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Administrivia

‣ Practice Midterm is released


‣ ICE GPU cluster access is granted



Yang et al. (Apr. 2023)



Open-source Efforts



OPT: Open Pre-trained Transformer LMs

Zhang et al. (2022)

‣ OPT (125M-66B-175B), to roughly 
matches GPT-3, with parameters 
are shared with the research 
community

‣ GPT-3 models only released via API access.

‣ Doesn’t support reproducible 
experiments.

‣ PALM not generally available outside Google



OPT: Open Pre-trained Transformer LMs

Zhang et al. (2022)

‣ Includes 114 page logbook for training 175B model, interesting read



Bloom
‣ A BigScience initiative, open-access, 176B parameter (GPT-2 architecture)

‣ 59 languages (46 natural language + 13 programming language)

‣ 1.6TB of pre-processed text

https://huggingface.co/bigscience/bloom



LLaMA
‣ Released by Meta AI on Feb 27, 2023

‣ Weights of all models are publicly available (non-commercial license)



LLaMA
‣ Trained only on publicly available data:

‣ English CommonCrawl

‣ C4 (another CommonCrawl dataset) 

‣ GitHub (from Google BigQuery)

‣ Wikipedia of 20 languages,

‣ Gutenberg and Books3 (from ThePile) 

‣ ArXiv (latex files)

‣ StackExchange. 


‣ Split all numbers into individual digits, and fall back to 
bytes for unknown UTF-8 characters



LLaMA
‣ LLaMA-13B matches and outperforms OPT and (old) GPT-3 for zero-shot 

and few-shot performance



LLaMA
‣ Transformer variations that have been used in different LLMs

Image Credit: Rajesh Kavadiki



LLaMA

‣ SwiGLU activation function — combines Swish and Gated Linear Unit (GLU), 
also used in Google’s PaLM model

‣ Transformer variations that have been used in different LLMs

‣ Pre-normalization layer using RMSNorm

‣ Rotary positional embeddings (RoPE)

‣ AdamW Optimizer



Transformer Variants
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Module
Level

Attention

Sparse

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132]

Linearized Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

Prototype Clustered Attention[138], Informer[170]

Memory
Compress MCA[84], Set Transformer[70], Linformer[142]

Low-rank Low-rank Attention[45], CSALR[16], Nyströmformer [152]

Prior
Attention

Local Transformer[156], Gaussian Transformer[42]

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159]

CAMTL[98]

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131]

Multi-head

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44]

Dynamic Routing[40, 74]

Position
Encoding

Absolute BERT[28], Wang et al. [139], FLOATER[85]

Relative Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
DeBERTa[50]

Other Rep. TUPE[63], Roformer[124]

Implicit Rep. Complex Embedding[140], R-Transformer [144], CPE[20]

LayerNorm

Placement post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141]

Substitutes AdaNorm[153], scaled ✓2 normalization[93], PowerNorm[121]

Norm-free ReZero-Transformer[5]

FFN

Activ. Func. Swish[106], GELU[14, 28], GLU[118]

Enlarge
Capacity

Product-key Memory[69], Gshard[71], Switch Transformer[36],
Expert Prototyping[155], Hash Layer[110]

Dropping All-Attention layer[127], Yang et al. [157]

Arch.
Level

Lighweight Lite Transformer[148], Funnel Transformer[23], DeLighT[91]

Connectivity Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Transformer [34]

ACT UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]

Divide &
Conquer

Recurrence Transformer-XL[24], Compressive Transformer[103], Memformer[147]
Yoshida et al. [160], ERNIE-Doc[30]

Hierarchy Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[48]

Alt. Arch. ET[123], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167]

Pre-Train

Encoder BERT[28], RoBERTa[87], BigBird[163]

Decoder GPT[101], GPT-2[102], GPT-3[12]

Enc.Dec. BART[72], T5[104], Switch Transformer[36]

App.

NLP BERT[28],ET[123], Transformer-XL[24],Compressive Transformer[103], TENER[154]

CV Image Transformer[94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3]

Audio Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56]

Multimodal VisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView[29]

Fig. 3. Taxonomy of Transformers Lin et al. (2021)

Positional Embeddings

LayerNorm

3 main types: encoder, decoder, enc-dec



Normalization



Pre-norm vs. Post-norm
‣ Original Transformer —  “Add” before “Norm”, or “Norm” before “Add”?

