
Transformer

Wei Xu
(many slides from Greg Durrett)

‣ Generate next word condi5oned on previous word as well as hidden state

the movie was great <s>

h̄

‣ W size is |vocab| x |hidden state|, soAmax over en5re vocabulary

Decoder has separate
parameters from encoder, so
this can learn to be a language
model (produce a plausible next
word given current one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

Recap: Encoder-Decoder

Recap: Greedy Decoding
‣ Generate next word condi5oned on previous word as well as hidden state

the movie was great

‣ During inference: need to compute the argmax over the word predic5ons
and then feed that to the next RNN state. This is greedy decoding

le

<s>

film était bon [STOP]

ypred = argmaxyP (y|x, y1, . . . , yi�1)
<latexit sha1_base64="BKzIm/yKraU6a64Z2EgswwSRmsQ=">AAADX3ichVLBattAEF3LbZM6aeK0p9LLUmOQaGKktJBcCqG99OhCnQQsI1arlbNkpRW7o9hC3Z/srdBL/6Qr2y2xU5MBwejNzHtvh4kLwTX4/s+W037y9NnO7vPO3v6Lg8Pu0ctLLUtF2YhKIdV1TDQTPGcj4CDYdaEYyWLBruLbz0396o4pzWX+DaqCTTIyzXnKKQELRUetsh+aTn/oznCY8QTPojoENgeV1ZbnzhgPf8Rhqgj9h1NZ5mDcWbTWeIxnnnmkx3tcSVjrCdmmuDGxRXOT1+B32A3wyV92bwv9PS6QQASeSZXgZdV0qjXexJjG7gogapqRuYkqPHQr/N0+kMBNnNZza7GKgmOrnEjQzU/NTwLjRd2eP/AXgR8mwSrpoVUMo+6PMJG0zFgOVBCtx4FfwMQKA6eCmU5YalYQekumbGzTnGRMT+rFfRjct0iCU6nslwNeoPcnapJpXWWx7WyM681aA/6vNi4hPZ/UPC9KYDldCqWlwCBxc2w44YpREJVNCFXcesX0htjdgz3Jjl1CsPnkh8nl6SB4Pzj9+qF38Wm1jl30Br1FLgrQGbpAX9AQjRBt/XIcZ8/Zd363d9oH7e6y1WmtZl6htWi//gMykBmH</latexit>

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄i)

Recap: AMen5on

the movie was great <s> le

the
movie was

gre
atthe

movie was
gre

at

… …

‣ At each decoder state,
compute a distribu5on over
source inputs based on
current decoder state

‣ Use the weighted sum of input
tokens to predict output

Recap: AMen5on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Some func5on f
(e.g., dot product)

‣ Weighted sum
of input hidden
states (vector)

le

↵ij =
exp(eij)P
j0 exp(eij0)

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄i)‣ No aMn:

the
movie was
gre

at

Recap: AMen5on

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Note that this all uses outputs of hidden layers

f(h̄i, hj) = tanh(W [h̄i, hj])

f(h̄i, hj) = h̄i · hj

f(h̄i, hj) = h̄>
i Whj

‣ Bahdanau+ (2014): addi5ve

‣ Luong+ (2015): dot product

‣ Luong+ (2015): bilinear

le

↵ij =
exp(eij)P
j0 exp(eij0)

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

Transformers

AMen5on is All You Need

Vaswani et al. (2017)

Readings

‣ “The Annotated Transformer” by Sasha Rush

‣ “The Illustrated Transformer” by Jay Lamar
http://jalammar.github.io/illustrated-transformer/

https://nlp.seas.harvard.edu/2018/04/03/attention.html

‣ Jurafsky+Mar5n Chapter 9

Sentence Encoders

the movie was great

‣ LSTM abstrac5on: maps each vector in a
sentence to a new, context-aware vector

‣ CNNs do something similar with filters

‣ AMen5on can give us a third way to do this

Vaswani et al. (2017)

the movie was great

Self-AMen5on

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Assume we’re using GloVe/word2vec embeddings — what do we want our
neural network to do?

‣ Q: What words need to be contextualized here?

Self-AMen5on

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Pronouns need to look at antecedents

‣ Ambiguous words should look at context

‣ Assume we’re using GloVe/word2vec embeddings — what do we want our
neural network to do?

‣ What words need to be contextualized here?

‣ Words should look at syntac5c parents/children

‣ Problem: LSTMs and CNNs don’t do this

Self-AMen5on

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Want:

‣ LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

‣ To appropriately contextualize embeddings, we need to pass informa5on
over long distances dynamically for each word

Self-AMen5on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes aMen5on over each word

‣ Mul5ple “heads” analogous to different convolu5onal filters. Use
parameters Wk and Vk to get different aMen5on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj

What can self-aMen5on do?

