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‣ Applica<ons

‣ Neural	network	history

‣ Implemen<ng	neural	networks	(if	<me)



A	Bit	of	History

‣ The	Mark	I	Perceptron	machine	was	the	first	implementa<on	of	the	
perceptron	algorithm.	

The	IBM	Automa<c	Sequence	Controlled	Calculator,	called	Mark	I	by	Harvard	University’s	staff.

‣ Perceptron	(Frank	RosenblaR,	1957)

‣ Ar<ficial	Neuron	(McCulloch	&	PiRs,	1943)

It	was	designed	for	image	recogni<on:	it	had	an	array	of	400	photocells,	randomly	connected	to	
the	"neurons".	Weights	were	encoded	in	poten<ometers,	and	weight	updates	during	learning	
were	performed	by	electric	motors.

hRps://www.youtube.com/watch?<me_con<nue=71&v=cNxadbrN_aI&feature=emb_logo

https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_aI&feature=emb_logo


A	Bit	of	History

‣ Adaline/Madeline	-	single	and	mul<-layer	“ar<ficial	neurons”  
(Widrow	and	Hoff,	1960)



A	Bit	of	History

‣ First	<me	back-propaga<on	became	popular		(Rumbelhart	et	al,	1986)



History:	NN	“dark	ages”

‣ ConvNets:	applied	to	MNIST	by	LeCun	in	1998

‣ LSTMs:	Hochreiter	and	Schmidhuber	(1997)

‣ Henderson	(2003):	neural	shih-reduce	parser,	not	SOTA
hRps://www.youtube.com/watch?v=FwFduRA_L6Q&feature=youtu.be

hRps://www.andreykurenkov.com/wri<ng/ai/a-brief-history-of-neural-nets-and-deep-learning/

https://www.youtube.com/watch?v=FwFduRA_L6Q&feature=youtu.be
https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/


2008-2013:	A	glimmer	of	light…

‣ Collobert	and	Weston	2011:	“NLP	(almost)	from	scratch”

‣ Feedforward	neural	nets	induce	features	for	
sequen<al	CRFs	(“neural	CRF”)

‣ 2008	version	was	marred	by	bad	experiments,	
claimed	SOTA	but	wasn’t,	2011	version	<ed	SOTA

‣ Socher	2011-2014:	tree-structured	RNNs	working	okay

‣ Krizhevskey	et	al.	(2012):	AlexNet	for	vision



2014:	Stuff	starts	working

‣ Sutskever	et	al.	(2014)	+	Bahdanau	et	al.	(2015)	:	seq2seq	+	aRen<on	for	
neural	MT	(LSTMs	work	for	NLP?)

‣ Kim	(2014)	+	Kalchbrenner	et	al.	(2014):	sentence	classifica<on	/	sen<ment	
(convnets	work	for	NLP?)

‣ 2015:	explosion	of	neural	nets	for	everything	under	the	sun

‣ Chen	and	Manning	(2014)	transi<on-based	dependency	parser	(even	
feedforward	networks	work	well	for	NLP?)



Why	didn’t	they	work	before?

‣ Datasets	too	small:	for	MT,	not	really	beRer	un<l	you	have	1M+	parallel	
sentences	(and	really	need	a	lot	more)

‣Op3miza3on	not	well	understood:	good	ini<aliza<on,	per-feature	scaling	
+	momentum	(AdaGrad	/	AdaDelta	/	Adam)	work	best	out-of-the-box

‣ Regulariza3on:	dropout	is	preRy	helpful

‣ Inputs:	need	word	representa<ons	to	have	the	right	con<nuous	seman<cs

‣ Computers	not	big	enough:	can’t	run	for	enough	itera<ons

‣ Libraries:	TensorFlow	(Nov	2015),	PyTorch	(Sep	2016)
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Administrivia