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(𝑥))

𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥))

or

(Baevski & Auli, 2018; Child et al., 2019; Wang et al., 2019)



Pre-norm vs. Post-norm

Xiong et al. (2020) 

‣ Pre-normalization Transformer (b)  
to have better-behaved gradients  
at initialization than in the  
original Transformer (a)



Pre-norm vs. Post-norm

Xiong et al. (2020) 

‣ Pre-normalization Transformer (b)  
to have better-behaved gradients  
at initialization than in the  
original Transformer (a)

‣ In (b), LayerNorm does not disrupt residual



Pre-norm vs. Post-norm
‣ Post-norm produces noisy gradients with many tall spikes, needs warm up

‣ Pre-norm has fewer noisy gradients with smaller sizes, even without warmup

Nguyen & Salazar (2019)



RMSNorm

Zhang and Sennrich (2019) 

‣ RMSNorm (a) instead of standard LayerNorm (b)

(a) (b)

mean

variance

root mean square

(used in LLaMA1/2/3, PaLM, T5 …) (used in GPT1/2/3, OPT …)



RMSNorm

Zhang and Sennrich (2019) 

‣ RMSNorm (a) instead of standard LayerNorm (b)

(a) (b)

mean

variance

root mean square

only re-scaling invariance, skip re-centering

more computationally efficient



RMSNorm

Zhang and Sennrich (2019) 

‣ RMSNorm (a) instead of standard LayerNorm (b)

(a) (b)

mean

variance

root mean square

only re-scaling invariance, skip re-centering

more computationally efficient ??



RMSNorm

more computationally efficient ??

‣ Matrix multiplications make up the majority of GPU FLOPs (and memory)

softmax & layer 
normalization

Matrix-matrix 
multiplication

biases, dropout, activations, and residual connections

‣ Below is runtime analysis of the encoder layer of (Transformer-based) BERT 

Ivanov et al. (2021) 



RMSNorm

more computationally efficient ??
Narang et al. (2021)

‣  Yet, RMSNorm runtime gains have been observed in papers



Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ WMT EnDe

Vanilla Transformer 223M 11.1T 3.50 2.182± 0.005 1.838 71.66 17.78 23.02 26.62

GeLU 223M 11.1T 3.58 2.179± 0.003 1.838 75.79 17.86 25.13 26.47
Swish 223M 11.1T 3.62 2.186± 0.003 1.847 73.77 17.74 24.34 26.75

ELU 223M 11.1T 3.56 2.270± 0.007 1.932 67.83 16.73 23.02 26.08
GLU 223M 11.1T 3.59 2.174± 0.003 1.814 74.20 17.42 24.34 27.12

GeGLU 223M 11.1T 3.55 2.130± 0.006 1.792 75.96 18.27 24.87 26.87

ReGLU 223M 11.1T 3.57 2.145± 0.004 1.803 76.17 18.36 24.87 27.02

SeLU 223M 11.1T 3.55 2.315± 0.004 1.948 68.76 16.76 22.75 25.99
SwiGLU 223M 11.1T 3.53 2.127± 0.003 1.789 76.00 18.20 24.34 27.02

LiGLU 223M 11.1T 3.59 2.149± 0.005 1.798 75.34 17.97 24.34 26.53
Sigmoid 223M 11.1T 3.63 2.291± 0.019 1.867 74.31 17.51 23.02 26.30
Softplus 223M 11.1T 3.47 2.207± 0.011 1.850 72.45 17.65 24.34 26.89

RMS Norm 223M 11.1T 3.68 2.167± 0.008 1.821 75.45 17.94 24.07 27.14

Rezero 223M 11.1T 3.51 2.262± 0.003 1.939 61.69 15.64 20.90 26.37
Rezero + LayerNorm 223M 11.1T 3.26 2.223± 0.006 1.858 70.42 17.58 23.02 26.29
Rezero + RMS Norm 223M 11.1T 3.34 2.221± 0.009 1.875 70.33 17.32 23.02 26.19
Fixup 223M 11.1T 2.95 2.382± 0.012 2.067 58.56 14.42 23.02 26.31

24 layers, d↵ = 1536, H = 6 224M 11.1T 3.33 2.200± 0.007 1.843 74.89 17.75 25.13 26.89

18 layers, d↵ = 2048, H = 8 223M 11.1T 3.38 2.185± 0.005 1.831 76.45 16.83 24.34 27.10

8 layers, d↵ = 4608, H = 18 223M 11.1T 3.69 2.190± 0.005 1.847 74.58 17.69 23.28 26.85

6 layers, d↵ = 6144, H = 24 223M 11.1T 3.70 2.201± 0.010 1.857 73.55 17.59 24.60 26.66

