#### Wei Xu

(many slides from Greg Durrett, Vivek Srikumar, Stanford CS23 In)

#### This Lecture

Multiclass fundamentals

Feature extraction

Multiclass logistic regression

Optimization

## Multiclass Fundamentals

#### Text Classification

#### A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

#### Yankees and Mets Are on Opposite Tracks This Subway Series

As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

By FILIP BONDY



----- Health



\_\_\_\_ Sports

~20 classes

# Image Classification



Thousands of classes (ImageNet)

# Entity Linking

Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified **Armstrong** from his seven consecutive Tour de France wins from 1999 2005.





Lance Edward Armstrong is an American former professional road cyclist





Armstrong County is a county in Pennsylvania...

4,500,000 classes (all articles in Wikipedia)

# Entity Linking



#### this is just decidedly not what I meant



8:58 PM · Jan 30, 2021 · Twitter Web App

## Binary Classification

Binary classification: one weight vector defines positive and negative classes



Can we just use binary classifiers here?



- ▶ One-vs-all: train *k* classifiers, one to distinguish each class from all the rest
- ▶ How do we reconcile multiple positive predictions? Highest score?



Not all classes may even be separable using this approach



▶ Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others (with these features)

- ▶ All-vs-all: train n(n-1)/2 classifiers to differentiate each pair of classes
- Again, how to reconcile?



#### Wei Xu

(many slides from Greg Durrett, Vivek Srikumar, Stanford CS23 In)

#### Administrivia

- Problem Set 1 Graded (on Gradescope)
- Programming Project 1 is released (due 9/20)
- Reading: Eisenstein 2.0-2.5, 4.1, 4.3-4.5
- Optional readings related to Project 1 were posted by TA on Piazza

#### This Lecture

Multiclass fundamentals

Feature extraction

Multiclass logistic regression

Optimization

Binary classification: one weight vector defines both classes Multiclass classification: different weights and/or features per class



- Formally: instead of two labels, we have an output space  $\gamma$  containing a number of possible classes
  - Same machinery that we'll use later for exponentially large output spaces, including sequences and trees

features depend on choice

of label now! note: this

isn't the gold label

- Decision rule:  $\underset{y \in \mathcal{Y}}{\operatorname{argmax}} w^{\top} f(x, y)$ 
  - Multiple feature vectors, one weight vector
  - Can also have one weight vector per class:  $\operatorname{argmax}_{y \in \mathcal{Y}} w_y^\top f(x)$
  - ▶ The single weight vector approach will generalize to structured output spaces, whereas per-class weight vectors won't

## Feature Extraction

#### Block Feature Vectors

Decision rule:  $\operatorname{argmax}_{v \in \mathcal{V}} w^{\top} f(x, y)$ Health too many drug trials, too few patients

Base feature function:

f(x) = I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]feature vector blocks for each label

$$f(x,y={\sf Health}\,)= \begin{subarray}{ll} $f(x,y={\sf Sports}\,)=[0,0,0,1,1,0,0,0,0] \ $f(x,y={\sf Science})=[0,0,0,0,0,1,1,0] \end{subarray}$$
 I[contains  $drug$  & label = Health]

Equivalent to having three weight vectors in this case

# Making Decisions

too many drug trials, too few patients



f(x) = I[contains drug], I[contains patients], I[contains baseball]

$$f(x,y=\text{Health}\ ) = \fbox{ \begin{subarray}{l} $f(x,y=\text{Sports}\ ) = [0,0,0,0,1,1,0,0,0,0]$ \\ $f(x,y=\text{Science}) = [0,0,0,0,0,0,1,1,0]$ word drug in Science article" = +1.1 \\ $w=[+2.1,+2.3,-5,-2.1,-3.8,0,+1.1,-1.7,-1.3]$ \\ $w^\top f(x,y)=\text{Health}:+4.4$ Sports: -5.9 Science: -0.6 }$$