‣ Reading:	Eisenstein	2.6,	3.1-3.3,	J+M	7,	Goldberg	1-4	

‣ Problem	Set	1	is	due	on	2/3

‣ TA	also	has	released	Project	1	
‣ PyTorch	Tutorial	can	also	be	found	on	the	course	project

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://u.cs.biu.ac.il/~yogo/nnlp.pdf


This	Lecture

‣ Feedforward	neural	networks	+	backpropaga<on

‣ Neural	network	basics

‣ Applica<ons

‣ Neural	network	history	(last	class)

‣ Implemen<ng	neural	networks	(if	<me)



Neural	Net	Basics



Neural	Networks:	mo<va<on

‣ How	can	we	do	nonlinear	classifica<on?	Kernels	are	too	slow…

‣Want	to	learn	intermediate	conjunc<ve	features	of	the	input

argmaxyw
>f(x, y)‣ Linear	classifica<on:

the	movie	was	not	all	that	good

I[contains	not	&	contains	good]



Neural	Networks:	XOR
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(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s	see	how	we	can	use	neural	nets 
to	learn	a	simple	nonlinear	func<on

‣ Inputs

‣ Output



Neural	Networks:	XOR
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Neural	Networks:	XOR
y = a1x1 + a2x2
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Neural	Networks:	XOR
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Neural	Networks

Taken	from	hRp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp 
space

ShiftNonlinear 
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

tanh



Neural	Networks

Taken	from	hRp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
…possible	because	
we	transformed	the	
space!



Deep	Neural	Networks

Adopted from Chris Dyer

}
output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second  
Layer

First	
Layer

“Feedforward”	computa<on	(not	
recurrent)

z = V(Wx+ b) + c

Check:	what	happens	if	no	nonlinearity?	
More	powerful	than	basic	linear	models?



Ac<va<on	Func<ons

Image	Credit:	Junxi	Feng



Deep	Neural	Networks

Taken	from	hRp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Feedforward	Networks,	
Backpropaga<on



Recap:	Feedforward	Neural	Networks

Adopted from Chris Dyer

}
output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second  
Layer

First	
Layer

“Feedforward”	computa<on	(not	
recurrent)

z = V(Wx+ b) + c

Check:	what	happens	if	no	nonlinearity?	
More	powerful	than	basic	linear	models?



Simple	Neural	Network 9Simple Neural Network
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• One innovation: bias units (no inputs, always value 1)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

-4.5

Slide	Credit:	Philipp	Koehn



Simple	Neural	Network

‣ Try	out	two	input	values

10Sample Input
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• Try out two input values

• Hidden unit computation

sigmoid(1.0 ⇥ 3.7 + 0.0 ⇥ 3.7 + 1 ⇥�1.5) = sigmoid(2.2) =
1

1 + e�2.2
= 0.90

sigmoid(1.0 ⇥ 2.9 + 0.0 ⇥ 2.9 + 1 ⇥�4.5) = sigmoid(�1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

-4.5

Slide	Credit:	Philipp	Koehn



Simple	Neural	Network

‣ Try	out	two	input	values	
‣ Hidden	unit	computa<on

11Computed Hidden
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Simple	Neural	Network

‣ Output	unit	computa<on

13Computed Output

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Output unit computation

sigmoid(.90 ⇥ 4.5 + .17 ⇥�5.2 + 1 ⇥�2.0) = sigmoid(1.17) =
1

1 + e�1.17
= 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

13Computed Output
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sigmoid(.90 ⇥ 4.5 + .17 ⇥�5.2 + 1 ⇥�2.0) = sigmoid(1.17) =
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= 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018
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‣ Computed	output:				
‣ Correct	output:		

‣ Q:	how	do	we	adjust	the	weights?