Block sharing 65M 11.1T 3.91 2.497± 0.037 2.164 64.50 14.53 21.96 25.48
+ Factorized embeddings 45M 9.4T 4.21 2.631± 0.305 2.183 60.84 14.00 19.84 25.27
+ Factorized & shared em-

beddings
20M 9.1T 4.37 2.907± 0.313 2.385 53.95 11.37 19.84 25.19

Encoder only block sharing 170M 11.1T 3.68 2.298± 0.023 1.929 69.60 16.23 23.02 26.23
Decoder only block sharing 144M 11.1T 3.70 2.352± 0.029 2.082 67.93 16.13 23.81 26.08

Factorized Embedding 227M 9.4T 3.80 2.208± 0.006 1.855 70.41 15.92 22.75 26.50
Factorized & shared embed-
dings

202M 9.1T 3.92 2.320± 0.010 1.952 68.69 16.33 22.22 26.44

Tied encoder/decoder in-
put embeddings

248M 11.1T 3.55 2.192± 0.002 1.840 71.70 17.72 24.34 26.49

Tied decoder input and out-
put embeddings

248M 11.1T 3.57 2.187± 0.007 1.827 74.86 17.74 24.87 26.67

Untied embeddings 273M 11.1T 3.53 2.195± 0.005 1.834 72.99 17.58 23.28 26.48
Adaptive input embeddings 204M 9.2T 3.55 2.250± 0.002 1.899 66.57 16.21 24.07 26.66

Adaptive softmax 204M 9.2T 3.60 2.364± 0.005 1.982 72.91 16.67 21.16 25.56
Adaptive softmax without
projection

223M 10.8T 3.43 2.229± 0.009 1.914 71.82 17.10 23.02 25.72

Mixture of softmaxes 232M 16.3T 2.24 2.227± 0.017 1.821 76.77 17.62 22.75 26.82

Transparent attention 223M 11.1T 3.33 2.181± 0.014 1.874 54.31 10.40 21.16 26.80

Dynamic convolution 257M 11.8T 2.65 2.403± 0.009 2.047 58.30 12.67 21.16 17.03
Lightweight convolution 224M 10.4T 4.07 2.370± 0.010 1.989 63.07 14.86 23.02 24.73
Evolved Transformer 217M 9.9T 3.09 2.220± 0.003 1.863 73.67 10.76 24.07 26.58
Synthesizer (dense) 224M 11.4T 3.47 2.334± 0.021 1.962 61.03 14.27 16.14 26.63

Synthesizer (dense plus) 243M 12.6T 3.22 2.191± 0.010 1.840 73.98 16.96 23.81 26.71

Synthesizer (dense plus al-
pha)

243M 12.6T 3.01 2.180± 0.007 1.828 74.25 17.02 23.28 26.61

Synthesizer (factorized) 207M 10.1T 3.94 2.341± 0.017 1.968 62.78 15.39 23.55 26.42
Synthesizer (random) 254M 10.1T 4.08 2.326± 0.012 2.009 54.27 10.35 19.56 26.44
Synthesizer (random plus) 292M 12.0T 3.63 2.189± 0.004 1.842 73.32 17.04 24.87 26.43
Synthesizer (random plus
alpha)

292M 12.0T 3.42 2.186± 0.007 1.828 75.24 17.08 24.08 26.39

Universal Transformer 84M 40.0T 0.88 2.406± 0.036 2.053 70.13 14.09 19.05 23.91
Mixture of experts 648M 11.7T 3.20 2.148± 0.006 1.785 74.55 18.13 24.08 26.94

Switch Transformer 1100M 11.7T 3.18 2.135± 0.007 1.758 75.38 18.02 26.19 26.81

Funnel Transformer 223M 1.9T 4.30 2.288± 0.008 1.918 67.34 16.26 22.75 23.20
Weighted Transformer 280M 71.0T 0.59 2.378± 0.021 1.989 69.04 16.98 23.02 26.30
Product key memory 421M 386.6T 0.25 2.155± 0.003 1.798 75.16 17.04 23.55 26.73

Table 1: Results for all architecture variants. The baseline model is the vanilla Transformer with relative
attention. The early loss represents the mean and standard deviation of perplexity at 65, 536 steps. The
final perplexity is reported at the end of pre-training (524, 288 steps). SGLUE refers to SuperGLUE and
WebQ refers to WebQuestions dataset. We report average, ROUGE-2, accuracy, and BLEU score for
SuperGLUE, XSum, WebQuestions, and WMT EnDe, respectively, on the validation sets. Note: Results
on WMT English to German are reported without any pre-training. The scores which outperform
the vanilla Transformer are highlighted in boldface. Narang et al. (2021)



Bias Term
‣ Standard feedforward network layer:

‣ Original Transformer uses ReLU as activation function

‣ Many implementations (if they are not gated), e.g. T5, PaLM, DALL-E-mini …

Geiping & Goldstein (2022) 



Recap so far …

‣ Basically everyone does pre-norm 
  – Intuition: keep the good parts of residual connections 
  – Observations: nicer gradient propagation, fewer spike

‣ Most people do RMSnorm 
  – In practice, works as well as LayerNorm 
  – But, has fewer parameters to move around, saves on wallclock time

‣ People more generally drop bias terms 
  – since the compute/param tradeoffs are not great.   
  – without compromising performance



Activation Function



Activation Functions
‣ A lot different ones used in training LLMs: 

ReLU, GeLU, Swish, ELU, GLU, GeGLU, ReGLU, SeLU, SwiGLU, LiGLU, … 

‣ Not much consensus …

Image Credit: ml-explained.com

http://ml-explained.com


SwiGLU in LLaMA

Shazeer (2020) 

‣ SwiGLU activation function — combines Swish and Gated Linear Unit (GLU), 
also used in Google’s PaLM model

https://medium.com/@tariqanwarph/activation-function-and-glu-variants-for-transformer-models-a4fcbe85323f

‣ Feedforward layer in the Transformer using ReLU (with no bias shown here):

‣ Replace ReLU by Swish:



Swish Activation

Ramachandran et al. (2017) 

‣ Swish can be loosely viewed as a smooth function which nonlinearly 
interpolates between the linear function and ReLU



Gated Linear Unit (GLU)

Dauphin et al. (2017) 

‣ Similar to the gating mechanism in LSTM. 

‣ Element-wise product of two linear transformations of the input, one is 

sigmoid-activated. 



Sigmoid of a Vector

Image Credit: Gabriel Furnieles



SwiGLU
‣ SwiGLU activation function — combines Swish and Gated Linear Unit 

(GLU), also used in Google’s PaLM model

Dauphin et al. (2017) 



SwiGLU in LLaMA

‣ SwiGLU activation function — combines Swish and Gated Linear Unit (GLU), 
also used in Google’s PaLM model

https://medium.com/@tariqanwarph/activation-function-and-glu-variants-for-transformer-models-a4fcbe85323f

‣ Feedforward layer in the Transformer using ReLU (with no bias shown here):

‣ Replace ReLU by Swish or SwiGLU:

Shazeer (2020) 



LLaMA

‣ SwiGLU activation function — combines Swish and Gated Linear Unit (GLU), 
also used in Google’s PaLM model

https://medium.com/@tariqanwarph/activation-function-and-glu-variants-for-transformer-models-a4fcbe85323f

Shazeer (2020) 

Held-out log-perplexity

on C4 corpus (used in T5 model)



Gated Linear Unit (GLU)

Narang et al. (2021) 

‣ GLU variants generally works pretty well



Positional Embeddings



Positional Embeddings
Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

‣ Sine embeddings in the original Transformer:



Positional Embeddings
‣ Sine embeddings in the original Transformer:

Image Credit: Mehreen Saeed 



Positional Embeddings
‣ Absolute positional embeddings are added to input token embeddings

 – fixed encoding for each position (e.g., sine embeddings)

 – or learned encoding for each position

‣ Limitations:

 – can’t generalize well to arbitrary long sequences 
 – embedding for each position (e.g., 1, 2, 3, …, 1000, … 5000) 

 – can’t capture relative distance between two tokens



Positional Embeddings
‣ Relative positional embedding encodes the distance between tokens 

Shaw et al. (2018) 



Positional Embeddings
‣ Relative positional embedding encodes the distance between tokens

‣ added directly to the self-attention matrix

Shaw et al. (2018) 



Positional Embeddings
‣ Relative positional embedding encodes the distance between tokens

‣ added directly to the self-attention matrix

Press et al. (2020) 

‣ Limitations:  slow

relative
absolute



Positional Embeddings
‣ Relative positional embedding encodes the distance between tokens

‣ added directly to the self-attention matrix

‣ Limitations:  slow (why?)

relative
absolute

Press et al. (2020) 



Positional Embeddings
‣ Relative positional embedding encodes the distance between tokens

‣ added directly to the self-attention matrix

‣ Limitations:  slow (why? changes KV values all the time, can’t do KV caching)

relative
absolute

Press et al. (2020) 



KV Caching
‣ Accelerate LLM inference by reducing redundant computations

‣ Have the key and value projections cached

Image Credit: Cameron R. Wolfe



Rotary Positional Embeddings

Su et al. (2021) 

‣ Rotary Positional Embeddings (RoPE) Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)



Rotary Position Embeddings (RoPE)

Su et al. (2021) 



Rotary Position Embeddings (RoPE)

Su et al. (2021) 



Rotary Position Embeddings (RoPE)
‣ Rotation instead of addition!

cute
so cute

dog is cute

my dog is cute

Su et al. (2021) 



‣ Rotation instead of addition, such that  
— embeddings are invariant to absolute position  
— inner products are invariant to arbitrary rotation 

‣ captures both absolute position and relative distance!

