
Recurrent	Neural	Networks

Wei	Xu
(many slides from Greg Durrett)



This	Lecture

‣ Vanishing	gradient	problem

‣ Recurrent	neural	networks

‣ LSTMs	/	GRUs

‣ Applications	/	visualizations



Administrivia
‣ Reading:	RNNs

‣ Eisenstein	7.6

‣ Jurafsky	and	Martin,	Chapter	9

‣ Goldberg	10,	11 https://u.cs.biu.ac.il/~yogo/nnlp.pdf



Recall:	Word2vec	-	Continuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

+

sum,	size	d
P (w|w�1, w+1)

softmaxMultiply 
by	W

‣ Matrix	factorization	approaches	useful	for	learning	
vectors	from	really	large	data

Mikolov	et	al.	(2013)



Recall:	Neural	Bag-of-Words
‣ feedforward	neural	network	on	average	of	word	embeddings	from	input

Iyyer	et	al.	(2015)



Compositional	Semantics

‣ What	if	we	want	embedding	representations	for	whole	sentences?

‣ Is	there	a	way	we	can	compose	vectors	to	make	sentence	
representations?	Summing?	Concatenating?	RNNs?



RNN	Basics



RNN	Motivation
‣ Feedforward	NNs	isn’t	the	best	to	handle	sentences	with	variable	length	
input,	words	with	multiple	senses,	or	take	word	order	and	context	(e.g.	
“not	good”)	into	consideration

‣ Instead,	we	need	to:
1)	Process	each	word	in	a	uniform	way

they		dance		at			balls

2)	…while	still	exploiting	the	(structure	of)	context	that	that	token	occurs	in

they				hit				the					balls



RNN	Abstraction
‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	that	
hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

‣ Long	history!	(invented	in	the	late	1980s)

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)



Training	Elman	Networks

the		movie		was			great

predict	sentiment

‣ “Backpropagation	through	time”:	build	the	network	as	one	big	
computation	graph,	some	parameters	are	shared

‣ RNN	potentially	needs	to	learn	how	to	“remember”	information	for	a	
long	time!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+

‣ “Correct”	parameter	update	is	to	do	a	better	job	of	remembering	the	
sentiment	of	favorite



RNN	Uses
‣ Transducer:	make	some	prediction	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	sentiment	(matmul	+	softmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	softmax



Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	
not	in	[-2,	2],	gradient	is	almost	0

<-	gradient<-	smaller	gradient<-	tiny	gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs/GRUs



Gated	Connections
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	(0,	1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣ 	If	f	≈	1,	we	simply	sum	up	a	function	of	
all	inputs	—	gradient	doesn’t	vanish!



LSTMs

‣ “Cell”	c	in	addition	to	hidden	state	h

‣ Vector-valued	forget	gate	f	depends	on	the	h	hidden	state

‣ Basic	communication	flow:	x	->	c	->	h	->	output,	each	step	of	this	
process	is	gated	in	addition	to	gates	from	previous	timesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f,	i,	o	are	gates	that	control	information	flow

‣ g	reflects	the	main	computation	of	the	cell

hj

Hochreiter	&	Schmidhuber	(1997)



LSTMs

g
i

hjhj-1

cj-1 cj

‣ Can	we	ignore	the	old	value	of	c	for	this	timestep?

‣ Can	we	ignore	a	particular	input	x?
‣ Can	an	LSTM	sum	up	its	inputs	x?

‣ Can	we	output	something	without	changing	c?

xj

hj

f o



LSTMs

g
i

hjhj-1

cj-1 cj

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ Ignoring	recurrent	state	entirely:

‣ Lets	us	discard	stopwords
‣ Summing	inputs:

‣ Lets	us	get	feedforward	layer	over	token
‣ Ignoring	input:

‣ Lets	us	compute	a	bag-of-words 
representationxj

hj

f o



LSTMs

‣ Gradient	still	diminishes,	but	in	a	controlled	way	and	generally	by	less	—	
usually	initialize	forget	gate	=	1	to	remember	everything	to	start

<-	gradientsimilar	gradient	<-

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



GRUs

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU:	faster,	a	bit	simpler‣ LSTM:	more	complex	and	
slower,	may	work	a	bit	better