Error
20Error
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• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?
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Gradient	Descent 23Gradient Descent

Gradient for w1

G
radient for w

2

Optimum
Current Point

Combined Gradient

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



Deriva<ve	of	Sigmoid

‣ Deriva<ve:	

‣ Sigmoid	func<on:
24Derivative of Sigmoid

• Sigmoid sigmoid(x) =
1

1 + e�x

• Reminder: quotient rule
⇣f(x)

g(x)

⌘0
=

g(x)f 0(x) � f(x)g0(x)

g(x)2

• Derivative d sigmoid(x)
dx

=
d

dx

1

1 + e�x

=
0 ⇥ (1 � e�x) � (�e�x)

(1 + e�x)2

=
1

1 + e�x

⇣ e�x

1 + e�x

⌘

=
1

1 + e�x

⇣
1 �

1

1 + e�x

⌘

= sigmoid(x)(1 � sigmoid(x))
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Slide	Credit:	Philipp	Koehn



‣ Error	(L2	norm):		
‣ Deriva<ve	of	error	with	regard	to	one	weight							:

Final	Layer	Update
‣ Linear	combina<on	of	weights:	
‣ Ac<va<on	func<on:

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk
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‣ Error	(L2	norm):		
‣ Deriva<ve	of	error	with	regard	to	one	weight							:	

‣ Error								is	defined	with	respect	to					:

Final	Layer	Update	(1)
‣ Linear	combina<on	of	weights:	
‣ Ac<va<on	func<on:

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE
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=
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ds
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26Final Layer Update (1)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• Error E is defined with respect to y

dE

dy
=

d

dy

1

2
(t� y)2 = �(t� y)
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‣ Error	(L2	norm):		
‣ Deriva<ve	of	error	with	regard	to	one	weight							:	

‣ 						with	respect	to					is																					:	

Final	Layer	Update	(2)
‣ Linear	combina<on	of	weights:	
‣ Ac<va<on	func<on:

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk
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27Final Layer Update (2)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• y with respect to x is sigmoid(s)

dy

ds
=

d sigmoid(s)
ds

= sigmoid(s)(1� sigmoid(s)) = y(1� y)
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‣ Error	(L2	norm):		
‣ Deriva<ve	of	error	with	regard	to	one	weight							:	

‣ 				is	weighted	linear	combina<on	of	hidden	node	values							:	

Final	Layer	Update	(3)
‣ Linear	combina<on	of	weights:	
‣ Ac<va<on	func<on:
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‣ Deriva<ve	of	error	with	regard	to	one	weight							:

Puvng	it	All	Together

25Final Layer Update

• Linear combination of weights s =
P
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• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
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• Derivative of error with regard to one weight wk
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‣Weighted	adjustment	will	be	scaled	by	a	fixe	learning	rate						:	

29Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

= �(t� y) y(1� y) hk

– error
– derivative of sigmoid: y0

• Weight adjustment will be scaled by a fixed learning rate µ

�wk = µ (t� y) y0 hk
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Mul<ple	Output	Nodes

‣Weights	are	adjusted	according	to	the	node	they	point	to:	

30Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
X

j

1

2
(tj � yj)

2

• Weights k ! j are adjusted according to the node they point to

�wj k = µ(tj � yj) y
0
j hk
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‣ Previous	slides	discussed	the	situa<on	with	only	one	output	node:

‣ Some<mes,	neural	networks	have	mul<ple	output	nodes
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‣ Computed	output:				
‣ Correct	output:		

‣ Q:	how	do	we	adjust	the	weights?

Our	Example
20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?
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• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434
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30Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
X

j
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• Weights k ! j are adjusted according to the node they point to

�wj k = µ(tj � yj) y
0
j hk
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* Due to the floating-point rounding up, y' get somewhere between 1.80 and 1.824. 