Su et al. (2021) 

Rotary Position Embeddings (RoPE)



‣ In 2D, a rotation matrix can be defined in the following form: 

‣ The rotation increases with increasing  and .𝜃 𝑚

Su et al. (2021) 

Rotary Position Embeddings (RoPE)

𝑅𝜃,  𝑚 = (cos𝑚𝜃 −sin𝑚𝜃
sin𝑚𝜃 cos𝑚𝜃 )

𝒙 = [𝑎
𝑏]

 𝒙′￼ = [𝑎′￼
𝑏′￼]

𝑥′￼=  𝑅𝜃,  𝑚𝑥

𝑚𝜃

‣ Apply rotation after getting Q and K vectors (not V)



‣ In practice, rotate  dimensional embedding matrices. 𝑑

Su et al. (2021) 

Rotary Position Embeddings (RoPE)

‣ Idea: rotate different dimensions with different angles Θ = {𝜃0,  𝜃1, 𝜃2, 𝜃3, …,  𝜃𝑑/2}



‣ A more computational efficient realization, taking advantage of the sparsity 

Su et al. (2021) 

Rotary Position Embeddings (RoPE)



‣ Inner product decays as relative distance increases 

Su et al. (2021) 

Rotary Position Embeddings (RoPE)



Optimization



AdamW 
‣ AdamW (Adam w/ weight decay) optimizer

Loshchilov and Hutter (2017) 
https://towardsdatascience.com/why-adamw-matters-736223f31b5d



AdamW Optimizer

Loshchilov and Hutter (2017) 
https://towardsdatascience.com/why-adamw-matters-736223f31b5d

weight is regularized less when v is large 
(insert line 6,7,8 into line 12; ignore 9,10)

‣ AdamW (Adam w/ weight decay)



AdamW Optimizer

Loshchilov and Hutter (2017) 
https://towardsdatascience.com/why-adamw-matters-736223f31b5d

weight decay after (first and second 
moments of) gradient calculation for 
parameter-wise adaptive learning rate

‣ AdamW (Adam w/ weight decay) optimizer



Tokenization



Tokenization
‣ The non-google world uses BPE. Google uses the SentencePiece library, 

which (sometimes) refers to a non-BPE subword tokenizer



Tokenization

Monolingual models 
(30-50k vocab)

Multilingual / Production Systems  
(100-250k vocab)



Tokenization
‣ Different treatments for white space, and digits … mainly for math/code

Multi-whitespace tokenization

Individual digit tokenization (LLaMA/DeepSeek)



What are being used?

Mostly follow previous 
successful choices.

Image Credit: Tatsu Hashimoto



What are being used?

Image Credit: Tatsu Hashimoto

‣ There are many architectural variations. 

‣ Major differences? Position embeddings, activations, tokenization

‣ This is an evolving field; a lot of empirical analysis is going into identifying 

best practices. 



Other Open-source Efforts



Alpaca

‣ Fine-tuned Meta’s LLaMA-7B on 52k instruction-following demonstrated 
generated (Self-Instruct) using GPT-3.5 (text-davinci-003) for $500. 

Taori et al. (2022) 

‣ Released by Stanford on March 13, 2023



Self-Instruct
‣ Address the labor-intense process for creating human-written instructions

Wang et al. (2022) 



Self-Instruct
‣ Using multiple prompting templates to (a) generate the instruction,  

(b) classifying whether an instruction represents a classification task or not,  
(c) generating non-classification or classification instances

Wang et al. (2022) 



Self-Instruct

Wang et al. (2022) 



Self-Instruct

Wang et al. (2022) 



OLMo
‣ Released by AI2 on Feb 28, 2024

‣ Open-source not only the training code and model weights, but the full 
pre-training data (Dolma dataset) and intermediate checkpoints

Groeneveld et al. (2024) 



Chatbot Arena: Elo Rankings
‣ Accepted as one of 

the premiere rankings 
for LLMs

‣ Style control was 
introduced as it was 
believed that the 
"style" of responses 
had a big effect

leaderboard on Mar 12, 2025 



Takeaways
‣ New and actively developing situation. A lot is going on … 