X

hj

sj

σ X

+
1-z

z

σ tanh
r

‣ Two	gates:	z	(forget,	mixes	s	and	
h)	and	r	(mixes	h	and	x)

xj

hj



GRUs

‣ Also	solves	the	vanishing	gradient	problem,	simpler	than	LSTM

‣ z	controls	mixing	of	hidden	state	h	with	new	input	x

ht = (1� z)� ht�1 + z� func(xt,hj�1)

z = �(Wxt + Uht�1)

‣ Faster	to	train	and	sometimes	work	better	than	LSTMs

Cho	et	al.	(2014)

z = �(Wxt + Uht�1)



What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
prediction	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classification	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transformation	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors



Multilayer	Bidirectional	RNN

‣ Sentence	classification	
based	on	concatenation	
of	both	final	outputs

‣ Token	classification	based	on	
concatenation	of	both	directions’	
token	representations

the		movie		was			great the		movie		was			great



Training	RNNs

the		movie		was			great

‣ Loss	=	negative	log	likelihood	of	probability	of	gold	predictions,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)



Training	RNNs

the		movie		was			great

‣ Loss	=	negative	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	entire	network
‣ Example:	sentiment	analysis



Applications



What	can	LSTMs	model?
‣ Sentiment

‣ Translation

‣ Language	models

‣ Encode	one	sentence,	predict

‣ Move	left-to-right,	per-token	prediction

‣ Encode	sentence	+	then	decode,	use	token	predictions	for	attention	
weights	(later	in	the	course)



Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

‣ Counter:	know	when	to	generate	\n
‣ Visualize	activations	of	specific	cells	(components	of	c)	to	understand	them

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing	LSTMs

‣ Binary	switch:	tells	us	if	we’re	in	a	quote	or	not
‣ Visualize	activations	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing	LSTMs

‣ Stack:	activation	based	on	indentation
‣ Visualize	activations	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing	LSTMs

‣ Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	activation

‣ Visualize	activations	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


What	can	LSTMs	model?
‣ Sentiment

‣ Translation

‣ Language	models

‣ Encode	one	sentence,	predict

‣ Move	left-to-right,	per-token	prediction

‣ Encode	sentence	+	then	decode,	use	token	predictions	for	attention	
weights	(next	lecture)

‣ Textual	entailment/similarity

‣ Encode	two	sentences,	predict



Semantic	Similarity

35

Q: How much is 1 tablespoon of water?

A: In Australia one tablespoon (measurement unit) is 20 mL.

A: It is abbreviated as t, tb, tbs, tbsp, tblsp, or tblspn.

answer

non-answer

Question Answering

paraphrase

non⁃paraphrase

Ezekiel Ansah wearing 3D glasses wout the lens.

Ezekiel Ansah is wearing real3D glasses with the lenses punched out.

I wore the 3D glasses wout lenses before Ezekiel Ansah.

Paraphrase Identification

Wuwei	Lan,	Wei	Xu.	“Neural	Network	Models	for	Paraphrase	Identification,	Semantic	Textual	Similarity,	Natural	Language	Inference,	and	Question	Answering”	 
Best	Paper	Award	at	COLING	(2018)	



Semantic	Similarity

36

Twitter Paraphrase Corpus
(BUCC 2013; SemEval 2015;  

EMNLP 2017; ongoing)

Multi-instance Learning
(TACL 2014)

Multi-task Subword Model
(NAACL 2018)

Pairwise Interaction Models
(COLING 2018; ACL 2021)

related to  
natural language  

generation

Xu	et	al.	(2013,	2014,	2015),	Lan	et	al.	(2017,	2018)



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambitious	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)

Premise Hypothesis



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	captions	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)

300D	BiLSTM:	83%	accuracy

																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process

‣ Later:	better	models	for	this



Takeaways

‣ RNNs	can	transduce	inputs	(produce	one	output	for	each	input)	or	
compress	the	whole	input	into	a	vector

‣ Useful	for	a	range	of	tasks	with	sequential	input:	sentiment	analysis,	
language	modeling,	natural	language	inference,	machine	translation

‣ Next	time:	CNNs	and	neural	CRFs