D: 1/(1 + e^(-2.2))= 0.90024951088
E: 1/(1 + e^(1.6))= 0.16798161486
G: sigmoid(0.90024951088 * 4.5 + 0.16798161486 * -5.2 -2.0) = sigmoid (1.17761840169) = 0.76451931587

y' = y(1-y) = 0.76451931587 * (1-0.76451931587) = 0.18002953153
y' = y(1-y) = 0.76 * (1-0.76) = 0.1824

error 
term



‣ In	a	hidden	layer,	we	do	not	have	a	target	output	value	
‣ But,	we	can	compute	how	much	each	node	contributed	to	downstream	error	
‣ Defini<on	of	error	term	of	each	node:

Hidden	Layer	Updates

‣ Back-propagate	the	error	term:		

‣ Universal	update	formula:

31Hidden Layer Update
• In a hidden layer, we do not have a target output value

• But we can compute how much each node contributed to downstream error

• Definition of error term of each node

�j = (tj � yj) y
0
j

• Back-propagate the error term
(why this way? there is math to back it up...)

�i =
⇣X

j

wj i�j
⌘
y0i

• Universal update formula
�wj k = µ �j hk
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‣ Hidden	node	D:	

‣ Hidden	node	E:	

Hidden	Layer	Updates 34Hidden Layer Updates
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4.891 —

-5.126 ——
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• Hidden node D

– �D =
⇣P

j wj i�j
⌘
y0D = wGD �G y0D = 4.5⇥ .0434⇥ .0898 = .0175

– �wDA = µ �D hA = 10⇥ .0175⇥ 1.0 = .175
– �wDB = µ �D hB = 10⇥ .0175⇥ 0.0 = 0
– �wDC = µ �D hC = 10⇥ .0175⇥ 1 = .175

• Hidden node E

– �E =
⇣P

j wj i�j
⌘
y0E = wGE �G y0E = �5.2⇥ .0434⇥ 0.2055 = �.0464

– �wEA = µ �E hA = 10⇥�.0464⇥ 1.0 = �.464
– etc.
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– etc.

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

34Hidden Layer Updates
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• Hidden node D

– �D =
⇣P

j wj i�j
⌘
y0D = wGD �G y0D = 4.5⇥ .0434⇥ .0898 = .0175

– �wDA = µ �D hA = 10⇥ .0175⇥ 1.0 = .175
– �wDB = µ �D hB = 10⇥ .0175⇥ 0.0 = 0
– �wDC = µ �D hC = 10⇥ .0175⇥ 1 = .175

• Hidden node E

– �E =
⇣P

j wj i�j
⌘
y0E = wGE �G y0E = �5.2⇥ .0434⇥ 0.2055 = �.0464

– �wEA = µ �E hA = 10⇥�.0464⇥ 1.0 = �.464
– etc.

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018
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Feedforward	Networks,	
Backpropaga<on	
(more	formally)



Logis<c	Regression	with	NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single	scalar	probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute	scores	for	all	possible 
labels	at	once	(returns	vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ sohmax:	exps	and	normalizes	a	
given	vector

P (y|x) = softmax(Wf(x)) ‣Weight	vector	per	class; 
W	is	[num	classes	x	num	feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now	one	hidden	layer



Neural	Networks	for	Classifica<on

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

sohmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	

probs

We can think of a neural network classifier with one hidden layer as building a vector z which is a hidden layer representation 
(i.e. latent features) of the input, and then running standard logistic regression on the features that the network develops in z.



Training	Neural	Networks

‣Maximize	log	likelihood	of	training	data

‣ i*:	index	of	the	gold	label

‣ ei:	1	in	the	ith	row,	zero	elsewhere.	Dot	by	this	=	select	ith	index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)



Compu<ng	Gradients

‣ Gradient	with	respect	to	W

if	i	=	i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks	like	logis<c	regression	with	z	as	the	features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W

index of 
gold label index of vector z 

index of 
output space    Y

num_classes	x	d	
matrix



Neural	Networks	for	Classifica<on

V sohmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz



Compu<ng	Gradients:	Backpropaga<on
z = g(V f(x))

Ac<va<ons	at	
hidden	layer

‣ Gradient	with	respect	to	V:	apply	the	chain	rule

err(root) = ei⇤ � P (y|x)
dim	=	num_classes dim	=	d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

[some	math…]

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij



z = g(V f(x))