argmax

Softmax  $P_w(y|x) = \frac{\exp\left(w^\top f(x,y)\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^\top f(x,y')\right)} \quad P(y=1|x) = \frac{\exp(w^\top f(x))}{1 + \exp(w^\top f(x))}$ 

sum over output space to normalize

$$P(y = 1|x) = \frac{\exp(w^{\top} f(x))}{1 + \exp(w^{\top} f(x))}$$

negative class implicitly had f(x, y=0) =the zero vector

$$P_w(y|x) = \frac{\exp(w^{\top} f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(w^{\top} f(x,y'))}$$

sum over output space to normalize Why? Interpret raw classifier scores as probabilities



$$P_w(y|x) = \frac{\exp(w^{\top} f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(w^{\top} f(x,y'))}$$

sum over output space to normalize

i.e. minimize negative log likelihood or cross-entropy loss

Training: maximize 
$$\mathcal{L}(x,y) = \sum_{i=1}^{m} \log P(y_j^*|x_j)$$

index of data points (j) 
$$= \sum_{j=1}^{m} \left( w^\top f(x_j, y_j^*) - \log \sum_y \exp(w^\top f(x_j, y)) \right)$$

$$P_w(y|x) = \frac{\exp(w^{\top} f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(w^{\top} f(x,y'))}$$

sum over output space to normalize

Q: max/min of log prob.?

1.00

0.00

0.00

correct (gold)

probabilities



## Training

Multiclass logistic regression  $P_w(y|x) = \frac{\exp\left(w^\top f(x,y)\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^\top f(x,y')\right)}$ 

Likelihood 
$$\mathcal{L}(x_j, y_j^*) = w^\top f(x_j, y_j^*) - \log \sum_y \exp(w^\top f(x_j, y))$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \frac{\sum_y f_i(x_j, y) \exp(w^\top f(x_j, y))}{\sum_y \exp(w^\top f(x_j, y))}$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \sum_{y} f_i(x_j, y) P_w(y|x_j)$$

 $\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \mathbb{E}_y[f_i(x_j, y)] \longleftarrow \text{model's expectation}$  of feature value

## Training

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0] = [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]  $\longrightarrow \text{new P}_{w}(y|x) = [0.89, 0.10, 0.01]$ 

# Multiclass Logistic Regression: Summary

Model: 
$$P_w(y|x) = \frac{\exp\left(w^\top f(x,y)\right)}{\sum_{y'\in\mathcal{Y}} \exp\left(w^\top f(x,y')\right)}$$

- Inference:  $\operatorname{argmax}_y P_w(y|x)$
- Learning: gradient ascent on the discriminative log-likelihood

$$f(x, y^*) - \mathbb{E}_y[f(x, y)] = f(x, y^*) - \sum_y [P_w(y|x)f(x, y)]$$

"towards gold feature value, away from expectation of feature value"

# Multiclass SVM

# Soft Margin SVM

Minimize 
$$\lambda \|w\|_2^2 + \sum_{i=1}^m \xi_i$$

slack variables > 0 iff example is support vector

s.t. 
$$\forall j \quad \xi_j \geq 0$$
 
$$\forall j \quad (2y_j - 1)(w^\top x_j) \geq 1 - \xi_j$$



## Multiclass SVM

Minimize 
$$\lambda \|w\|_2^2 + \sum_{j=1}^m \xi_j$$
 slack variables > 0 iff example is support vector s.t.  $\forall j \ \xi_j \geq 0$  
$$\forall j \ (2y_j - 1)(w^\top x_j) \geq 1 - \xi_j$$
 
$$\forall j \forall y \in \mathcal{Y} \ w^\top f(x_j, y_j^*) \geq w^\top f(x_j, y) + \ell(y, y_j^*) - \xi_j$$

Correct prediction now has to beat every other class

Score comparison is more explicit now

The 1 that was here is replaced by a loss function

# Training (loss-augmented)

Are all decisions equally costly?