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ Why mul5ple heads? SoAmaxes end up being peaked, single distribu5on
cannot easily put weight on mul5ple things

0.5 0.20.10.10.10 0 0 0 0 0 0

‣ AMend nearby + to seman5cally related terms

0.5 0 0.40 0.1 0 0 0 0 0 0 0

Visualiza5on

Vaswani et al. (2017)

Visualiza5on

Vaswani et al. (2017)

Visualiza5on

Vaswani et al. (2017)

Self-AMen5on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes aMen5on over each word

‣ Mul5ple “heads” analogous to different convolu5onal filters. Use
parameters Wk and Vk to get different aMen5on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj

Mul5-Head Self AMen5on

Vaswani et al. (2017)

‣ Mul5ple “heads” analogous to different convolu5onal filters

‣ Let X = [sent len, embedding dim] be the input sentence

‣ Query Q = XWQ: these are like the decoder hidden state in aMen5on

‣ Keys K = XWK: these control what gets aMended to, along with the query

‣ Values V = XWV: these vectors get summed up to form the output

dim of keys

Mul5-Head Self AMen5on

Credit: Alammar, The Illustrated Transformer

3 blocks - 64 dim (dk)
4 blocks - 512 dim (dx)

Mul5-Head Self AMen5on

Credit: Alammar, The Illustrated Transformer

3 blocks - 64 dim (dk)
4 blocks - 512 dim (dx)

Mul5-Head Self AMen5on

Credit: Alammar, The Illustrated Transformer

3 blocks - 64 dim (dk)
4 blocks - 512 dim (dx)

Mul5-Head Self AMen5on

sent len x hidden dim

Z is a weighted combina5on of V rows

sent len x sent len (aMn for
each word to each other)

Credit: Alammar, The Illustrated Transformer

every row in X is a word in input sent

Mul5-Head Self AMen5on

Credit: Alammar, The Illustrated Transformer

Mul5-Head Self AMen5on

Credit: Alammar, The Illustrated Transformer

Proper5es of Self-AMen5on

Vaswani et al. (2017)

‣Quadra1c complexity, but O(1) sequen5al opera5ons (not linear like
in RNNs) and O(1) “path” for words to inform each other

‣ n = sentence length, d = hidden dim, k = kernel size, r = restricted
neighborhood size

Transformers for MT: Complete Model

Vaswani et al. (2017)

‣ Encoder and decoder are both transformers

‣ Decoder consumes the previous generated
tokens but has no recurrent state

‣ Decoder alternates aMen5on over the output
and aMen5on over the input as well

Transformers

Vaswani et al. (2017)

‣ Alternate mul5-head self-aMen5on
layers and feedforward layers

‣ Residual connec5ons let the model
“skip” each layer — these are
par5cularly useful for training deep
networks

29

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

Residual Connec5ons

input from previous layer

output to next layer

g(x)

x

non-linearity

+x

g(x) + x

G

‣ allow gradients to flow through a network
directly, without passing through non-linear
ac5va5on func5ons

He et al. (2015)

Layer Normaliza5on

31

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

‣ subtract mean, divide by variance

Image Credit: Shahwar Alam Naqi
Ba et al. (2016)

Batch Normaliza5on

Transformers: Posi5on Sensi5vity

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ If this is in a longer context, we want words to aMend locally

‣ But transformers have no noIon of posiIon by default

34

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi=on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen=ally	as	well	as	just	encoding	posi=on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

Transformers

Vaswani et al. (2017)

‣ Adam op5mizer with varied learning
rate over the course of training

‣ Linearly increase for warmup, then
decay propor5onally to the inverse
square root of the step number

‣ This part is very important!

Transformers for MT: Complete Model

Vaswani et al. (2017)

‣ Many other details to get it to work: residual
connec5ons, layer normaliza5on, posi5onal
encoding, op5mizer with learning rate
schedule, label smoothing ….

Transformers

Vaswani et al. (2017)

‣ big = 6 layers, 1000 dim for each token, 16 heads,
base = 6 layers + other params halved

Useful Resources

Other Transformer Varia5ons

Press et al. (2020)

‣ Mul5layer transformer networks consist of interleaved self-aMen5on and
feedforward sublayers.

‣ Could ordering the sublayers in a different paMern lead to beMer
performance?

Other Transformer Varia5ons
‣ Mixture of Expert (MoE) Transformer, e.g., used in massively mul5lingual MT

Eigen el al. (2013), Shazeer et al. (2017), NLLB (2022)

41

Transformer	Uses

‣ Supervised:	transformer	can	replace	LSTM	as	encoder,	decoder,	or	both;	
will	revisit	this	when	we	discuss	MT

‣ Unsupervised:	transformers	work	be8er	than	LSTM	for	unsupervised	
pre-training	of	embeddings:	predict	word	given	context	words

‣ BERT	(BidirecPonal	Encoder	
RepresentaPons	from	Transformers):	
pretraining	transformer	language	models	
similar	to	ELMo

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)

such as in machine transla5on and natural language genera5on tasks.

Vaswani et al. (2017)

‣ Encoder and decoder are both transformers

‣ Decoder consumes the previous generated
token (and aMends to input), but has no
recurrent state

Summary: Transformer Uses

Summary: Transformer Uses

‣ Unsupervised: transformers work beMer than LSTM for unsupervised
pre-training of embeddings — predict word given context words

‣ BERT (Bidirec5onal Encoder
Representa5ons from Transformers):
pretraining transformer language models
similar to ELMo (based on LSTM)

‣ Stronger than similar methods, SOTA on ~11
tasks (including NER — 92.8 F1)

Transformer as in LLaMA-3