Ac<va<ons	at	
hidden	layer

‣ Gradient	with	respect	to	V:	apply	the	chain	rule

a = V f(x)

‣ First	term:	gradient	of	nonlinear	ac<va<on	func<on	at	a	(depends	on	
current	value)

‣ Second	term:	gradient	of	linear	func<on

‣ Straighyorward	computa<on	once	we	have	err(z)

Compu<ng	Gradients:	Backpropaga<on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)



@L(x, i⇤)
@z

= err(z) = W>err(root)

Backpropaga<on:	Picture

V sohmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can	forget	everything	aher	z,	treat 
it	as	the	output	and	keep	backpropping



Backpropaga<on:	Picture

V sohmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

@L(x, i⇤)
@z

= err(z) = W>err(root)

err(root) = ei⇤ � P (y|x)

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

@L(x, i⇤)
@z

= err(z) = W>err(root)
@L(x, i⇤)

@Vij
=

@L(x, i⇤)
@z

@z

@Vij



Backpropaga<on

‣ Step	1:	compute err(root) = ei⇤ � P (y|x)

‣ Step	2:	compute	deriva<ves	of	W	using	err(root)

‣ Step	3:	compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step	4:	compute	deriva<ves	of	V	using	err(z)

‣ Step	5+:	con<nue	backpropaga<on	(compute	err(f(x))	if	necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)



Backpropaga<on:	Takeaways

‣ Gradients	of	output	weights	W	are	easy	to	compute	—	looks	like	
logis<c	regression	with	hidden	layer	z	as	feature	vector

‣ Can	compute	deriva<ve	of	loss	with	respect	to	z	to	form	an	“error	
signal”	for	backpropaga<on

‣ Easy	to	update	parameters	based	on	“error	signal”	from	next	layer,	
keep	pushing	error	signal	back	as	backpropaga<on

‣ Need	to	remember	the	values	from	the	forward	computa<on

https://inst.eecs.berkeley.edu/~cs182/sp06/notes/backprop.pdf



Applica<ons



NLP	with	Feedforward	Networks

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em
b(raises)

‣Word	embeddings	for	each	word	form	input

‣ ~1000	features	here	—	smaller	feature	vector	
than	in	sparse	models,	but	every	feature	fires	on	
every	example

em
b(interest)

em
b(rates)‣Weight	matrix	learns	posi<on-dependent	

processing	of	the	words

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs



NLP	with	Feedforward	Networks

‣ Hidden	layer	mixes	these	
different	signals	and	learns	
feature	conjunc<ons

Botha	et	al.	(2017)



NLP	with	Feedforward	Networks
‣Mul<lingual	tagging	results:

Botha	et	al.	(2017)

‣ Gillick	used	LSTMs;	this	is	smaller,	faster,	and	beRer



Sen<ment	Analysis
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)



Sen<ment	Analysis

{

{
Bag-of-words

Tree	RNNs	/	
CNNS	/	LSTMS

Wang	and	
Manning	(2012)

Kim	(2014)

Iyyer	et	al.	(2015)



Coreference	Resolu<on
‣ Feedforward	networks	iden<fy	coreference	arcs

Clark	and	Manning	(2015),	Wiseman	et	al.	(2015)

President	Obama	signed…

He	later	gave	a	speech…

?



Training	Tips



Computa<on	Graphs

‣ Compu<ng	gradients	is	hard!

‣ Automa<c	differen<a<on:	instrument	code	to	keep	track	of	deriva<ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa<on	is	now	something	we	need	to	reason	about	symbolically

‣ Use	a	library	like	PyTorch	or	TensorFlow.	This	class:	PyTorch



Computa<on	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))

‣ Define	forward	pass	for



Computa<on	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])



Training	a	Model

Define	a	computa<on	graph

For	each	epoch:

Compute	loss	on	batch

For	each	batch	of	data:

Decode	test	set

Autograd	to	compute	gradients	and	take	step



Batching

‣ Batching	data	gives	speedups	due	to	more	efficient	matrix	opera<ons

‣ Need	to	make	the	computa<on	graph	process	a	batch	at	the	same	<me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch	sizes	from	1-100	ohen	work	well

def make_update(input, gold_label)

# input is [batch_size, num_feats]  
# gold_label is [batch_size, num_classes]

...