too many drug trials, too few patients



Predicted Sports: bad error

Predicted Science: not so bad

We can define a loss function  $\ell(y,y^*)$ 

$$\ell(\text{Sports}, \text{Health}) = 3$$
  
 $\ell(\text{Science}, \text{Health}) = 1$ 

## Loss-Augmented Decoding

$$\forall j \forall y \in \mathcal{Y} \ w^{\mathsf{T}} f(x_j, y_j^*) \ge w^{\mathsf{T}} f(x_j, y) + \ell(y, y_j^*) - \xi_j$$



- Does gold beat every label + loss? No!
- Most violated constraint is Sports; what is  $\xi_j$ ?
- $\xi_j = 4.3 2.4 = 1.9$
- Perceptron would make no update here

## Loss-Augmented Decoding

$$\xi_j = \max_{y \in \mathcal{Y}} w^{\top} f(x_j, y) + \ell(y, y_j^*) - w^{\top} f(x_j, y_j^*)$$

too many drug trials, too few patients Health

$$w^{\top}f(x,y)$$
 Loss Total
Health +2.4 0 2.4
Sports +1.3 3 4.3  $\leftarrow$  argmax
Science +1.8 1 2.8

- Sports is most violated constraint, slack = 4.3 2.4 = 1.9
- Perceptron would make no update, regular SVM would pick Science

#### Multiclass SVM

Minimize 
$$\lambda \|w\|_2^2 + \sum_{j=1}^m \xi_j$$
 s.t.  $\forall j \ \xi_j \geq 0$  
$$\forall j \forall y \in \mathcal{Y} \ w^\top f(x_j, y_j^*) \geq w^\top f(x_j, y) + \ell(y, y_j^*) - \xi_j$$

One slack variable per example, so it's set to be whatever the most violated constraint is for that example

$$\xi_j = \max_{y \in \mathcal{Y}} w^{\mathsf{T}} f(x_j, y) + \ell(y, y_j^*) - w^{\mathsf{T}} f(x_j, y_j^*)$$

▶ Plug in the gold y and you get 0, so slack is always nonnegative!

# Computing the Subgradient

Minimize 
$$\lambda \|w\|_2^2 + \sum_{j=1}^m \xi_j$$
  
s.t.  $\forall j \ \xi_j \geq 0$   
 $\forall j \forall y \in \mathcal{Y} \ w^\top f(x_j, y_j^*) \geq w^\top f(x_j, y) + \ell(y, y_j^*) - \xi_j$ 

- If  $\xi_i = 0$ , the example is not a support vector, gradient is zero
- $\text{Otherwise, } \xi_j = \max_{y \in \mathcal{Y}} w^\top f(x_j, y) + \ell(y, y_j^*) w^\top f(x_j, y_j^*) \\ \frac{\partial}{\partial w_i} \xi_j = f_i(x_j, y_{\max}) f_i(x_j, y_j^*) \text{ (update looks backwards we're minimizing here!)}$
- ▶ Perceptron-like, but we update away from \*loss-augmented\* prediction

### Putting it Together

Minimize 
$$\lambda \|w\|_2^2 + \sum_{j=1}^m \xi_j$$
  
s.t.  $\forall j \ \xi_j \geq 0$   
 $\forall j \forall y \in \mathcal{Y} \ w^\top f(x_j, y_j^*) \geq w^\top f(x_j, y) + \ell(y, y_j^*) - \xi_j$ 

- (Unregularized) gradients:
  - SVM:  $f(x, y^*) f(x, y_{\text{max}})$  (loss-augmented max)
  - ▶ Log reg:  $f(x, y^*) \mathbb{E}_y[f(x, y)] = f(x, y^*) \sum_{u} [P_w(y|x)f(x, y)]$
- $\triangleright$  SVM: max over ys to compute gradient. LR: need to sum over ys

# Entity Linking

Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified **Armstrong** from his seven consecutive Tour de France wins from 1999—2005.





