbers of sparse features are hard to overfit in a really bad way

mX

j=1

L(xj , yj)� �kwk22

Regulariza2on

https://towardsdatascience.com/understanding-regularization-in-machine-learning-5a0369ac73b9

f(x) = [x1, x2, x12, x22, x1x2, …]

Op2miza2on

‣ Gradient descent

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201821

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Q: What if loss changes quickly in one direc2on and slowly in another direc2on?

contour plot

Credit: Stanford CS231n

Feature Scaling

Op2miza2on

‣ Gradient descent

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

w w + ↵g, g =
@

@w
L

‣ Newton’s method

‣ Second-order technique

Inverse Hessian: n x n mat, expensive!
‣ Op2mizes quadra2c instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

w w +

✓
@2

@w2
L
◆�1

g

Logis2c Regression: Summary

‣ Model

‣ Learning: gradient ascent on the (regularized) discrimina2ve log-likelihood

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Perceptron/SVM

Perceptron

Frank RosenblaW (1928-1971)

PhD 1956 from Cornell

A Bit of History

‣ The Mark I Perceptron machine was the first implementa2on of the

perceptron algorithm.

The IBM Automa2c Sequence Controlled Calculator, called Mark I by Harvard University’s staff.

‣ Perceptron (Frank RosenblaW, 1957)

‣ Ar2ficial Neuron (McCulloch & PiWs, 1943)

It was designed for image recogni2on: it had an array of 400 photocells, randomly connected to

the "neurons". Weights were encoded in poten2ometers, and weight updates during learning

were performed by electric motors.

hWps://www.youtube.com/watch?2me_con2nue=71&v=cNxadbrN_aI&feature=emb_logo

hWps://www.youtube.com/watch?v=SaFQAoYV1Nw

https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_aI&feature=emb_logo

Perceptron - ar2ficial neuron

Figure from https://jontysinai.github.io/jekyll/update/2017/11/11/the-perceptron.html

Perceptron

‣ Simple error-driven learning approach similar to logis2c regression

‣ Decision rule:

‣ Perceptron guaranteed to eventually separate the data if the data are

separable

‣ If incorrect: if posi2ve,

if nega2ve,

w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

Logis2c Regressionw>x > 0

hWp://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

‣ Algorithm is very similar to logis2c regression

http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Perceptron

‣ Separa2ng hyperplane

+
+

+
+

+
+

+
+

-
-

-
-

-
-

-
-

-

w w + x

Two vectors have a zero dot product if and only if they are perpendicular

Linear Separability

‣ In general, two groups are linearly separable in n-dimensional space,

if they can be separated by an (n-1)-dimensional hyperplane.

What does “converge” mean?

‣ It means that it can make an en2re pass through the training data

without making any more updates.

‣ In other words, Perceptron has correctly classified every training

example.

hWp://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

‣ Geometrically, this means that it was found some hyperplane that

correctly segregates the data into posi2ve and nega2ve examples

http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Support Vector Machines

‣ Many separa2ng hyperplanes — is there a best one?

+
+

+
+

+
+

+
+

-
-

-
-

-
-

-
-

-

Dot Product (math review)

Credit: Hal Daumé III

‣ Many separa2ng hyperplanes — is there a best one?

+
+

+
+

+
+

+
+

-
-

-
-

-
-

-
-

-
margin

Support Vector Machines

‣ The hyperplane lies exactly halfway between

the nearest posi2ve and nega2ve example.

‣ Constraint formula2on: find w via following quadra2c program:

Minimize

s.t.

As a single constraint:

minimizing norm with

fixed margin <=>

maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally no solu2on (data is generally non-separable) — need slack!

Support Vector Machines

hWp://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa2sfied⇠j

�kwk22 +
mX

j=1

⇠j

hWp://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf

Image credit: Lang Van Tran

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa2sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec2ve (flip for maximizing):

@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks like the perceptron! But updates more frequently
hWp://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf

LR, Perceptron, SVM

‣ Logis2c regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

‣ Logis2c regression, perceptron, and SVM are closely related

Decision rule: P (y = 1|x) � 0.5 , w>x � 0

x(y � P (y = 1|x))

‣ All gradient updates: “make it look more like the right thing and less like the

wrong thing”

LR, Perceptron, SVM

Logis2c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

*these gradients are for maximizing things, which is why they are flipped

x if w>x < 1, else 0

‣ Gradients on Posi2ve Examples

hWp://ciml.info/dl/v0_99/ciml-v0_99-ch07.pdf

LR, Perceptron, SVM

Logis2c Loss

Perceptron Loss

Hinge Loss

Hinge (SVM)

Logis2c

Perceptron

0-1

L
o

s
s

w>x

hWp://ciml.info/dl/v0_99/ciml-v0_99-ch07.pdf

‣ Loss on Posi2ve Examples

Op2miza2on — more later …

‣ Range of techniques from simple gradient descent (works preWy well)

to more complex methods (can work beWer), e.g., Newton’s method,

Quasi-Newton methods (LBFGS), Adagrad, Adadelta, etc.

‣ Most methods boil down to: take a gradient and a step size, apply the

gradient update 2mes step size, incorporate es2mated curvature

informa2on to make the update more effec2ve

Sen2ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, nega2on)

this movie was not really very enjoyable

‣ There are some ways around this: extract bigram feature for “not X” for

all X following the not

+

+

—

Sen2ment Analysis

‣ Simple feature sets can do preWy well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sen2ment Analysis

Wang and Manning (2012)

Recursive Auto-encoder. Before

neural nets had taken off —

results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB

can be beWer for small data

81.5 89.5Kim (2014) CNNs

Summary

‣ Logis2c regression, SVM, and perceptron are closely related

‣ SVM and perceptron inference require taking maxes, logis2c regression

has a similar update but is “soÑer” due to its probabilis2c nature

‣ All gradient updates: “make it look more like the right thing and less

like the wrong thing”

QA Time