Training	Basics
‣ Basic	formula:	compute	gradients	on	batch,	use	first-order	op<miza<on	
method	(SGD,	Adagrad,	etc.)

‣ How	to	ini<alize?	How	to	regularize?	What	op<mizer	to	use?

‣ This	lecture:	some	prac<cal	tricks.	Take	deep	learning	or	op<miza<on	
courses	to	understand	this	further



How	does	ini<aliza<on	affect	learning?

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

sohmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How	do	we	ini<alize	V	and	W?	What	consequences	does	this	have?

‣ Nonconvex	problem,	so	ini<aliza<on	maRers!



‣ Nonlinear	model…how	does	this	affect	things?

‣ Tanh:	If	cell	ac<va<ons	are	too	large	in	absolute	value,	gradients	are	small

‣ ReLU:	larger	dynamic	range	(all	posi<ve	numbers),	but	can	produce	big	
values,	and	can	break	down	if	everything	is	too	nega<ve	(“dead”	ReLU)	

How	does	ini<aliza<on	affect	learning?

Krizhevsky	et	al.	(2012)		

http://cs231n.github.io/neural-networks-1/


Ini<aliza<on
1)	Can’t	use	zeroes	for	parameters	to	produce	hidden	layers:	all	values	in	
that	hidden	layer	are	always	0	and	have	gradients	of	0,	never	change

‣ Can	do	random	uniform	/	normal	ini<aliza<on	with	appropriate	scale

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Xavier	ini<alizer:

‣Want	variance	of	inputs	and	gradients	for	each	layer	to	be	the	same

2)	Ini<alize	too	large	and	cells	are	saturated

https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init
https://arxiv.org/pdf/1502.01852v1.pdf



Regulariza<on:	Dropout
‣ Probabilis<cally	zero	out	parts	of	the	network	during	training	to	prevent	
overfivng,	use	whole	network	at	test	<me

Srivastava	et	al.	(2014)

‣ Similar	to	benefits	of	
ensembling:	network	
needs	to	be	robust	to	
missing	signals,	so	it	
has	redundancy

‣ Form	of	stochas<c	
regulariza<on	

‣ One	line	in	Pytorch/Tensorflow



Batch	Normaliza<on
‣ Batch	normaliza<on	(Ioffe	and	Szegedy,	2015):	periodically	shih+rescale	
each	layer	to	have	mean	0	and	variance	1	over	a	batch	(useful	if	net	is	deep)

https://medium.com/@shiyan/xavier-initialization-and-batch-normalization-my-understanding-b5b91268c25c



Op<mizer
‣ Adam	(Kingma	and	Ba,	ICLR	2015)	is	very	widely	used

‣ Adap<ve	step	size	like	Adagrad,	incorporates	momentum



Op<mizer
‣Wilson	et	al.	NIPS	2017:	adap<ve	methods	can	actually	perform	badly	at	
test	<me	(Adam	is	in	pink,	SGD	in	black)

‣ Check	dev	set	periodically,	decrease	learning	rate	if	not	making	progress



‣Model:	feedforward,	RNNs,	CNNs	can	be	defined	in	a	uniform	framework

‣ Objec<ve:	many	loss	func<ons	look	
similar,	just	changes	the	last	layer	of	the	
neural	network

‣ Inference:	define	the	network,	your 
library	of	choice	takes	care	of	it	(mostly…)

‣ Training:	lots	of	choices	for	op<miza<on/hyperparameters

Four	Elements	of	NNs



Next	Class

‣Word	representa<ons

‣ word2vec/GloVe

‣ Evalua<ng	word	embeddings