Lance Edward Armstrong is an American former professional road cyclist





Armstrong County is a county in Pennsylvania...

- ▶ 4.5M classes, not enough data to learn features like "Tour de France <-> en/wiki/Lance\_Armstrong"
- Instead, features f(x, y) look at the actual article associated with y

# Entity Linking

Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified **Armstrong** from his seven consecutive Tour de France wins from 1999–2005.





- tf-idf(doc, w) = freq of w in doc \* log(4.5M/# Wiki articles w occurs in)
  - the: occurs in every article, tf-idf = 0
  - cyclist: occurs in 1% of articles, tf-idf = # occurrences \* log10(100)
- tf-idf(doc) = vector of tf-idf(doc, w) for all words in vocabulary (50,000)
- $f(x,y) = [\cos(tf-idf(x), tf-idf(y)), ... other features]$

#### Recap

- Four elements of a machine learning method:
  - Model: probabilistic, max-margin, deep neural network
  - Objective:



- Inference: just maxes and simple expectations so far, but will get harder
- Training: gradient descent?

- Gradient descent
  - Batch update for logistic regression
  - Each update is based on a computation over the entire dataset

#### **Multiclass Logistic Regression**

$$P_w(y|x) = \frac{\exp\left(w^\top f(x,y)\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^\top f(x,y')\right)}$$
 sum over output space to normalize i.e. minimize negative log likelihood or cross-entropy loss 
$$\bullet \text{ Training: maximize } \mathcal{L}(x,y) = \sum_{j=1}^m \log P(y_j^*|x_j)$$
 index of data points (j) 
$$= \sum_{j=1}^m \left(w^\top f(x_j,y_j^*) - \log \sum_y \exp(w^\top f(x_j,y))\right)$$



- Gradient descent
  - **Batch update** for logistic regression
  - Each update is based on a computation over the entire dataset

#### **Multiclass Logistic Regression**

Very simple to code up

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```



> Stochastic gradient descent

$$w \leftarrow w - \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

Approx. gradient is computed on a single instance

Q: What if loss changes quickly in one direction and slowly in another direction?



contour plot

> Stochastic gradient descent

$$w \leftarrow w - \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

Approx. gradient is computed on a single instance

Q: What if loss changes quickly in one direction and slowly in another direction?



> Stochastic gradient descent

$$w \leftarrow w - \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

- Very simple to code up
- What if the loss function has a local minima or saddle point?



"Identifying and attacking the saddle point problem in high-dimensional non-convex optimization" Dauphin et al. (2014)

Stochastic gradient descent

$$w \leftarrow w - \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

- Very simple to code up
- "First-order" technique: only relies on having gradient





# Optimization (extracurricular)

Stochastic gradient descent

 $w \leftarrow w - \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$ 

- Very simple to code up
- "First-order" technique: only relies on having gradient
- Setting step size is hard (decrease when held-out performance worsens?)
- Newton's method
  - Second-order technique
  - Optimizes quadratic instantly

$$w \leftarrow w - \left(\frac{\partial^2}{\partial w^2} \mathcal{L}\right)^{-1} g$$
 Inverse Hessian:  $n \times n$  mat, expensive!

Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

#### AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```



#### AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

$$w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^t g_{\tau,i}^2}} g_{t_i} \qquad \text{(smoothed) sum of squared gradients from all updates}$$

- ▶ Generally more robust than SGD, requires less tuning of learning rate
- Other techniques for optimizing deep models more later!

#### Summary

- Design tradeoffs need to reflect interactions:
  - Model and objective are coupled: probabilistic model <-> maximize likelihood
  - ...but not always: a linear model or neural network can be trained to minimize any differentiable loss function
  - Inference governs what learning: need to be able to compute expectations to use logistic regression

#### Next Up

You've now seen everything you need to implement multi-class classification models

Next time: Neural Network Basics!

In 2 weeks: Sequential Models (HMM, CRF, ... ) for POS tagging, NER